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ABSTRACT. We inquire further into the properties on fuzzy closed ideals. We give a char-
acterization of a fuzzy closed ideal using its level set, and establish some conditions for
a fuzzy set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a
fuzzy set, and give a characterization of a finite-valued fuzzy closed ideal. Using a t-norm
T, we introduce the notion of (imaginable) T-fuzzy subalgebras and (imaginable) T-fuzzy
closed ideals, and obtain some related results. We give relations between an imaginable
T-fuzzy subalgebra and an imaginable T-fuzzy closed ideal. We discuss the direct product
and T-product of T-fuzzy subalgebras. We show that the family of T-fuzzy closed ideals
is a completely distributive lattice.
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1. Introduction. In 1983, Hu et al. introduced the notion of a BCH-algebra which is
a generalization of a BCK/BClI-algebra (see [6, 7]). In [4], Chaudhry et al. stated ideals
and filters in BCH-algebras, and studied their properties. For further properties on
BCH-algebras, we refer to [2, 3, 5]. In [8], the first author considered the fuzzification
of ideals and filters in BCH-algebras, and then described the relation among fuzzy
subalgebras, fuzzy closed ideals and fuzzy filters in BCH-algebras. In this paper, we
inquire further into the properties on fuzzy closed ideals. We give a characterization
of a fuzzy closed ideal using its level set, and establish some conditions for a fuzzy
set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a fuzzy
set, and give a characterization of a finite-valued fuzzy closed ideal. Using a t-norm
T, we introduce the notion of (imaginable) T-fuzzy subalgebras and (imaginable) T-
fuzzy closed ideals, and obtain some related results. We give relations between an
imaginable T-fuzzy subalgebra and an imaginable T-fuzzy closed ideal. We discuss
the direct product and T-product of T-fuzzy subalgebras. We show that the family of
T-fuzzy closed ideals is a completely distributive lattice.

2. Preliminaries. By a BCH-algebra we mean an algebra (X, *,0) of type (2,0) sat-
isfying the following axioms:

(H1) x*xx =0,

(H2) x*y =0and y *xx =0 imply x =y,

H3) (x*xy)*xz=(x*z)*xy,
for all x,y,z € X.

In a BCH-algebra X, the following statements hold:

(P1) x %0 = x.
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(P2) x * 0 = 0 implies x = 0.

(P3) Ox(x*ky)=(0%xx)*(0xy).

A nonempty subset A of a BCH-algebra X is called a subalgebra of X if xxy € A
whenever x,y € A. A nonempty subset A of a BCH-algebra X is called a closed ideal
of X if

(i) OkxecAforall x € A,
(i) x*xy € A and y € A imply that x € A.
In what follows, let X denote a BCH-algebra unless otherwise specified. A fuzzy set
in X is a function u: X — [0,1]. Let u be a fuzzy set in X. For & € [0,1], the set
U(p;x) = {x € X | u(x) = «} is called a level set of L.
A fuzzy set y in X is called a fuzzy subalgebra of X if

u(x*y)=min{u(x),u(»)}, Vx,yeX. (2.1)

DEFINITION 2.1 (see [1]). By a t-norm T on [0,1], we mean a function T:[0,1] X
[0,1] — [0,1] satisfying the following conditions:

(T1) T(x,1)=x,

(T2) T(x,y)<T(x,z)if y <z,

(T3) T(x,y)=T(y,x),

(T4) T(x,T(y,z))=T(T(x,y),z),forall x,y,z€[0,1].

In what follows, let T denote a t-norm on [0, 1] unless otherwise specified. Denote
by A7 the set of elements « € [0,1] such that T(«x, ¢) = «, that is,

Ar:={xe€[0,1]| T(x, ) = x}. (2.2)
Note that every t-norm T has a useful property:
(P4) T(x,B) <min(«x,pB) forall o, B € [0,1].
3. Fuzzy closed ideals

DEFINITION 3.1 (see [8]). A fuzzy set u in X is called a fuzzy closed ideal of X if
(F1) p(0*xx) = u(x) for all x € X,
(F2) p(x)zmin{u(x*xy),u(y)} forall x,y € X.

THEOREM 3.2. Let D be a subset of X and let up be a fuzzy set in X defined by
o, ifxeD,
Hp(x) = (3.1)
oy ifx¢D,

for all x € X and ¢y, > x». Then up is a fuzzy closed ideal of X if and only if D is a
closed ideal of X.

PROOF. Assume that up is a fuzzy closed ideal of X. Let x € D. Then, by (F1), we
have (0% x) > pu(x) = &; and so pu(0*x) = ;. It follows that 0k x € D.Let x,y € X
be such that x %y € D and v € D. Then up (x * y) = &1 = up (), and hence

pp (x) = min {up (x * ¥),up(¥)} = 1. (3.2)

Thus up(x) = &1, that is, x € D. Therefore D is a closed ideal of X.
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Conversely, suppose that D is a closed ideal of X.Let x € X.If x € D, then O*xx € D
and thus pp (0% x) = &1 = up(x). If x ¢ D, then pup(x) = 2 < up(0*kx).Let x,y € X.
If x*xy eDand y €D, then x € D. Hence

Hp(x) = oy =min{pp(x *y),up(¥)}. (3.3)

If x*xy ¢ D and y ¢ D, then clearly up(x) = min{up(x * y),up(y)}. If exactly one
of x x y and y belong to D, then exactly one of up(x * y) and up(y) is equal to «o.
Therefore, up(x) = &; = min{up (x * v),up(y)}. Consequently, up is a fuzzy closed
ideal of X. O

Using the notion of level sets, we give a characterization of a fuzzy closed ideal.

THEOREM 3.3. A fuzzy set u in X is a fuzzy closed ideal of X if and only if the
nonempty level set U (u; ) of u is a closed ideal of X for all x € [0,1].

We then call U(u; x) a level closed ideal of u.

