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Abstract. We are concerned with some conditions such as the trivial solution of a planar
system of differential equations (including the Liénard system) that is globally attractive
but not stable. We emphasize the connection with some nonoscillatory conditions. The
results are related to the previous ones obtained by Hara in 1993.

2000 Mathematics Subject Classification. 34D45.

1. Introduction. The present paper is concerned with some conditions such as the

trivial solution of the following planar system of differential equations

x′(t)=ϕ(x(t),y(t)), y ′(t)=−g(x(t)), (1.1)

which is globally attractive but not stable. The above system is a generalization of the

Liénard system

x′(t)=y(t)−F(x(t)), y ′(t)=−g(x(t)). (1.2)

We assume that

F,g ∈ C(R,R), F(0)= 0, xg(x) > 0, for x �= 0. (1.3)

From (1.3), system (1.2) has a unique solution for each initial value problem associated

with it, the origin is the unique critical point of (1.2) and all the trajectories are oriented

clockwise. Similar to [5, 6] we assume that

ϕ ∈ C1(R2,R
)
, ϕ(0,0)= 0, xg(x) > 0, for x �= 0, (1.4)

and that there exist constants k and h such that

k≤ϕ′
y(x,y)≤ h, for (x,y)∈R2. (1.5)

It is obvious that under conditions (1.4) and (1.5), the origin of the Euclidean plane

is the unique critical point of system (1.1) and the trajectories are oriented clockwise.

Hence, system (1.1), with (1.4) and (1.5), includes system (1.2) with (1.3).

From [7], we know that the first example of a planar system such that the zero

solution is attractive but not stable was introduced in [4]. This example was followed

by others (see [8] and [1, page 191]).

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


92 MARIAN MUREŞAN

More recently this problem has been studied by Hara [2], who used the Liénard

system (1.2) under assumptions (1.3). See also [3].

For definitions and relations between the notions of stability and attractivity as well

as a phase-portrait of a planar system which is globally attractive but not stable, see

[7, Section I.2].

The aim of this paper is to extend Hara’s results in [2] to system (1.1), namely, to

give general conditions such that the zero solution of system (1.1) is globally attractive

but not stable.

2. The result. The characteristic curve of system (1.1) is given by {(x,y) |ϕ(x,y)=
0}. We write D1 = {(x,y) | x > 0, ϕ(x,y) > 0}, D2 = {(x,y) | x > 0, ϕ(x,y) < 0},
D3 = {(x,y) | x < 0, ϕ(x,y) < 0}, and D4 = {(x,y) | x < 0, ϕ(x,y) > 0}. The

behaviour of the trajectories of system (1.1) under assumptions (1.4) and (1.5) was

introduced in [6, Lemma 2.1]. For the sake of completeness we recall it now.

Lemma 2.1 (see [6]). Consider system (1.1) under assumptions (1.4) and (1.5). Every

trajectory of system (1.1) passing through a point B(x0,y0) (x0 �= 0), which belongs

to the characteristic curve, intersects the vertical axis at two points A(0,yA) (yA ≥ 0)
and C(0,yC) (yC ≤ 0). More precisely, if x0 > 0, the solution of (1.1) leaving the point

B at t = 0 either traverses the positive y-axis at some finite −tA > 0 as t decreases or

tends to the origin as t→ t (t ≥−∞), remaining in the region D1, and either traverses

the negative y-axis at some finite tC > 0 as t increases or tends to the origin as t → t
(t ≤+∞), remaining in the region D2.

If x0 < 0, the solution of (1.1) leaving the point B at t = 0 either traverses the positive

y-axis at some finite tA > 0 as t increases or tends to the origin as t → t (t ≤ +∞),
remaining in the region D4, and either traverses the negative y-axis at some finite

−tC > 0 as t decreases or tends to the origin as t → t (t ≥ −∞), remaining in the

region D3.

