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Abstract. American call options are financial derivatives that give the holder the right
but not the obligation to buy an underlying security at a pre-determined price. They differ
from European options in that they may be exercised at any time prior to their expiration,
rather than only at expiration. Their value is described by the Black-Scholes PDE together
with a constraint that arises from the possibility of early exercise. This leads to a free
boundary problem for the optimal exercise boundary, which determines whether or not
it is beneficial for the holder to exercise the option prior to expiration. However, an exact
solution cannot be found, and therefore by using asymptotic techniques employed in the
study of boundary layers in fluid mechanics, we find an asymptotic expression for the
location of the optimal exercise boundary and the value of the option near to expiration.
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1. Introduction. Recently, the financial markets have seen an explosion of “deriv-

ative products” such as options. An option is a contract that allows the holder to buy

or sell a financial asset at a fixed price in the future. Options need not be exercised,

the holder of the option will use it only if this is convenient. A call is an option to

buy an asset and a put is an option to sell it. An option contract specifies the exercise

price and the expiration date of the contract.

Such options exist on many assets (known as underlyers). Options are a special type

of derivative security because their value is derived from the value of some underlying

security. Most options can be grouped into either of two categories: European options

which can be exercised only on their expiration date, and American options which can

be exercised on or before their expiration date. In practice, most options are American.

American options are much harder to deal with than European ones. The problem is

that it may be optimal to use (exercise) the option before the final expiry date. This

optimal exercise policy will affect the value of the option, and the exercise policy needs

to be known when solving the PDE. Holders of American options have this choice of

when to exercise the options.

The main problem of options is how they should be priced in equilibrium with the

price and characteristics of the underlying asset. This problem was solved by Black

and Scholes [1]. Some financial institutions make money by selling large number of

options. They make money on some and lose money on others. This can only happen

if they are selling the options at a correct price. Options can be used as a speculative

medium with small, or relatively small, risk and with unlimited possible profit.

The growth in the availability of financial derivatives has led to (and in part been

driven by) the development of mathematical models which are used to value these

options, with the Black-Scholes model being the best known of these.
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In this paper, a model for pricing American call options on dividend paying assets

is presented, so we will concentrate on American call option but there are also barrier

options, Asian options, and so forth. For American call options on nondividend paying

assets, early exercise is never optimal, and the early exercise premium is zero. For

options on dividend-paying stocks, early exercise may be optimal for some stock-

price paths, making the early exercise premium positive. For the special case of one

dividend payment during the life of an option, an analytical solution is available, due

to Roll, Geske, and Whaley. A first formulation of an analytical call price with dividends

was given by Roll [6]. This had some errors that were partially corrected in Geske [3],

before Whaley [7] gave a final, correct formula. Geske and Johnson [4] used the series

of Bermudan option prices to approximate the price of American options.

Valuation of American options is more complicated, since at each time we have to

determine not only the option value, but also, whether or not it should be exercised

and this leads to a free boundary problem, with the boundary lying between the re-

gions, where early exercise is beneficial and where it is not. The presence of this free

boundary makes the mathematics of American options more complicated than their

European counterparts, and much of the work done to date on American options has

been numerical.

To value American options, the idea is that we should look for a function C(S,t)
that satisfies the Black-Scholes equation in the region of the (S,t)-plane, where the

option should not be exercised and provide additional boundary conditions along the

region where the option should be exercised. To arrive at this region is to impose

the additional conditions on option prices that should hold in the case of American

style options. As long as exercise is not optimal, the payoff condition is C(S,T) =
max(S−E,0) but because the American option can be exercised at any time, we al-

ways have

C(S,t)≥max(S−E,0). (1.1)

In this case if S > E, then the option is in the money. If S < E, the option is out of

the money. If S = E, the option is at the money. The converse is true for the put

options. The rest of the paper is organized as follows. In Section 2, we describe the

analysis of the American call option using the Black-Scholes model. This analysis is

based on arbitrage arguments. Also, we discuss the optimal exercise boundary xf (τ),
where xf (τ) is not known, therefore, the problem of determining the option price

is then a free boundary problem. In particular, we will discuss the optimal exercise

price for an American call on a dividend-paying asset at times near expiry. We used

asymptotic expansions to find the free boundary. American options have been consid-

ered previously by Jacka [5] from the perspective of optimal stopping-time problems.