PROOF. Assume that uis afuzzy closedideal of X and U (u; ) # @ forall x € [0,1].
Let x € U(u;x). Then u(0xx) = pu(x) = «, and so 0 x x € U(u;x). Let x,y € X be
such that x x y e U(u;x) and v € U(u; ). Then

p(x) =min{u(x*y),u(y)} = min{e, o} = «, (3.4)

and thus x € U(u; ). Therefore U (u; ) is a closed ideal of X. Conversely, suppose
that U(u;x) # @ is a closed ideal of X. If u(0 xa) < u(a) for some a € X, then
u(0xa) < xg < pu(a) by taking g := 1/2(u(0Oxa) +pu(a)). It follows that a € U (u; xg)
and O x a ¢ U(u; xy), which is a contradiction. Hence p(0 * x) > u(x) for all x € X.
Assume that there exist x¢, Yo € X such that

p(xo) <min {u(x0* ¥0),1(>0)}- (3.5)

Taking Bo := 1/2(u(xo) +min{u(xo * ¥o),u(Y0)}), we get p(xo) < Bo < H(xo * o)
and p(xo) < Bo < u(yo). Thus xo * yo € U(u; Bo) and yo € U (u; Bo), but xo & U (1; Bo)-
This is impossible. Hence u is a fuzzy closed ideal of X. O

THEOREM 3.4. Let it be a fuzzy setin X andIm(u) = {xo, &1,...,Xn}, where &; <
whenever i > j. Let {Dy | k =0,1,2,...,n} be a family of closed ideals of X such that
(i) DocDic---cDy, =X,
(i) p(Dy) = ok, where Djf = Dg\Dy_1 andD_, = @ fork =0,1,...,n.
Then u is a fuzzy closed ideal of X.

PROOF. For any x € X there exists k € {0,1,...,n} such that x € D{. Since Dy is a
closed ideal of X, it follows that 0 % x € Dy. Thus u(0* x) > &y = u(x). To prove that
u satisfies condition (F2), we discuss the following cases: if x *y € D and y € Dy,
then x € Dy because Dy is a closed ideal of X. Hence

p(x) = o =min {p(x *y),u(y)}. (3.6)
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If xxy ¢ Dy and y ¢ D}, then the following four cases arise:
(i) x*xy e X\Dyand y € X\ Dy,

(i) x*y € Dy_1 and y € Dy,

(iii) x *y € X\ Dy and v € Dg_1,

(iv) x*y €Dy-1 and y € X\ Dy.
But, in either case, we know that p(x) = min{u(x x y),u(y)}. If x *xy € D and
¥ ¢ Df, then either v € Dy_; or y € X\ Dy. It follows that either x € Dy or x € X\ Dx.
Thus p(x) =z min{u(x * y),u(y)}. Similarly for the case x x y ¢ D} and y € D}, we
have the same result. This completes the proof. O

THEOREM 3.5. Let A be a subset of [0,1] and let {D, | A € A} be a collection of closed
ideals of X such that
(i) X =UaeaDa,
(i) o> Bifandonlyif Dy ¢ Dg for all &, € A.
Define a fuzzy set u in X by u(x) = sup{A € A | x € D)} forall x € X. Then u is a
fuzzy closed ideal of X.

PROOF. Let x € X. Then there exists «; € A such that x € Dy,. It follows that
Okxx e Do(f for some «j > «;. Hence

p(x) =supf{ox € Al ox < i} <supf{ox € Al o < &} = u(0*x). (3.7)

Let x,y € X be such that u(x * y) = m and u(y) = n, where m,n € [0,1]. Without
loss of generality we may assume that m < n. To prove u satisfies condition (F2), we
consider the following three cases:

(1°)A < m, (2°)ym <A <n, (3°)A > n. (3.8)
Case (1°) implies that x *« y € D, and v € D,. It follows that x € D, so that
u(x) =sup{A € A|x €Dy} =m=min{u(x*y),u(»)}. (3.9)

For the case (2°), we have x *x y ¢ D) and v € D). Then either x € D, or x ¢ D,. If
X € Dy, then pu(x) =n = min{u(x xy),u(y)}. If x ¢ Dy, then x € D5 — D, for some
6 <A, and so u(x) >m =min{u(x * y),u(y)}. Finally, case (3°) implies x * y ¢ D,
and y ¢ D). Thus we have that either x € D) or x ¢ D,. If x € D, then obviously
u(x) = minfu(x x y),u(y)}. If x ¢ Dy then x € D, — D, for some € < A, and thus
u(x) =m=min{u(x *y),u(y)}. This completes the proof. O

Let D be a subset of X. The least closed ideal of X containing D is called the closed
ideal generated by D, denoted by (D). Note that if C and D are subsets of X and
C € D, then (C) < (D). Let u be a fuzzy set in X. The least fuzzy closed ideal of X
containing u is called a fuzzy closed ideal of X generated by u, denoted by (u).

LEMMA 3.6. For a fuzzy set u in X, then
u(x) =sup{xe[0,1]1|x e U(u;x)}, VxeX. (3.10)

PROOF. letd:=sup{xe[0,1]|x e U(u;x)} and let € > 0 be given. Then 6 — ¢ < x
for some « € [0,1] such that x € U(u;x), and so 6 —& < pu(x). Since ¢ is arbitrary, it
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follows that p(x) > 8. Now let u(x) = B. Then x € U(u;B) and hence € {x € [0,1] |
x € U(u;x)}. Therefore

u(x) =B <sup{xe(0,1]1|xeU(u;x)} =4, (3.11)

and consequently p(x) = 8, as desired. O

THEOREM 3.7. Let u be a fuzzy set in X. Then the fuzzy set u* in X defined by
p*(x)=sup{axe[0,1]|x € (U(u;00)} (3.12)

for all x € X is the fuzzy closed ideal {u) generated by .

