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Abstract. We introduce the notion of ideals in implicative semigroups, and then state the
characterizations of the ideals.
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1. Introduction. The notions of implicative semigroup and ordered filter were in-

troduced by Chan and Shum [3]. The first is a generalization of implicative semilattice

(see Nemitz [6] and Blyth [2]) and has a close relation with implication in mathematical

logic and set theoretic difference (see Birkhoff [1] and Curry [4]). For the general

development of implicative semilattice theory the ordered filters play an important

role which is shown by Nemitz [6]. Motivated by this, Chan and Shum [3] established

some elementary properties, and constructed quotient structure of implicative semi-

groups via ordered filters. Jun et al. [5] discussed ordered filters of implicative semi-

groups. In this paper, we introduce the notion of ideals in implicative semigroups. By

introducing special subsets of an implicative semigroups, we provide a condition for

the special subset to be an ideal. We establish two characterizations of ideals.

2. Preliminaries. We recall some definitions and results. By a negatively partially

ordered semigroup (briefly, n.p.o. semigroup) we mean a set S with a partial ordering

≤ and a binary operation · such that for all x,y,z ∈ S, we have

(1) (x ·y)·z = x ·(y ·z),
(2) x ≤y implies x ·z ≤y ·z and z ·x ≤ z ·y ,

(3) x ·y ≤ x and x ·y ≤y .

An n.p.o. semigroup (S;≤,·) is said to be implicative if there is an additional binary

operation ∗ : S×S → S such that for any elements x,y,z of S,

(4) z ≤ x∗y if and only if z ·x ≤y.
The operation ∗ is called implication. From now on, an implicative n.p.o. semigroup

is simply called an implicative semigroup.

An implicative semigroup (S;≤,·,∗) is said to be commutative if it satisfies

(5) x ·y =y ·x for all x,y ∈ S, that is, (S,·) is a commutative semigroup.

In any implicative semigroup (S;≤,·,∗), x∗x = y∗y for every x,y ∈ S and this

element is the greatest element, written 1, of (S,≤).
Proposition 2.1 (see [3, Theorem 1.4]). Let S be an implicative semigroup. Then

for every x,y,z ∈ S, the following hold:

(6) x ≤ 1, x∗x = 1, x = 1∗x,
(7) x ≤y∗(x ·y),
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(8) x ≤ x∗x2,
(9) x ≤y∗x,

(10) if x ≤y then x∗z ≥y∗z and z∗x ≤ z∗y ,

(11) x ≤y if and only if x∗y = 1,

(12) x∗(y∗z)= (x ·y)∗z,

(13) if S is commutative then x∗y ≤ (s ·x)∗(s ·y) for all s in S.

Now we note important elementary properties of a commutative implicative semi-

group, which follows from (5), (6), and (12).

Observation 2.2. If S is a commutative implicative semigroup, then for any x,y,
z ∈ S,

(14) x∗(y∗z)=y∗(x∗z),
(15) y∗z ≤ (x∗y)∗(x∗z),
(16) x ≤ (x∗y)∗y .

3. Ideals of implicative semigroups. In what follows let S denote an implicative

semigroup unless otherwise specified. We begin by defining the notion of ideals of S.

Definition 3.1. A subset I of S is called an ideal of S if

(I1) x ∈ S and a∈ I imply x∗a∈ I,
(I2) x ∈ S and a,b ∈ I imply (a∗(b∗x))∗x ∈ I.

Example 3.2. Consider an implicative semigroup S := {1,a,b,c,d,0} with Cayley

tables (Tables 3.1 and 3.2) and Hasse diagram (Figure 3.1) as follows:

Table 3.1

· 1 a b c d 0
1 1 a b c d 0
a a b b d 0 0
b b b b 0 0 0
c c d 0 c d 0
d d 0 0 d 0 0
0 0 0 0 0 0 0

Table 3.2

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

We know that {1,a,b} is an ideal of S, but {1,a} is not an ideal of S, since (a∗(a∗
b))∗b = b ∉ {1,a}.
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Figure 3.1

Lemma 3.3. Every ideal of S contains 1.

Proof. The proof follows from (6) and (I1).

Lemma 3.4. If I is an ideal of S, then (a∗x)∗x ∈ I for all a∈ I and x ∈ S.

Proof. The proof follows by taking b = a and a= 1 in (I2).

Corollary 3.5. Let I be an ideal of S. If a∈ I and a≤ x, then x ∈ I.

Proof. Let a∈ I and x ∈ S be such that a≤ x. Using (6) and Lemma 3.4, we have

x = 1∗x = (a∗x)∗x ∈ I. This completes the proof.

Lemma 3.6. Let I be a subset of S such that

(I3) 1∈ I,
(I4) x∗(y∗z) ∈ I and y ∈ I imply x∗z ∈ I for all x,y,z ∈ S. If a ∈ I and a ≤ x,

then x ∈ I.

Proof. Let a∈ I and x ∈ S be such that a≤ x. Then x∗(a∗1)= x∗1= 1∈ I by

(6) and (I3), and so x = x∗1∈ I by (I4). This completes the proof.

The following is a characterization of ideals.

Theorem 3.7. Let S be a commutative implicative semigroup. A subset I of S is an

ideal of S if and only if it satisfies conditions (I3) and (I4).