Section 3 presents graphical results of the free boundary and the price of the call

option. Section 4 contains a summary for analysis and a brief discussion.

2. Black-Scholes PDE for American options. In their monograph “Option Pricing”

(see [8, pages 110–119]), Wilmott, Dewynne, and Howison, lay the foundation for an

asymptotic analysis of American call options near to expiration. However, they only

take the analysis to first order in order to verify their numerical results, and do not
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pursue it further. In this section, we take their analysis to higher orders. Our x1 and κ0

were the end result of their analysis. The foundation of our analysis therefore follows

the one in “Option Pricing” very closely.

From “Option Pricing,” an American call option on an underlying that pays a con-

tinuous dividend obeys the following (Black-Scholes) PDE:

∂C
∂t
+ 1

2
σ 2S2 ∂2C

∂S2
+(r −D0

)
S
∂C
∂S
−rC = 0, (2.1)

where

t: time

σ : volatility of the underlying asset

S: price of underlying stock

C : price of call option

r : interest rate

D0: dividend yield.

Because this option can be exercised at any time, we also have the constraint

C(S,t)≥max(S−E,0). (2.2)

To facilitate our analysis, we make the following change of variables:

S = Eex, t = T − τ
(1/2)σ 2

, C(S,t)= S−E+Ec(x,τ). (2.3)

After transformation we get

∂c
∂τ

= ∂2c
∂x2

+(k2−1
) ∂c
∂x

−k1c+f(x) (2.4)

for −∞<x <∞ and τ > 0, where

f(x)= (k2−k1
)
ex+k1 = k1

(
1−ex−x0

)
, x0 = log

(
k1

k1−k2

)
. (2.5)

The two parameters k1 and k2 are given by

k1 = r
(1/2)σ 2

, k2 = r −D0

(1/2)σ 2
, k1 > k2 > 0. (2.6)

We must solve these equations together with the boundary condition that

c(x,0)=max
(
1−ex,0)=


1−ex, x < 0,

0, x ≥ 0,
(2.7)

and the constraint on c that

c(x,τ)≥max
(
1−ex,0). (2.8)

Because of this, there will be a free boundary, which we suppose to be located at

x = xf (τ), where

c
(
xf (τ),τ

)= ∂c
∂x
(
xf (τ),τ

)= 0, (2.9)
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that is to say, both c and ∂c/∂x vanish at the free boundary. The location of the free

boundary is given by xf (τ), where xf is an unknown function. The purpose of this

study is to find an asymptotic expression for xf . At expiration, we know that

xf (0)= x0, (2.10)

where x0 is defined in (2.5) and f(x0)= 0. Near to expiration, we expand xf in τ

xf (τ)= x0+x1τ1/2+x2τ+x3τ3/2+x4τ2+x5τ5/2+··· . (2.11)

We perform a local analysis in the vicinity of x = x0 and τ = 0, and introduce the

rescaled coordinates,

x−x0 = νX, τ = µξ, c(x,τ)= εγ(X,ξ),

f (x)∼−k1

(
νX+ ν

2X2

2!
+ ν

3X3

3!
+ ν

4X4

4!
+···

)
,

(2.12)

where ν � 1, µ� 1, and ε� 1 are small parameters. With these rescaled variables,

the PDE becomes

εµ−1 ∂γ
∂ξ

= εν−2 ∂2γ
∂X2

+εν−1(k2−1
) ∂γ
∂X

−εk1γ

−k1

(
νX+ ν

2X2

2!
+ ν

3X3

3!
+ ν

4X4

4!
+···

)
,

(2.13)

with γ(X,ξ = 0) = 0 at expiration. If we consider the balance of terms in (2.13), to

leading order we must have

εµ−1 ∂γ
∂ξ

∼ εν−2 ∂2γ
∂X2

−νk1X. (2.14)