PROOF. We first show that u* is a fuzzy closed ideal of X. For any y € Im(u*),
let y, = y —1/n for any n € N, where N is the set of all positive integers, and let
x € U(u*;y). Then u*(x) = y, and so

sup{ax e [0,1] | x € (U(u;00)} =y > yu, (3.13)

for all n € N. Hence there exists § € [0,1] such that 8 > y, and x € (U (u;B)). It follows
that U(u; B) < U(u;yn) sothat x € (U(u; B)) < (U(u;yn)) for all n € N. Consequently,
X € Npen{U(U;yn)). On the other hand, if x € Nyuen(U (U;yn)), theny, € {x e [0,1] |
x € (U(u;x))} for any n € N. Therefore

Y= =y =sup{ace 0,11 x € (U e0) = 1 (), (3.14)
for all n € N. Since n is an arbitrary positive integer, it follows that y < u*(x) so that
x € U(u*;y). Hence U(u*;y) = Nuen(U(U;¥n)), which is a closed ideal of X. Using
Theorem 3.3, we know that p* is a fuzzy closed ideal of X. We now prove that p*
contains u. Forany x € X, let f € {&x € [0,1] | x € (U(u;x))}. Then x € U(u;B) and
so x € (U(u;B)). Thus we get B € {x e [0,1] | x € (U(u;x))}, and so

{ael0,1]1x €U0} < {ax€[0,1] | x € (U(p;00))}. (3.15)

It follows from Lemma 3.6 that

p(x) =sup{xe[0,1] | x e U(p;00}
<sup{xe[0,1] | x € {(U(u;x))} (3.16)
= u*(x).

Hence u < p*. Finally let v be a fuzzy closed ideal of X containing p and let x €
X. If p*(x) = 0, then clearly pu*(x) < v(x). Assume that u*(x) =y # 0. Then x €
Uu*;y) = Nuen{U(U;yn)), that is, x € U(u;y,) for all n € N. It follows that v(x) >
u(x) = y,=y—-1/nforall n € N so that v(x) > y = u*(x) since n is arbitrary. This
shows that u* < u, completing the proof. O

DEFINITION 3.8. A fuzzy closed ideal u of X is said to be n-valued if Im(u) is a
finite set of n elements. When no specific n is intended, we call u a finite-valued fuzzy
closed ideal.
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THEOREM 3.9. Let u be a fuzzy closed ideal of X. Then u is finite valued if and only
if there exists a finite-valued fuzzy set v in X which generates . In this case, the range
sets of u and v are identical.

PROOF. If u:X — [0,1] is a finite-valued fuzzy closed ideal of X, then we may
choose v = u. Conversely, assume that v : X — [0,1] is a finite-valued fuzzy set. Let
o1, 00,...,&, be distinct elements of v(X) such that &y > otx > -+ > &y, and let
Ci=v ) fori=1,2,...,n. Clearly, u{lei c U’leCi whenever j < k < n. Hence if
weletD; = (U{;lCi), then we have the following chain:

DicDy<c---<D,=X. (3.17)
Define a fuzzy set u: X — [0,1] as follows:

X1 ifXEDl,
p(x) = _ (3.18)
X leEDj\Dj,l.

We claim that u is a fuzzy closed ideal of X generated by v. Clearly p(0* x) > u(x)
for all x € X. Let x,y € X. Then there exist i and j in {1,2,...,n} such that x xy € D;
and y € D;. Without loss of generality, we may assume that i and j are the smallest
integers such that i = j, x x y € D;, and ¥ € D;. Since D; is a closed ideal of X, it
follows from D; < D; that x € D;. Hence u(x) = «; = min{u(x * y),u(y)}, and so
u is a fuzzy closed ideal of X. If v(x) = «; for every x € X, then x € C; and thus
x € Dj. But we have u(x) = o; = v(x). Therefore u contains v. Let 6 : X — [0,1]
be a fuzzy closed ideal of X containing v. Then U(v;«;) < U(6;«;) for every j.
Hence U (6; «;), being a closed ideal, contains the closed ideal generated by U (v; &;) =
U{:1Ci- Consequently, D; € U(6;«;). It follows that u is contained in 6 and that u is
generated by v. Finally, note that |[Im(u)| = n = |Im(v)|. This completes the proof.

O

THEOREM 3.10. Let D, 2 D, 2 - - - be a descending chain of closed ideals of X which
terminates at finite step. For a fuzzy closed ideal u of X, if a sequence of elements of
Im(u) is strictly increasing, then u is finite valued.

PROOF. Suppose that u is infinite valued. Let {,, } be a strictly increasing sequence
of elements of Im(u). Then 0 < o; < &x2 < - - - < 1. Note that U (u; t;) is a closed ideal
of Xfort=1,2,3,.... Let x e U(u;x¢) for t = 2,3,.... Then u(x) = o > x¢—1, which
implies that x € U(u;x¢—1). Hence U(u;ox¢) < U(u;x¢—1) for t = 2,3,.... Since o¢_1 €
Im(u), there exists x;—; € X such that pu(x;-1) = ot¢—1. It follows that x;—1 € U (u; x¢-1),
butx;-1 ¢ U(u; ). Thus U (u; ) € U(uU; x¢—1), and so we obtain a strictly descending
chain U(u;0¢1) 2 U(u;02) 2 -+ - of closed ideals of X which is not terminating. This
is impossible and the proof is complete. O

Now we consider the converse of Theorem 3.10.

