EXISTENCE OF SOLUTIONS FOR NON-NECESSARILY COOPERATIVE SYSTEMS INVOLVING SCHRÖDINGER OPERATORS

LAURE CARDOULIS

(Received 1 October 1999)

AbSTRACT. We study the existence of a solution for a non-necessarily cooperative system of n equations involving Schrödinger operators defined on \mathbb{R}^{N} and we study also a limit case (the Fredholm Alternative (FA)). We derive results for semilinear systems.

2000 Mathematics Subject Classification. 35J10, 35J45.

1. Introduction. We consider the following elliptic system defined on \mathbb{R}^{N}, for $1 \leq i \leq n$,

$$
\begin{equation*}
L_{q_{i}} u_{i}:=\left(-\Delta+q_{i}\right) u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+f_{i} \quad \text { in } \mathbb{R}^{N}, \tag{1.1}
\end{equation*}
$$

where n and N are two integers not equal to 0 and Δ is the Laplacian operator
(H1) for $1 \leq i, j \leq n, a_{i j} \in L^{\infty}\left(\mathbb{R}^{N}\right)$,
(H2) for $1 \leq i \leq n, q_{i}$ is a continuous potential defined on \mathbb{R}^{N} such that $q_{i}(x) \geq 1$, for all $x \in \mathbb{R}^{N}$ and $q_{i}(x) \rightarrow+\infty$ when $|x| \rightarrow+\infty$,
(H3) for $1 \leq i \leq n, f_{i} \in L^{2}\left(\mathbb{R}^{N}\right)$.
We do not make here any assumptions on the sign of $a_{i j}$. Recall that (1.1) is called cooperative if $a_{i j} \geq 0$ a.e. for $i \neq j$.

Our paper is organized as follow, in Section 2, we recall some results about M matrices and about the maximum principle for cooperative systems involving Schrödinger operators $-\Delta+q_{i}$ in \mathbb{R}^{N}. In Section 3, we show the existence of a solution for a non-necessarily cooperative system of n equations. After that we study a limit case (FA) and finally we study the existence of a solution for a (non-necessarily cooperative) semilinear system.

2. Definitions and notations

2.1. M-matrix. We recall some results about the M-matrix (see [4, Theorem 2.3, page 134]). We say that a matrix is positive if all its coefficients are nonnegative and we say that a symmetric matrix is positive definite if all its principal minors are strictly positive.

Definition 2.1 (see [4]). A matrix $M=s I-B$ is called a nonsingular M-matrix if B is a positive matrix (i.e., with nonnegative coefficients) and $s>\rho(B)>0$ the spectral radius of B.

Proposition 2.2 (see [4]). If M is a matrix with nonpositive off-diagonal coefficients, the conditions (P0), (P1), (P2), (P3), and (P4) are equivalent.
(P0) M is a nonsingular M-matrix,
(P1) all the principal minors of M are strictly positive,
(P2) M is semi-positive (i.e., there exists $X \gg 0$ such that $M X \gg 0$), where $X \gg 0$ signify for all $i, X_{i}>0$ if $X=\left(X_{1}, \ldots, X_{n}\right)$,
(P3) M has a positive inverse,
(P4) there exists a diagonal matrix $D, D>0$, such that $M D+D^{t} M$ is positive definite.
Remark 2.3. If M is a nonsingular M-matrix, then ${ }^{t} M$ is also a nonsingular M matrix.