This gives us a relationship between ε, µ, and ν , since we require that each term in

(2.14) be of the same order of magnitude. Therefore we must have µ = ν2 and ε = ν3,

so that (2.12) becomes

x−x0 = νX, τ = ν2ξ, c(x,τ)= ν3γ(X,ξ),

f (x)∼−k1

(
νX+ ν

2X2

2!
+ ν

3X3

3!
+ ν

4X4

4!
+···

)
,

(2.15)

and (2.13) becomes

∂γ
∂ξ

= ∂2γ
∂X2

+ν(k2−1
) ∂γ
∂X

−ν2k1γ−k1

(
X+ νX

2

2!
+ ν

2X3

3!
+ ν

3X4

4!
+···

)
. (2.16)

Next, we shall expand γ as a series in ν ,

γ ∼ γ0+νγ1+ν2γ2+··· . (2.17)
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Substituting this expansion into the governing equation (2.16) yields at successive

powers of ν

∂γ0

∂ξ
= ∂

2γ0

∂X2
−k1X,

∂γ1

∂ξ
= ∂

2γ1

∂X2
+(k2−1

)∂γ0

∂X
− k1X2

2!
,

∂γ2

∂ξ
= ∂

2γ2

∂X2
+(k2−1

)∂γ1

∂X
−k1γ0− k1X3

3!
,

∂γ3

∂ξ
= ∂

2γ3

∂X2
+(k2−1

)∂γ2

∂X
−k1γ1− k1X4

4!
,

(2.18)

subject to the condition that at expiration

γ0(X,ξ = 0)= γ1(X,ξ = 0)= γ2(X,ξ = 0)= ··· = 0. (2.19)

Condition (2.9) on the free boundary at x = xf (τ), where both c and ∂c/∂x vanish,

must also be tackled. We can also rewrite the expansion of xf near expiration (2.11)

as follows:

xf (τ)= x0+νx1ξ1/2+ν2x2ξ+ν3x3ξ3/2+··· . (2.20)

Thus the free boundary is located at

Xf (ξ)= ν−1(xf (τ)−x0
)= x1ξ1/2+νx2ξ+ν2x3ξ3/2+··· , (2.21)

and the boundary condition that c vanish at the free boundary becomes

γ0
(
Xf (ξ),ξ

)+νγ1
(
Xf (ξ),ξ

)+ν2γ2
(
Xf (ξ),ξ

)+··· = 0. (2.22)

Similarly, the boundary condition that ∂c/∂x vanish becomes

γ0X
(
Xf (ξ),ξ

)+νγ1X
(
Xf (ξ),ξ

)+ν2γ2X
(
Xf (ξ),ξ

)+··· = 0. (2.23)

At leading order �(ν0), we have from (2.18)

∂γ0

∂ξ
= ∂

2γ0

∂X2
−k1X, (2.24)

while substituting the expansion (2.21) into the conditions on c at the free boundary

(2.22), (2.23) yields at leading order

γ0
(
x1ξ1/2,ξ

)= γ0X
(
x1ξ1/2,ξ

)= 0. (2.25)

Since (2.24) is the diffusion equation together with a nonhomogeneous term, this

suggests introducing the similarity variable

η=Xξ−1/2. (2.26)

Accordingly, we write γ0 = ξ3/2κ0(η), and substituting this into (2.24) gives

3
2κ0

− 1
2ηκ0η

= κ0ηη−k1η, (2.27)
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together with the conditions at the free boundary

κ0
(
x1
)= κ0η

(
x1
)= 0. (2.28)

This has the solution

κ0(η)=−k1η+C(0)1

(
η3+6η

)+C(0)2

(
e−η

2/4(η2+4
)+
√
π
2

(
η3+6η

)
erfc

(
− η

2

))
. (2.29)