THEOREM 3.11. Let u be a finite-valued fuzzy closed ideal of X. Then every descend-
ing chain of closed ideals of X terminates at finite step.
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PROOF. Suppose there exists a strictly descending chain Do 2 D1 2 D> 2 --- of
closed ideals of X which does not terminate at finite step. Define a fuzzy set y in X
by

if xeDy\Dys1, n=0,1,2,...,
1
plx)=4m+ (3.19)
1 if x € ny;_¢yDn,

where D stands for X. Clearly, u(0* x) > u(x) for all x € X. Let x,y € X. Assume
that x xy € Dy \Dy41 and v € Dg\Dg41 forn=0,1,2,...; k=0,1,2,.... Without loss
of generality, we may assume that n < k. Then clearly y € D,, and so x € D,, because
D, is a closed ideal of X. Hence

n .
Hx) = o =min {u(xx ), 1)} (3.20)
If x*y e ny_oDnand y € Nny_gDy, then x € Ny_yDy. Thus p(x) = 1 = min{u(x *
V),uY)}. I xxy ¢ n;;_oDy and y € N;_yDy, then there exists a positive integer k
such that x * y € Dy \ Dg.1. It follows that x € Dy so that

k .
u(x)zk—zrmn{u(x*y),u(y)}. (3.21)
+1
Finally suppose that x xy € n;,_,Dy, and y ¢ Ny_oDyn. Then v € D, \ Dy, for some
positive integer 7. It follows that x € D,, and hence

u(x)zﬁzmin{u(x*y),u(y)}. (3.22)

Consequently, we conclude that u is a fuzzy closed ideal of X and u has an infinite
number of different values. This is a contradiction, and the proof is complete. O

THEOREM 3.12. The following are equivalent:
(i) Every ascending chain of closed ideals of X terminates at finite step.
(ii) The set of values of any fuzzy closed ideal of X is a well-ordered subset of [0,1].

PROOF. (i)=(ii). Let u be a fuzzy closed ideal of X. Suppose that the set of values of
uis not awell-ordered subset of [0, 1]. Then there exists a strictly decreasing sequence
{axn} such that p(x,) = ay. It follows that

Upsor) U3 00) S U(M03) & - - (3.23)

is a strictly ascending chain of closed ideals of X. This is impossible.
(ii)=(i). Assume that there exists a strictly ascending chain

Di¢DyeD3G--- (3.24)

of closed ideals of X. Note that D := U,enDy, is a closed ideal of X. Define a fuzzy set
uin X by
if x ¢ Dy,

0
p(x) =44 (3.25)
% where k =min{n eN | x € D, }.
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We claim that yu is a fuzzy closed ideal of X. Let x € X. If x ¢ D,, then obviously
UOxx)=>0=pu(x).lf x e D,\D;,,_1 forn=2,3,...,then0xx € D,,. Hence u(0*x) >
1/m=u(x).letx,yeX.if xxy e D,\Dy_1 and v € D, \Dy,_; forn =2,3,..., then
x € Dy,. It follows that

u(x)Z%:min{u(x*y),u(y)}- (3.26)

Suppose that x x y € D,, and y € Dy, \ Dy, for all m <n. Then x € Dy, and so u(x) >
1/n=1/m+1 = u(y). Hence pu(x) = min{u(x x y),u(y)}. Similarly for the case
X%y € Dy\Dy, and y € Dy, we get u(x) = min{u(x * y),u(y)}. Therefore u is
a fuzzy closed ideal of X. Since the chain (3.24) is not terminating, y has a strictly
descending sequence of values. This contradicts that the value set of any fuzzy closed
ideal is well ordered. This completes the proof. O

4. T-fuzzy subalgebras and T-fuzzy closed ideals

DEFINITION 4.1. A fuzzy set u in X is said to satisfy imaginable property if Im(u) <
Ar.

DEFINITION 4.2. A fuzzy set uin X is called a fuzzy subalgebra of X with respect to
a t-norm T (briefly, T-fuzzy subalgebra of X) if u(x*y) > T(u(x),u(y)) forallx,y €
X. A T-fuzzy subalgebra of X is said to be imaginable if it satisfies the imaginable
property.

EXAMPLE 4.3. Let T, be a t-norm defined by T;,(«x,B) = max(x+ —1,0) for all
o, B €[0,1] andlet X = {0,a,b,c,d} be a BCH-algebra with the following Cayley table:

QA O T Q O%
L0 T8 oo
QL0 T OO
Q0O OO0 O
QU O O 8 On
[ S T N R WY

(1) Define a fuzzy set y: X — [0,1] by

4.1)

0.9 ifxe{0,d},
u(x) =
0.09 otherwise.

Then u is a T,,-fuzzy subalgebra of X, which is not imaginable.
(2) Let v be a fuzzy set in X defined by

{1 if x € {0,d},
v(x) = 4.2)
0 otherwise.

Then v is an imaginable T,,-fuzzy subalgebra of X.
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PROPOSITION 4.4. Let A be a subalgebra of X and let u be a fuzzy set in X
defined by

(64} ifX EA,
u(x):= ) (4.3)
&> otherwise,

for all x € X, where x;,x» € [0,1] with &y > 2. Then u is a Ty,-fuzzy subalgebra of
X. In particular, if &1 = 1 and «; = 0 then u is an imaginable T, -fuzzy subalgebra of
X, where T,, is the t-norm in Example 4.3.

PROOF. letx,ye X.If x € Aand y € A then

T (H(x), () = Ty (001, x1) = max

—

20(1 - 1,0)

2000 —1 if X1 =
(4.4)
0 if X1 <

N = N =

<oy =pxxy).
IfxeAand y ¢ A (or, x ¢ Aand y € A) then

T (H(X),1(3)) = Trn (@1, x2) = max (&x; + 2 —1,0)

(4.5)

o1 +o—1 ifog+o=1
0 otherwise

<o S u(xxy).
If x,y ¢ A then

Tin (u(x), () = Tin (202 = 1,0)

20(2 -1 if o =
(4.6)

|
N|—= N =

0 if0(2<

<o Spu(x*xy).
Hence u is a T),-fuzzy subalgebra of X. Assume that &; = 1 and &, = 0. Then

T (a1, 1) = max (o + 1 —1,0) = 1 = &,

4.7
T (02, 002) = max (o2 + otz —1,0) = 0 = . “.7)

Thus o, 2 € Ar,, that is, Im(u) € Ar,, and so u is imaginable. This completes the
proof. O

PROPOSITION 4.5. If u is an imaginable T-fuzzy subalgebra of X, then p(0 * x) >
u(x) forall x € X.
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PROOF. For any x € X we have

u(0%xx) =T (u0),u(x))
T (u(x *2x),pu(x))  [by (HD)]
(4.8)
T(T (u( u(x)) p(x)) by (T2) and (T3)]
= u(x), [since u satisfies the imaginable property].
This completes the proof. O

THEOREM 4.6. Let u be a T-fuzzy subalgebra of X and let «x € [0,1] be such that
T(x,x) = . Then U(u; &) is either empty or a subalgebra of X, and moreover u(0) >
u(x) forall x € X.