Proof. Suppose that x0 > 0 and let t = 0 be the moment at which the trajectory

meets the characteristic curve at the point B(x0,y0). First we consider the case when

t ≥ 0. Since
d
dt
ϕ
(
x(t),y(t)

)∣∣∣∣
t=0

=−ϕ′
y
(
x0,y0

)
g
(
x0
)
< 0, (2.1)

the solution (x(t),y(t)) enters in the region D2 and does not intersect anymore the

characteristic curve as long as x(t) > 0. Then x′ ≤ 0, y ′ ≤ 0. Suppose that this tra-

jectory starting in B does not meet the y-axis. Then we can find x ∈ [0,x0) such that

x(t)→ x andy(t)→−∞ for t→ t orx(t)→ 0,y(t)→ 0 for t→ t and (x(t),y(t))∈D2

for t ∈ [0, t).
Suppose that y(t)→−∞ for t→ t. We consider the auxiliary system

x′(t)= h[y(t)−y0
]
, y ′(t)=−g(x(t)) (2.2)

and the following Liapunov function:

V(x,y)= 1
2

(
y−y0

)2+ 1
h

∫ x
0
g(ξ)dξ. (2.3)
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For c > 0, V(x,y)= c is a closed curve. Since

d
dt
V
(
x,y

)∣∣∣∣
22(2.2)

= 0, (2.4)

any trajectory of system (2.2) lies on V(x,y)= c. If we consider the trajectory passing

through the point B, then V(x0,y0)=: c0 and
∫ x
0 g(ξ)dξ = hc0. Since xg(x) > 0 for x

�= 0, the equation
∫ x
0 g(ξ)dξ = hc0 has two values for x, one positive and one negative

satisfying it. For (x(t),y(t))∈D2 we have

x′(t)
∣∣

2(1.1) =ϕ
(
x(t),y(t)

)≥ h[y(t)−y0
]= x′(t)∣∣2(2.2). (2.5)

So

y ′(x)
∣∣

2(1.1) =
y ′(t)

∣∣
2(1.1)

x′(t)
∣∣

2(1.1)
≥ y

′(t)
∣∣

2(2.2)

x′(t)
∣∣

2(2.2)
=y ′(x)

∣∣
2(2.2). (2.6)

Thus the trajectory of system (1.1) which starts from B and enters D2 is above the

trajectory of system (2.2) which starts from B. Since the last trajectory meets the

negative y-axis, so will the trajectory of system (1.1). Hence we get a contradiction to

the assumption that y(t)→−∞ for t→ t.
Consequently, the trajectory of system (1.1) passing through the point B either

approaches the origin of the Euclidean plane for t→ t or crosses the y-axis at a finite

distance, say, C(0,yC) (yC < 0).
In a similar way, if t < 0, we conclude that the trajectory of system (1.1) passing

through the point B either approaches the origin of the Euclidean plane for t → t or

crosses the y-axis at a finite distance, say, A(0,yA) (yA > 0).
The case x0 < 0 runs similarly.

We write ϕ±(x,0)=max{0,±ϕ(x,0)} and

Γ±(x)=
∫ x

0

g(s)
1+ϕ±(s,0)

ds. (2.7)

Lemma 2.2 (see [6]). Under conditions (1.4), (1.5), and

liminf
x→+∞ ϕ(x,0) <+∞, limsup

x→−∞
ϕ(x,0) >−∞, (2.8)

for each (x0,y0)∈D1 with x0 > 0, the trajectory of system (1.1) which passes through

(x0,y0) crosses the characteristic curve at x > x0 if and only if

limsup
x→+∞

[
Γ+(x)−ϕ(x,0)

]=+∞. (2.9)

For each (x0,y0) with x0 < 0 andϕ(x0,y0) < 0, the trajectory of system (1.1) which

passes through (x0,y0) crosses the characteristic curve at x < x0 if and only if

limsup
x→−∞

[
Γ−(x)+ϕ(x,0)

]=+∞. (2.10)
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Now consider a new assumption

ϕ(x,0) < 0, x > 0. (2.11)

In the following lemma we assume that all the assumptions of Lemma 2.1 and, in

addition, (2.11) hold.

Lemma 2.3. Assume that x > 0, then yA > 0.

Proof. If x > 0, the characteristic curve traverses the first quadrant. In this case

yA ≥y0 > 0, where B(x0,y0) is on the characteristic curve with x0 > 0.