We also need to apply condition (2.19) that γ0 vanish at expiration. Since we set

η = Xξ−1/2, and X < 0, the limit ξ → 0 corresponds to the limit η→−∞. Taking this

limit, we get

κ0(η) �→−k1η+C(0)1

(
η3+6η

)
,

γ0 = ξ3/2κ0(η) �→−k1ξX+C(0)1

(
X3+6ξX

)
�→ C(0)1 X3,

(2.30)

and thus the condition that γ0 vanishes in this limit tells us that C(0)1 = 0, and the

solution (2.29) becomes

κ0(η)=−k1η+C(0)2

(
e−η

2/4(η2+4
)+

√
π
2

(
η3+6η

)
erfc

(
− η

2

))
. (2.31)

The condition (2.28) at the free boundary enables us to find x1 and C(0)2 , where x1 is

given implicitly by the equation

(
4−2x2

1

)=√πx3
1ex

2
1/4 erfc

(
− x1

2

)
. (2.32)

Numerically, we find

x1 = 0.9034465979, C(0)2 = 0.07536083707k1. (2.33)

Thus C(0)2 is proportional to the constant k1. x1 and κ0 were found by Wilmott et al.

[8], however, their analysis stopped there, whilst we shall proceed to higher orders.

At the next order �(ν), we get an equation for γ1,

∂γ1

∂ξ
− ∂

2γ1

∂X2
= (k2−1

)∂γ0

∂X
− k1X2

2!
. (2.34)

Again we make use of the similarity variable (2.26) and write γ1 = ξ2κ1(η). Substituting

this into (2.34) yields,

2κ1− 1
2
ηκ1η−κ1ηη =

(
k2−1

)
κ0η− k1

2
η2, (2.35)

which has the solution

κ1(η)=− 1
2
k1
(
k2+η2)+C(1)1

(
η4+12η2+12

)

+C(0)2

(
1−k2

)(
e−η

2/4
(
− 1

2
+ η

2

4

)
η+√π

(
η4

8
− 3

2

)
erfc

(
− η

2

))

+C(1)2

(
e−η

2/4(20η+2η3)+√π(η4+12η2+12
)
erfc

(
− η

2

))
,

(2.36)

where again C(1)1 must vanish because of the condition at expiry.
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The boundary conditions at the free boundary are

κ1
(
x1
)= 0, κ1η

(
x1
)+x2κ0ηη

(
x1
)= 0. (2.37)

Applying these boundary conditions to κ0 and κ1 enables us to find x2 and C(1)2 ,

x2 =− x
2
1k2

x2
1+2

, C(1)2 = x
3
1ex

2
1/4k1

(
x2

1+2+x2
1k2

)
96
(
x2

1+2
) . (2.38)

Using the value of x1 found earlier, these become

x2=−0.2898271391k2, C(1)2 =0.009420104644k1+0.002730201979k1k2. (2.39)

At the next order �(ν2), we find an equation for γ2,

∂γ2

∂ξ
− ∂

2γ2

∂X2
= (k2−1

)∂γ1

∂X
− k1X3

3!
−k1γ0. (2.40)

Using γ2 = ξ5/2κ2(η) in (2.40), we get

5
2
κ2− 1

2η
κ2η−κ2ηη =

(
k2−1

)
κ1η− 1

6
k1η3−k1κ0. (2.41)

The solution κ2 is given in the appendix.

The boundary conditions on κ2 at the free boundary are

x2
2

2
κ0ηη

(
x1
)+κ2

(
x1
)= 0,

1
2
x2

2κ0ηηη
(
x1
)+x3κ0ηη

(
x1
)+κ2η

(
x1
)+x2κ1ηη

(
x1
)= 0,

(2.42)

which enable us to find x3 and C(2)2 . Numerically, we find

x3 = 0.08352705033k2−0.1670541006k1

−0.01960251625+0.0965932214k2
2,

C(2)2 = 0.0008901468022k1k2+0.001931411733k1

−0.0001421724195k2
1−0.0004594870885k1k2

2.