PROOF. let x,y € U(u;x). Then
pexy) = T(u0),u(y)) 2 T(x, &) = «, (4.9)
which implies that x * y € U (u; «). Hence U (u; ) is a subalgebra of X. Since x xx =0
for all x € X, we have u(0) = pu(x*xx) = T(u(x),u(x)) = pu(x) for all x € X. O
Since T(1,1) = 1, we have the following corollary.

COROLLARY 4.7. If u is a T-fuzzy subalgebra of X, then U (u;1) is either empty or a
subalgebra of X.

THEOREM 4.8. Let u be a T-fuzzy subalgebra of X. If there is a sequence {x,} in X
such that limy, .., T(u(xy),u(xy)) =1, then u(0) = 1.

PROOF. let x € X. Then u(0) = u(x * x) = T(u(x),u(x)). Therefore u(0) =
T(u(xn),u(xn)) for each n € N. Since 1 > p(0) > limy,_ T(U(xn),u(xn)) = 1, it fol-
lows that p(0) = 1, this completes the proof. O

Let f: X — Y be a mapping of BCH-algebras. For a fuzzy set u in Y, the inverse
image of u under f, denoted by f~1(u), is defined by f~1(u)(x) = u(f(x)) for all
x € X.

THEOREM 4.9. Let f: X — Y be a homomorphism of BCH-algebras. If u is a T-fuzzy
subalgebra of Y, then £~ (u) is a T-fuzzy subalgebra of X.

PROOF. For any x,y € X, we have

SH (xxy) =u(f(xxp)) =u(f(x)* f(»))
= T(u(f(x),u(f()) (4.10)
=T (), ).

This completes the proof. O

If pis a fuzzy set in X and f is a mapping defined on X. The fuzzy set f(u) in f(X)
defined by f(u)(y) = sup{u(x) | x € f~1(y)} for all y € £(X) is called the image of
punder f. A fuzzy set u in X is said to have sup property if, for every subset T c X,
there exists to € T such that u(tyg) = sup{u(t) |t € T}.
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THEOREM 4.10. An onto homomorphic image of a fuzzy subalgebra with sup prop-
erty is a fuzzy subalgebra.

PROOF. Let f: X — Y be an onto homomorphism of BCH-algebras and let u be a
fuzzy subalgebra of X with sup property. Given u,v € Y, let xo € f~'(u) and yg €
f~1(v) be such that

p(xo) =sup{u(t) I te fHw)}, p(yo)=sup{u(t)|te f )}, (4.11)
respectively. Then

f(u*xv)=sup{u(z) |ze fLux*xv)}
> min{u(xo),u(>0)}

(4.12)
=min{sup{ut) |t f~Hw}, supiu@) | te ftw)}}
=min {f () (u), f () (v)}.
Hence f(u) is a fuzzy subalgebra of Y. O

Theorem 4.10 can be strengthened in the following way. To do this we need the
following definition.

DEFINITION 4.11. A t-norm T on [0,1] is called a continuous t-norm if T is a con-
tinuous function from [0,1] x[0,1] to [0, 1] with respect to the usual topology.

Note that the function “min” is a continuous t-norm.

THEOREM 4.12. Let T be a continuous t-norm and let f : X — Y be an onto homo-
morphism of BCH-algebras. If u is a T-fuzzy subalgebra of X, then f(u) is a T-fuzzy
subalgebra of Y.

PROOF. Let Ay = f~1(y1), Az = f"1(y2),and A1p = f~1(y1 % y2), where y1,y, €Y.
Consider the set

Al *x Az :={x €X|x=a;*a, for some a; € Ay, a € Az}. (4.13)
If x € A; % Ay, then x = x1 % x, for some x; € A; and x» € A, and so
FO0) = fx1%x2) = f(x1) % f(x2) = 1% 2, (4.14)
thatis, x € f~1(y1 % ¥2) = A12. Thus A; % Ay < Aps. It follows that

S (1% 32) =sup {u(x) | x € £ (1% 32)} =sup {u(x) | x € A}
=sup {u(x) | x € Ay *x Ay}
(4.15)
= sup {p(x1 ¥ x2) | x1 € Ay, x2 € Az}
>sup {T(u(x1),u(x2)) | x1 € A1, x2 € Az}
Since T is continuous, for every € > 0 there exists a number 6 > 0 such that if
sup{u(xi) | x1 € A1} —x{ < 8 and sup{u(x;) | x2 € A} — x5 < 6 then

T(sup{u(x1) | x1 € A1}, sup {u(x2) | x2 € Ax}) —T(xf,x¥) <e. (4.16)
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Choose a; € A; and a; € Ay such thatsup{u(x1) | x1 € A1} —p(ar) <6 and sup{u(x2)
| x2 € A2} —u(az) < 6. Then

T(sup{u(x1) | x1 € Ar}, sup {u(x2) | x2 € Ao}) =T (u(ar),u(a2)) <. (4.17)
Consequently

S (yixy2) =sup{T(u(x1),u(x2)) | X1 € A, x2 € Az}

> T(sup {u(x1) | x1 € A}, sup {u(x2) | x2 € Az}) (4.18)
=T (), () (2)),
which shows that f(u) is a T-fuzzy subalgebra of Y. O

LEMMA 4.13 (see [1]). For all x,8,y,6 € [0,1],
T(T(x,B),T(y,8)) =T(T(x,y),T(B,5)). (4.19)