Proof. Let I be an ideal of S. Then 1∈ I by Lemma 3.3. Let x,y,z ∈ S be such that

x∗(y∗z)∈ I and y ∈ I. Using Lemma 3.4, we get (y∗z)∗z ∈ I. It follows from (6),

(15), and (I2) that

x∗z = 1∗(x∗z)= (((y∗z)∗z)∗((x∗(y∗z))∗(x∗z)))∗(x∗z)∈ I. (3.1)

Conversely, assume that I satisfies conditions (I3) and (I4). Let x ∈ S and a∈ I. Since

x∗(a∗a)= x∗1= 1∈ I by (I3), it follows from (I4) that x∗a∈ I, that is, (I1) holds.

Since (a∗x)∗(a∗x)= 1∈ I, we have (a∗x)∗x ∈ I by (I4). Note from (15) that

(
(a∗x)∗x)∗((b∗(a∗x))∗(b∗x))= 1, (3.2)

that is,

(a∗x)∗x ≤ (b∗(a∗x))∗(b∗x) (3.3)

for all b ∈ I. Thus, by Lemma 3.6, we have (b∗ (a∗x))∗ (b∗x) ∈ I. Using (I4), we

conclude that (b∗(a∗x))∗x ∈ I which proves (I2). Hence I is an ideal of S.
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For any u,v ∈ S, consider a set

S(u,v)= {z ∈ S |u∗(v∗z)= 1}. (3.4)

In Example 3.2, the set S(1,a)= {1,a} is not an ideal of S. Hence we know that S(u,v)
may not be an ideal of S in general.

Theorem 3.8. Let S satisfy the left self-distributive law under∗, that is, x∗(y∗z)=
(x∗y)∗(x∗z) for all x,y,z ∈ S. For any u,v ∈ S, the set S(u,v) is an ideal of S.

Proof. Let x ∈ S and a,b ∈ S(u,v). Then

u∗(v∗(x∗a))= (u∗(v∗x))∗(u∗(v∗a))= (u∗(v∗x))∗1= 1,

u∗(v∗((a∗(b∗x))∗x))= (u∗(v∗(a∗(b∗x))))∗(u∗(v∗x))

= ((u∗(v∗a))∗(u∗(v∗(b∗x))))∗(u∗(v∗x))

= (1∗((u∗(v∗b))∗(u∗(v∗x))))∗(u∗(v∗x))

= (u∗(v∗x))∗(u∗(v∗x))= 1.
(3.5)

Hence x∗a∈ S(u,v) and (a∗(b∗x))∗x ∈ S(u,v), which shows that S(u,v) is an

ideal of S.

Lemma 3.9. Let S be an implicative semigroup. If y ∈ S satisfies y ∗z = 1 for all

z ∈ S, then S(x,y)= S = S(y,x) for all x ∈ S.

Proof. The proof is straightforward.

Example 3.10. Let S := {1,a,b,c,d} be an implicative semigroup with Cayley tables

(Tables 3.3 and 3.4) and Hasse diagram (Figure 3.2) as follows:

Table 3.3

· 1 a b c d
1 1 a b c d
a a a d c d
b b d b d d
c c c d c d
d d d d d d

Table 3.4

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1



ON IDEALS OF IMPLICATIVE SEMIGROUPS 81

d

c

a

1

b

Figure 3.2

It is easy to check that S satisfies the left self-distributive law under ∗, that is,

x∗ (y ∗ z) = (x∗y)∗ (x∗ z) for all x,y,z ∈ S. By Lemma 3.9 we have S(x,d) =
S(d,x)= S for all x ∈ S. Furthermore we know that S(1,1)= {1}, S(1,a)= S(a,1)=
S(a,a) = S(a,b) = {1,a}, S(1,b) = S(b,1) = S(b,b) = {1,b}, S(1,c) = S(a,c) =
S(c,1) = S(c,a) = S(c,c) = {1,a,c}, S(b,a) = {1,a,b}, and S(c,b) = S are ideals

of S.

Using the set S(u,v), we describe a characterization of ideals.

Theorem 3.11. Let S be a commutative implicative semigroup and let I be a non-

empty subset of S. Then I is an ideal of S if and only if S(u,v)⊆ I for all u,v ∈ I.

Proof. Assume that I is an ideal of S and let u,v ∈ I. If z ∈ S(u,v), then u∗(v∗
z)= 1∈ I and so z = 1∗z = (u∗(v∗z))∗z ∈ I by (I2). Hence S(u,v)⊆ I.

Conversely, suppose that S(u,v) ⊆ I for all u,v ∈ I. Note that 1 ∈ S(u,v) ⊆ I. Let

x,y,z ∈ S be such that x∗(y∗z)∈ I and y ∈ I. Since

(
x∗(y∗z))∗(y∗(x∗z))= (y∗(x∗z))∗(y∗(x∗z))= 1, (3.6)

we have x∗z ∈ S(x∗(y∗z),y)⊆ I. Applying Theorem 3.7, we conclude that I is an

ideal of S.

Theorem 3.12. Let S be a commutative implicative semigroup. If I is an ideal of S,

then

I =∪u,v∈IS(u,v). (3.7)

Proof. Let I be an ideal of S and let x ∈ I. Obviously, x ∈ S(x,1) and so

I ⊆∪x∈IS(x,1)⊆∪u,v∈IS(u,v). (3.8)

Now let y ∈ ∪u,v∈IS(u,v). Then there exist a,b ∈ I such that y ∈ S(a,b). It follows

from Theorem 3.11 that y ∈ I. Hence ∪u,v∈IS(u,v) ⊆ I. This completes the proof.

Corollary 3.13. If I is an ideal of a commutative implicative semigroup S, then

I =∪w∈IS(w,1). (3.9)
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