Theorem 2.4 (see [5]). Let (x,y) be a solution of system (1.1) defined on the interval

J = [t0, t) such that

(i) the assumptions (1.4), (1.5), and (2.11) are satisfied;

(ii) the point B = (x0,y0), with x0 > 0, belongs to the characteristic curve;

(iii) for any x > 0
1

ϕ(x,0)

∫ x
0+

g(s)
ϕ(s,0)

ds ≤ 1
4h
. (2.12)

Then the solution of system (1.1) which passes through the point B remains in the region

D2 and converges to the origin for t→ t.

Now we introduce a version of Theorem 2.3 in [5].

Theorem 2.5. Suppose that there exists a> 0 such that

ϕ(x,0) < 0,
1

ϕ(x,0)

∫ x
0+

g(s)
ϕ(s,0)

ds ≤ 1
4h
, x ∈ (−a,0], (2.13)

then, for each point B = (x0,y0) with x0 ∈ (−a,0), ϕ(x0,y0)= 0, the trajectory of the

system (1.1) passing through the point B approaches the origin as t → t through the

region bounded by the characteristic curve, the horizontal axis, and the line x = x0.

Proof. Suppose that there exists a trajectory of (1.1) passing through the point

B = (x0,y0), with x0 ∈ (−a,0) and ϕ(x0,y0) = 0, which does not tend to the origin

through the region mentioned above. Then by Lemma 2.1, this trajectory meets the

negative y-axis at C = (0,yC) (yC < 0) at a finite time −tC > 0. Consequently, the

trajectory meets the negative x-axis at some point (b,0), x0 < b < 0. It will be shown

that this leads to a contradiction. Therefore we construct a sequence (yn(·))n defined

on the interval [x0,b] by the following recurrence relation

yn+1(x)=
∫ x
b
− g(s)
ϕ
(
s,yn(s)

)ds, y1(x)= 0, x ∈ [x0,b], n∈N, (2.14)

having the properties

0≤yn(x)≤yn+1(x) <−cnϕ(x,0), n∈N,

cn+1 = 1
4h

1
1−hcn

, c1 = 1
4h
, n∈N,

yn(b)= 0, n∈N.

(2.15)
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For n= 1, from (2.14) and using (2.13), we have

y2(x)=
∫ x
b
− g(s)
ϕ
(
s,y1(s)

)ds

=
∫ x

0
− g(s)
ϕ(s,0)

ds−
∫ b

0
− g(s)
ϕ(s,0)

ds

<
∫ x

0
− g(s)
ϕ(s,0)

ds ≤− 1
4h
ϕ(x,0).

(2.16)

Hence,

0=y1(x) < y2(x) <− 1
4h
ϕ(x,0), x ∈ [x0,b

]
. (2.17)

We denote

c1 = 1
4h
. (2.18)

For n= 2, taking into account the following inequalities:

ϕ
(
s,y2(s)

)≤ϕ(s,0)+hy2(s)≤ 3
4
ϕ(s,0), (2.19)

we have

y3(x)=
∫ x
b
− g(s)
ϕ
(
s,y2(s)

)ds <
∫ x

0
− g(s)
ϕ
(
s,y2(s)

)ds ≤
∫ b

0
− g(s)
(3/4)ϕ(s,0)

ds

≤−4
3

1
4h
ϕ(x,0)=− 1

3h
ϕ(x,0).

(2.20)

We denote

c2 = 1
3h
. (2.21)

Suppose that yn+1(x) < −cnϕ(x,0), and using the recurrence relation (2.14), we

search a constant cn+1 such that yn+2(x) <−cn+1ϕ(x,0).
Since

yn+2(x)=
∫ x
b
− g(s)
ϕ
(
s,yn+1(s)

)ds <
∫ x

0
− g(s)
ϕ
(
s,yn+1(s)

)ds

≤
∫ b

0
− g(s)(

1−hcn
)
ϕ(s,0)

ds ≤− 1
4h

1
1−hcn

ϕ(x,0),

(2.22)

we take

cn+1 = 1
4h

1
1−hcn

. (2.23)

Thus all the properties of (2.15) are satisfied. It is obvious that the sequence defined

by (2.23) with (2.18) is convergent and tends to 1/2h. The function sequence defined

by (2.14) converges uniformly to a continuous function, let it be y(·). From (2.15)
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we have

y(x)≤− 1
2h
ϕ(x,0),

y(x)=
∫ x
b
− g(s)
ϕ
(
s,y(s)

)ds, x ∈ [x0,b
]
.