THEOREM 4.14. Let X = X; XX, be the direct product BCH-algebra of BCH-algebras
X1 and X». If yy (vesp., u2) is a T-fuzzy subalgebra of X, (vesp., X2), then p = uy X o is
a T-fuzzy subalgebra of X defined by

p(xi,x2) = (U X p2) (x1,x2) = T (u1(x1), H2(x2)), (4.20)
for all (x1,x7) € X1 X X>.
PROOF. let x = (x1,x2) and v = (y1,)2) be any elements of X = X; X X,. Then
(x1,x2) * (1,02)) = H(x1 % 1,X2 % 2)
(X1 % y1), H2 (X2 % 32))

T (u1 (x1), 11 (1)), T (2 (x2), 2 (22)))
(

Hx*y) = p(
T(
T(
T(T (p1(x1),p2(x2)), T (11 (1), 12(32)))
T(
T(

%

(4.21)

p(xy,xz2),u(x2,2))
U, 1()).

Hence u is a T-fuzzy subalgebra of X. O

We will generalize the idea to the product of n T-fuzzy subalgebras. We first need
to generalize the domain of T to 1_[?:l [0,1] as follows:

DEFINITION 4.15 (see [1]). The function T;, : []/%,[0,1] — [0,1] is defined by
Tn (01, 02,0y 0n) = T (g, Trno1 (&1, -y K1, i1y e5 O) ) (4.22)
forall 1 <i<mn,wheren =2, T, =T, and T; = id (identity).

LEMMA 4.16 (see [1]). For every &, i € [0,1] wherel <i<nandn > 2,

Tn(T(O(LBl)!T((XZ!BZ)""!T((xns»gn)) = T(Tn((XI,0(21---:“n):Tn(BlvBL---aBn))-
(4.23)
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THEOREM 4.17. Let {X;}]', be the finite collection of BCH-algebras and X = [T, Xi
the direct product BCH-algebra of {X;}. Let u; be a T-fuzzy subalgebra of X;, where
1 <i<n. Then u =[], u; defined by

RS | PATS—

i=1

(4.24)
= T (1 (x1),42(x2), ..., Hn(Xn)),
is a T-fuzzy subalgebra of the BCH-algebra X.
PROOF. let x = (x1,X2,...,Xp) and ¥ = ()1,Y2,...,Vn) be any elements of X =
[T, X;i. Then
H(X ok Y) = H(X1 % Y1,X2 % Yo,y Xn ¥ Vi)
= Tn(ﬂl(xl *yl),ﬂz(xz *yZ),sun(Xn*yn))
> T (T (1 (x1), 11 (1)), T (M2 (x2), 12(>2)) s+ os T (i (Xn) s i (V) ))

(4.25)
= T(Tn(p1(x1), K2 (x2),. s b (Xn) ), T (1 (1), 2 (372) -, i (V)
= T(“(xl!x2!"'!Xn)au(ylayZ!"'!.yn))
=T (u(x),u(y)).
Hence u is a T-fuzzy subalgebra of X. O

DEFINITION 4.18. Let u and v be fuzzy sets in X. Then the T-product of u and v,
written [u - v]r, is defined by [p-v]r(x) = T(u(x),v(x)) for all x € X.

THEOREM 4.19. Let u and v be T-fuzzy subalgebras of X. If T* is a t-norm which
dominates T, that is,

T*(T(e,B), T(y,6)) = T(T*(x,y), T*(B,5)), (4.26)

for all o, B,y,6 € [0,1], then the T*-product of u and v, [u-v]r*, is a T-fuzzy subal-
gebra of X.

PROOF. For any x,y € X we have

[u-virs(x*y)=T*(u(x*y),v(x*xy))

—~ o~

> T*(T(u(x),u(»), T(v(x),v(¥))) 4.27)
> T(T*(u(x),v(x)), T*(u(»),v(»)))
= T([p-virs (x),[u-virs ().

Hence [u - v]r+ is a T-fuzzy subalgebra of X. O

Let f: X — Y be an onto homomorphism of BCH-algebras. Let T and T* be t-
norms such that T* dominates T. If u and v are T-fuzzy subalgebras of Y, then
the T*-product of y and v, [u- v]r*, is a T-fuzzy subalgebra of Y. Since every onto
homomorphic inverse image of a T-fuzzy subalgebra is a T-fuzzy subalgebra, the



282 Y. B. JUN AND S. M. HONG

inverse images f~1(u), f~Y(v), and f~1([u-v]r+) are T-fuzzy subalgebras of X. The
next theorem provides that the relation between f~!([u - v]r+) and the T*-product

LfFH ) - f1 (V)] of f~1(w) and f1(v).

THEOREM 4.20. Let f : X — Y be an onto homomorphism of BCH-algebras. Let T*
be a t-norm such that T* dominates T. Let u and v be T-fuzzy subalgebras of Y. If
[u - v is the T*-product of p and v and [f~1(u) - f~1(v)]r= is the T*-product of
F Y (u) and f~1(v), then

SN vIe) = [F7H - 710 ] (4.28)
PROOF. For any x € X we get
S vIr) (x) = - v (f(x))
=T*(u(f(x)),v(f(x)))
=T*(f () (), (V) (x))
=[N - ) s (),

(4.29)

This completes the proof. O

DEFINITION 4.21. A fuzzy set p in X is called a fuzzy closed ideal of X under a
t-norm T (briefly, T-fuzzy closed ideal of X) if

(F1) p(0*xx) = u(x) for all x € X,

(F3) p(x)=T(u(x*xy),u(y)) forall x,y € X.

A T-fuzzy closed ideal of X is said to be imaginable if it satisfies the imaginable
property.