(2.43)

At �(ν3), γ3 obeys the equation

∂γ3

∂ξ
− ∂

3γ3

∂X2
= (k2−1

)∂γ2

∂X
− k1X4

4!
−k1γ1. (2.44)

Writing γ3 = ξ3κ3(η), we get

3κ3− 1
2
ηκ3η−κ3ηη =

(
k2−1

)
κ2η− 1

24
k1η4−k1κ1(η). (2.45)

The solution κ3 is given in the appendix. The boundary conditions on κ3 at the free
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boundary are

1
6
x3

2κ0ηηη
(
x1
)+x2x3κ0ηη

(
x1
)+ 1

2
x2

2κ1ηη
(
x1
)

+x3κ1η
(
x1
)+x1κ3

(
x1
)+x2κ2η

(
x1
)= 0,

1
6
x3

2κ0ηηηη
(
x1
)+x2x3κ0ηηη

(
x1
)+x4κ0ηη

(
x1
)+ 1

2
x1x2

2κ1ηηη
(
x1
)

+x3κ1ηη
(
x1
)+x2κ2ηη

(
x1
)+κ3η

(
x1
)= 0.

(2.46)

Using these boundary conditions, we can find x4 and C(3)2 ,

x4 = 0.004173449415k2−0.03134069092k2
2

+0.002104860402k3
2+0.06268138183k1k2,

C(3)2 = 0.0001887470540k1k2−0.00004739080649k2
1

+0.0003298004233k1−0.0001854489478k1k2
2

+0.00006457317010k1k2
2+0.0000553581598k1k3

2.

(2.47)

Following the same procedure at �(ν4) and after applying the boundary conditions,

the value of x5 and C(2)4 can be written as

x5 =−0.003558807857k2+0.007117615715k1+0.01940343468k2
1

+0.005720713541k2
2−0.01940393468k1k2−0.003010435594k1k2

2

−0.0001404406593k4
2+0.0007732477173+0.001505467797k3

2,

C(4)2 = 0.00003122771752k1k2−0.000009566207702k2
1−0.0000006665142604k3

1

−0.00004508455720k1k2
2+0.00002372836074k2

1k2−0.00001481303829k2
1k

2
2

−0.000005222446464k1k4
2+0.00004808832947k1+0.00002717729053k1k2

2.
(2.48)

Thus we have an asymptotic expression (2.11) for the location of the free boundary

xf (τ), with the coefficients x0, . . . ,x5 given by (2.5), (2.33), (2.38), (2.43), (2.47), and

(2.48). We also have a local expression for the value c(x,τ) of the option when we are

both near to expiry and near to the optimal exercise boundary. This is given by (2.15)

and (2.17) together with the expressions for γ0, . . . ,γ3 contained in the text.

3. Graphics. In Figures 2.1 and 2.2 we plot the location of the free boundary for

several values of r(0.102,0.104,0.108, and 0.110) and of the dividend yield D0(0.02,
0.021, and 0.025). The shape of all the curves appears to be very similar. Figure 2.3

shows the solution of the price option c(X,τ). The solution increases as long as we

move away from the free boundary. Figures 2.1 and 2.2 were produced by including

terms up to x6 and Figure 2.3 by including terms up to γ5.
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Figure 2.1. Location of the free boundary for r = 0.1, D0 = 0.02.

1.6

1.8

2

1.4
0 0.02 0.04 0.06 0.08 0.1

τ

xf

Figure 2.2. Location of the free boundary for several values of r and D0.
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Figure 2.3. Solution of the price option c(X,τ).
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4. Summary and conclusions. In the previous sections, we have presented an

asymptotic analysis of the valuation of an American call option on a dividend-paying

asset, using as a starting point the Black-Scholes model, which expresses the price of

a call option as a function of the underlying asset price, exercise price, the time to

expiration, the interest rate, and the volatility of the underlying asset price.