(2.24)

But the last relation in (2.24) shows that the functiony(·) is a solution of the following

Cauchy problem:

y ′(x)=− g(x)
ϕ
(
x,y(x)

) , y(b)= 0, x ∈ [x0,b
]
. (2.25)

Then

y(x)=y(x), x ∈ [x0,b
]
. (2.26)

On the other side

y
(
x0
)≤− 1

2h
ϕ
(
x0,0

)≤ y0

2
. (2.27)

This is a contradiction and the theorem is proved.

Now we introduce our main result.

Theorem 2.6. Consider system (1.1) under the assumptions (1.4), (1.5), (2.8), (2.9),

(2.10), (2.11), (2.12), and (2.13). Then the origin is globally attractive but not stable.

Proof. First of all we remark that (2.11) implies that the first part of (2.8) holds.

Consider a point B = (x0,y0), with −a < x0 < 0, on the characteristic curve. Then,

by Theorem 2.5, the trajectory of system (1.1) passing through the point B approaches

the origin as t→ t. This shows that the origin is not stable.

Consider a point B = (0,y0), y0 > 0. From the phase-portrait analysis, the trajectory

of system (1.1) which passes through the point B enters the region D1 and crosses the

characteristic curve, by Lemma 2.2, as t increases.

Consider a point B = (x0,y0), with x0 > 0, on the characteristic curve. Then, by

Theorem 2.4, the trajectory of system (1.1) passing through the point B approaches

the origin as t→ t, so that it remains in the region D2.

Consider a point B = (x0,y0)∈D2. Then, by the proof of Theorem 2.4, the trajectory

of system (1.1) passing through the point B approaches the origin as t → t so that it

remains in the region D2.

Consider a point B = (x0,y0), with x0 > 0, y0 ≤ 0, and the trajectory of system (1.1)

passing through B at the moment t = 0. Then y ′(0)=−g(x0) < 0, and by Lemma 2.1

this trajectory crosses the y-axis in a finite time and at a finite point y < y0 as t in-

creases.

Consider a point B = (0,y0), with y0 < 0, and the trajectory of system (1.1) passing

through B at the moment t = 0. Then, by Lemma 2.2 it has to cross the characteristic

curve in a finite time.

Going further and invoking once again Lemma 2.1, we reach the positive y-semi

axis.
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Remark 2.7. (a) A similar result holds if instead of (2.11) we consider

ϕ(x,0) < 0, x < 0, (2.28)

and instead of (2.12)

1
ϕ(x,0)

∫ 0−

x

g(s)
ϕ(s,0)

ds ≤ 1
4h
, ∀x < 0. (2.29)

(b) In [6], the following repulsivity conditions, amongst other conditions, were used

(i) there exists an a> 0 such that |ϕ(x,0)| �= 0, for 0<x ≤ a and

1
ϕ(x,0)

∫ x
0+

g(s)
ϕ(s,0)

ds ≥α> 1
4k
, ∀x ∈ (0,a]; (2.30)

(ii) there exists an a> 0 such that |ϕ(x,0)| �= 0, for −a< x < 0 and

1
ϕ(x,0)

∫ x
0−

g(s)
ϕ(s,0)

ds ≥α> 1
4k
, ∀x ∈ [−a,0). (2.31)

These conditions are useful in oscillation problems to exclude the case when

(x(t),y(t))→ 0, for t→ t.

In order to have a globally attractive origin we need a nonrepulsive origin. The

following assumptions seem to be natural:

• there exists an a> 0 such that
∣∣ϕ(x,0)∣∣ �= 0, ∀x ∈ (0,a],

1
ϕ(x,0)

∫ x
0+

g(s)
ϕ(s,0)

ds ≤ 1
4h
, ∀x ∈ (0,a];

(2.32)

• there exists an a> 0 such that
∣∣ϕ(x,0)∣∣ �= 0, ∀ x ∈ [−a,0),

1
ϕ(x,0)

∫ x
0−

g(s)
ϕ(s,0)

ds ≤ 1
4h
, ∀x ∈ [−a,0).

(2.33)

We remark that for the Liénard system (1.2) we may take k = h = 1, and (2.32) and

(2.33) can be found in [2] or in [5].
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