EXAMPLE 4.22. Let T, be a t-norm in Example 4.3. Consider a BCH-algebra X =
{0,a,b,c} with Cayley table as follows:

O T Oflx
O T OO
(=R o NN e RSN N
o on o
o8 T aln

(1) Define a fuzzy set u: X — [0,1] by u(0) = u(c) = 0.8 and u(a) = u(b) = 0.3.
Then u is a T),-fuzzy closed ideal of X which is not imaginable.
(2) Let v be a fuzzy set in X defined by

1 if x €{0,c},
v(x) = ] (4.30)
0 otherwise.

Then v is an imaginable T,,-fuzzy closed ideal of X.

THEOREM 4.23. Every imaginable T-fuzzy subalgebra satisfying (F3) is an imagin-
able T-fuzzy closed ideal.

PROOF. Using Proposition 4.5, it is straightforward. O
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PROPOSITION 4.24. If u is an imaginable T -fuzzy closed ideal of X, then u(0) > u(x)
forall x € X.

PROOF. Using (F1), (F3), and (T2), we have
H0) = T(pu(0%xx),u(x)) = T(u(x),u(x)) = pu(x) (4.31)
for all x € X, completing the proof. O
THEOREM 4.25. Every T-fuzzy closed ideal is a T-fuzzy subalgebra.
PROOF. Let u be a T-fuzzy closed ideal of X and let x,y € X. Then
((xxy)*x),u(x)) [by (F3)]

u
p((x*x)*y),u(x)) [by (H3)

plx*xy)=T(
(
( (4.32)
(

H(Oxy),u(x)) [by (HL)]
u(x),u(y)) [by (F1), (T2), and (T3)].

Il
N 9N

\%

Hence u is a T-fuzzy subalgebra of X. O

The converse of Theorem 4.25 may not be true. For example, the T,,-fuzzy subal-
gebra u in Example 4.3(1) is not a T),-fuzzy closed ideal of X since

u(a) =0.09<0.9=Ty(u@axd),u(d)). (4.33)

We give a condition for a T-fuzzy subalgebra to be a T-fuzzy closed ideal.
THEOREM 4.26. Let u be a T-fuzzy subalgebra of X. If u satisfies the imaginable
property and the inequality
Hxxy) =p(y*x) Vx,y€X, (4.34)

then u is a T-fuzzy closed ideal of X.

PROOF. Letubeanimaginable T-fuzzy subalgebra of X which satisfies the inequal-
ity
Uxxy)<uly*xx) Vx,yeX. (4.35)

It follows from Proposition 4.5 that u(0* x) > u(x) for all x € X. Let x,y € X. Then
u(x) =pu(x*x0) = pu(0%xx) =u((y*y)*x)
(4.36)
=u((y*x)%y) =T(u(y*x),u(y) = T(ux*y),u)).
Hence u is a T-fuzzy closed ideal of X. O
PROPOSITION 4.27. Let T,, be a t-norm in Example 4.3. Let D be a closed ideal of X
and let u be a fuzzy set in X defined by

b(x) _{oq ifx €D, 4.37)

o> otherwise,

forall x € X.
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(i) If x; =1 and &2 = 0, then u is an imaginable T, -fuzzy closed ideal of X.
(i) If x1,002 € (0,1) and o1 > 2, then u is a T, -fuzzy closed ideal of X which is not
imaginable.

PROOF. ()If x e D,thenOxx € Dandsou(0xx) =1=pu(x).If x ¢ D, then clearly
u(x) =0 < u(0x*x). Now obviously if x € D, then
p(x) =1= T (p(x*y),u(y)), (4.38)

for all ¥ € X. Assume that x ¢ D. Then x xy ¢ D or y ¢ D, thatis, u(x*y) =0 or
u(y) = 0. It follows that

T ((x %), u(¥)) =0 = pu(x). (4.39)

Hence p(x) = T (u(x * y),u(y)) for all x,y € X. Clearly Im(u) < Ar,,.
(ii) Similar to (i), we know that u is a Ty,-fuzzy closed ideal of X. Taking «; = 0.7,
then
T (01, 1) = T3, (0.7,0.7) = max (0.7 +0.7 - 1,0) = 0.4 # ;. (4.40)

Hence «; ¢ Ar,, that is, Im(u) ¢ Ar,,, and so u is not imaginable. O

PROPOSITION 4.28. Let u be an imaginable T-fuzzy closed ideal of X. If u satisfies
the inequality p(x) = u(0x x) for all x € X, then it satisfies the equality u(x x y) =
u(y xx) forall x,y € X.

PROOF. Let u be an imaginable T-fuzzy closed ideal of X satisfying the inequality
u(x) = u(0*xx) for all x € X. For every x,y € X, we have

u(y*xx)=u(0*(y*x)) [byassumption]

(0% (¥ *x)) * (x*¥)),u(x*y)) [by (F3)]

((0%y) % (0%kx)) % (x*xy)),u(x*xy)) [by(P3)]
(0% )k (x%xy)) % (0*xx)),u(x*xy)) [by(H3)]
(0% (x %)) *¥) * (0%x)),u(x*y)) [by (H3)]
(((0%x) % (0% ) %) * (0% x)),u(x*y)) [by (P3)]
(((0%x) % (0% ) * (0%x)) *¥),u(x %)) [by (H3)]
(((0%x) * (0% x)) % (0% y)) % ¥),u(x*y)) [by (H3)]
(0% (0%y)) *y),u(x*y)) [by (HIL)]

0),u(x*y)) [by (H3)and (H1)]

u(
u(
u(
u(
u(
u(
u(
u(
u(
u(

(
(
(
(
(
(
(
(
(
(
(H((x k) * (x*¥)),u(x*y)) [by (HD)]
(T

>T
=T
=T
=T
=T
=T
=T
=T
T
=T
>T(T(u(x*y),u(x*y)),u(x*y)) [byProposition 4.24 and (T2)]
=pu(x

(x*7y) [since u is imaginable].
(4.41)

Similarly we have p(x * y) > u(y * x) for all x,y € X, completing the proof. O
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THEOREM 4.29. Every imaginable T-fuzzy closed ideal is a fuzzy closed ideal.