The Black-Scholes model applies to both European and American options as long

as no dividends are paid. When dividends are paid, the possibility of early exercise

exists to obtain the dividend payment for a call option. (Cox et al. [2] developed some

arbitrage conditions for call option.)

The aim of this paper was to use the techniques outlined by Wilmott et al. [8] to solve

the free boundary problem arising from early exercise. Using asymptotic techniques,

we obtained a series solution for the location of this free boundary near to expiry,

and this solution is plotted in Figures 2.1 and 2.2 for several values of r , the risk

free rate, and D0, the dividend yield on the underlying. Using similarity solutions, we

were also able to solve a series of partial differential equations to find a local solution

for the value c(x,τ) of the option when we are both near to expiration and near

to the optimal exercise boundary and a sample solution was plotted in Figure 2.3.

Wilmott et al. [8] had begun this analysis, but stopped at first order, whereas our

analysis is pursued to higher orders. This analysis allows for valuation of American

call options near to expiry at much lower computational cost than numerical solution

of the full problem, and our solution could probably even be programmed into a

financial calculator, allowing traders to obtain reasonable valuations quickly.

Appendix

Details of the analysis. The solution to (2.41) is

κ2(η)=1
2
k2

1η−
1
2
k2k1η− 1

6
k1η3+C(2)1 η

(
η4+20η2+60

)

+
(

96
5
k2C

(1)
2 − 6

5
k2C

(0)
2 − 96

5
C(1)2 + 3

5
C(0)2 +64C(2)2 − 12

5
k1C

(0)
2

+ 3
5
k2

2C
(0)
2 − 1

10
η2k2

2C
(0)
2 + 4

5
k2C

(1)
2 η2− 1

10
k1η2C(0)2

+ 3
5
k2

2C
(0)
2 − 1

10
η2k2

2C
(0)
2 + 4

5
k2C

(1)
2 η2− 1

10
k1η2C(0)2

+ 1
5
η2k2C

(0)
2 − 4

5
C(1)2 η2+36C(2)2 η2− 1

10
η2C(0)2 + 2

5
η4C(1)2

+ 1
20
η4C(0)2 − 1

10
η4k2C

(0)
2 +2C(2)2 η4− 2

5
η4k2C

(1)
2

+ 1
20
η4k2

2C
(0)
2 + 1

20
η4k1C

(0)
2

)
e(−1/4η2)
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+√π
(
− 3

2
k1C

(0)
2 η+12k2C

(1)
2 η−12C(1)2 η+ 1

5
η5C(1)2

+ 1
40
η5k2

2C
(0)
2 + 1

40
η5C(0)2 − 1

5
η5k2C

(1)
2 − 1

20
η5k2C

(0)
2

+ 1
40
η5k1C

(0)
2 +C(2)2 η

(
η4+20η2+60

))
erfc

(
− 1

2
η
)
.

(A.1)

The condition at expiration tells us that C(2)1 = 0.

The solution to (2.45) is

κ3(η)=1
3
k2k2

1−
1
6
k1k2

2−
1
4
k2

1k1η2+ 1
4
k2

1η2− 1
24
k1η4

+C(3)1

(
η6+30η4+180η2+120

)

+
(

1
20
η3k2C

(0)
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C(0)2 η+ 4
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(0)
2
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(0)
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2C
(0)
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(1)
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+√π
(
−8k2C

(1)
2 +k1C

(0)
2 +4C(1)2 −40C(2)2 −30C(2)2 η2

+C(3)2
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η6+30η4+180η2+120

)+ 1
240

η6C(0)2 + 1
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η6C(1)2

− 1
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(1)
2 + 1

120
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(0)
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(0)
2

− 1
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(0)
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(1)
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(1)
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6
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(2)
2
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η6k2k1C
(0)
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6
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(2)
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(1)
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(1)
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(2)
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(
− 1

2
η
)
.

(A.2)

The condition at expiration tells us that C(3)1 = 0.
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