PROOF. Let u be an imaginable T-fuzzy closed ideal of X. Then
p(x) = T(u(x*xy),u(y)) VYx,yeX. (4.42)
Since u is imaginable, we have

min (u(x *y),u(y)) = T(min (u(x *y),u(y)), min (u(x *y),1(y)))
<T(u(x*y),u(y)) (4.43)
<min (u(x*y),u(y)).

It follows that p(x) = T(u(x *x y),u(y)) = min(u(x * y),u(y)) so that u is a fuzzy
closed ideal of X. O

Combining Theorems 3.3, 4.29, we have the following corollary.

COROLLARY 4.30. If u is an imaginable T-fuzzy closed ideal of X, then the nonempty
level set of u is a closed ideal of X.

Noticing that the fuzzy set y in Example 4.22(1) is a fuzzy closed ideal of X, we
know from Example 4.22(1) that there exists a t-norm such that the converse of
Theorem 4.29 may not be true.

PROPOSITION 4.31. Every imaginable T-fuzzy closed ideal is order reversing.

PROOF. Let u be an imaginable T-fuzzy closed ideal of X and let x,y € X be such
that x < y. Using (P4), (T2), Theorem 4.29, Proposition 4.24, and the definition of a
fuzzy closed ideal, we get

p(x) =min {p(x *y),u(»)} = T(u(x *),u(y))

(4.44)
=T (u0),u(y)) = T(u(y),u(y)) =uly).

This completes the proof. O

PROPOSITION 4.32. Let u be a T-fuzzy closed ideal of X, where T is a diagonal t-
normon [0,1], thatis, T(x,x) = « forallx € [0,1]. If (x*a) xb =0 foralla,b,x € X,
then p(x) = T (u(a),u(b)).

PROOF. Let a,b,x € X be such that (x*a) *xb = 0. Then

p(x) = T(u(x*a),u(a))
> T(T(u((x*a)*b),u(b)),ua))
=T(T(u(0),u(b)),u(a)) (4.45)
= T(T(u(b),u(b)),ua))
=T(u(a),u(b)),

completing the proof. O
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COROLLARY 4.33. Let u be a T-fuzzy closed ideal of X, where T is a diagonal t-norm
on[0,1.If (---((x*kaq)*xaz) x---)*ka, =0 forall x,a,a,...,a, € X, then

p(x) = Tp(u(ar),u(az),...,u(an)). (4.46)
PROOF. Using induction on n, the proof is straightforward. O

THEOREM 4.34. There exists a t-norm T such that every closed ideal of X can be
realized as a level closed ideal of a T-fuzzy closed ideal of X.

PROOF. Let D be a closed ideal of X and let i be a fuzzy set in X defined by

o if xeD,
U(x) = i 4.47)
0 otherwise,

where x € (0, 1) is fixed. It is clear that U (u; ) = D. We will prove that p is a Ty,-fuzzy
closed ideal of X, where T,, is a t-norm in Example 4.3.If x € D, then 0 xx € D and so
U(0xx) =o0=pu(x).If x ¢ D, then clearly u(x) =0 <u(0*xx).Let x,y € X.If x € D,
then p(x) = x> Ty (u(xxy),u(y)).If x ¢ D, then x xy ¢ D or y ¢ D. It follows that
U(x) =0=Ty(u(x*y),u(y)). This completes the proof. O

For a family {uy | @ € A} of fuzzy sets in X, define the join V yealy and the meet
AxeaMq as follows:

(VaeaHa) (X) =sup {pa(x) | @ €A},  (AxeaMa) (x) =inf{ua(x) | x € A}, (4.48)

for all x € X, where A is any index set.

THEOREM 4.35. The family of T-fuzzy closed ideals in X is a completely distributive
lattice with respect to meet “ A” and the join “ v ”.

PROOF. Since [0,1] is a completely distributive lattice with respect to the usual
ordering in [0, 1], it is sufficient to show that Vv yeatq and Ayea g are T-fuzzy closed
ideals of X for a family of T-fuzzy closed ideals {uy | @ € A}. For any x € X, we have

(VaeaHa) (0% x) = sup {Hx (0% x) | x € A}
> sup {p(x) | @ €A}
= (VaeaHa) (X),
. (4.49)
(Aaeaba) (0% x) =inf {ua (0% x) | x € A}
>inf {uy(x) | x € A}

= (/\zxeAMx)(X)-

Let x,y € X. Then

(VaeaHa) (x) = sup {Hu(x) | o € A}
> sup {T (Ha(x * ), Ha(Y)) | x € A}
> T(sup {pa(x * ) | € A},sup {ua(y) | @ € A})
= T((Vaeata) (X %), (Vaerta) (7)),
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(AaeaMea) (x) =inf {pa(x) | @ € A}
= inf {T (pa(x * ¥),ua(y)) | @€ A}
> T(inf {ua(x * v) | @ € A},inf {us(y) | x € A})

= T((Aaeala) (X *¥), (Aaeala) ().
(4.50)

Hence V yeally and Ageply are T-fuzzy closed ideals of X, completing the proof. [

5. Conclusions and future works. We inquired into further properties on fuzzy
closed ideals in BCH-algebras, and using a t-norm T, we introduced the notion of
(imaginable) T-fuzzy subalgebras and (imaginable) T-fuzzy closed ideals, and obtained
some related results. Moreover, we discussed the direct product and T-product of T-
fuzzy subalgebras. We finally showed that the family of T-fuzzy closed ideals is a com-
pletely distributive lattice. These ideas enable us to define the notion of (imaginable)
T-fuzzy filters in BCH-algebras, and to discuss the direct products and T-products of
T-fuzzy filters. It also gives us possible problems to discuss relations among T-fuzzy
subalgebras, T-fuzzy closed ideals and T-fuzzy filters, and to construct the normal-
izations. We may also use these ideas to introduce the notion of interval-valued fuzzy
subalgebras/closed ideals.
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