So condition (P4) holds if and only if condition (P5) holds where (P5): there exists a diagonal matrix $D, D>0$, such that ${ }^{t} M D+D M$ is positive definite.
2.2. Schrödinger operators. Let $\mathscr{D}\left(\mathbb{R}^{N}\right)=\mathscr{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)=\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ be the set of functions \mathscr{C}^{∞} on \mathbb{R}^{N} with compact support.
Let q be a continuous potential defined on \mathbb{R}^{N} such that $q(x) \geq 1$, for all $x \in \mathbb{R}^{N}$, and $q(x) \rightarrow+\infty$ when $|x| \rightarrow+\infty$. The variational space is, $V_{q}\left(\mathbb{R}^{N}\right)$, the completion of $\mathscr{D}\left(\mathbb{R}^{N}\right)$ for the norm $\|\cdot\|_{q}$ where $\|u\|_{q}=\left[\int_{\mathbb{R}^{N}}|\nabla u|^{2}+q|u|^{2}\right]^{1 / 2}$

$$
\begin{equation*}
V_{q}\left(\mathbb{R}^{N}\right)=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right), \sqrt{q} u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}, \tag{2.1}
\end{equation*}
$$

$\left(V_{q}\left(\mathbb{R}^{N}\right),\|\cdot\|_{q}\right)$ is a Hilbert space. (See [1, Proposition I.1.1].)
Moreover, we have the following proposition.
Proposition 2.4 (see [1, Proposition I.1.1] and [8, Proposition 1, page 356]). The embedding of $V_{q}\left(\mathbb{R}^{N}\right)$ into $L^{2}\left(\mathbb{R}^{N}\right)$ is compact with dense range.

To the form

$$
\begin{equation*}
a(u, v)=\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\int_{\mathbb{R}^{N}} q u v, \quad \forall(u, v) \in\left(V_{q}\left(\mathbb{R}^{N}\right)\right)^{2}, \tag{2.2}
\end{equation*}
$$

we associate the operator $L_{q}:=-\Delta+q$ defined on $L^{2}\left(\mathbb{R}^{N}\right)$ by variational methods.
Here $D\left(L_{q}\right)$ denotes the domain of the operator $L_{q} . D\left(L_{q}\right)=\left\{u \in V_{q}\left(\mathbb{R}^{N}\right),(-\Delta+\right.$ q), $\left.u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}$ (see [3, Theorem 1.1, page 4]).

We have that, for all $u \in D\left(L_{q}\right)$, for all $v \in V_{q}\left(\mathbb{R}^{N}\right), a(u, v)=\int_{\mathbb{R}^{N}} L_{q} u \cdot v$. The embedding of $D\left(L_{q}\right)$ into $V_{q}\left(\mathbb{R}^{N}\right)$ is continuous and with dense range. (See [1, page 24] and [3, pages 5-6].)

Proposition 2.5 (see [1, pages 25-27]; [3, Theorem 1.1, pages 4, 6, 8, and 11]; [2, page 3, Theorem 3.2, page 45]; [7, pages 488-489]; [9, pages 346-350], and [10, Theorem XIII.16, page 120 and Theorem XIII.47, page 207]). L_{q}, is considered as an operator in $L^{2}\left(\mathbb{R}^{N}\right)$, positive, selfadjoint, and with compact inverse. Its spectrum is discrete and consists of an infinite sequence of positive eigenvalues tending to $+\infty$. The smallest one, denoted by $\lambda(q)$, is simple and associated with an eigenfunction ϕ_{q} which does not change sign in \mathbb{R}^{N}. The eigenvalue $\lambda(q)$ is a principal eigenvalue if it is positive and simple.

Furthermore,

$$
\begin{array}{r}
\left.L_{q} \phi_{q}=\lambda(q) \phi_{q} \quad \text { in } \mathbb{R}^{N}, \quad \begin{array}{r}
\phi_{q}(x)
\end{array}\right) 0 \quad \text { when } x \rightarrow+\infty ; \\
\phi_{q}>0 \quad \text { in } \mathbb{R}^{N} ; \quad \lambda(q)>0, \\
\forall u \in V_{q}\left(\mathbb{R}^{N}\right), \quad \lambda(q) \int_{\mathbb{R}^{N}}|u|^{2} \leq \int_{\mathbb{R}^{N}}\left[|\nabla u|^{2}+q|u|^{2}\right] . \tag{2.4}
\end{array}
$$

Moreover, the equality holds if and only if u is collinear to ϕ_{q}. If $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$, let $a^{*}=\sup _{x \in \mathbb{R}^{N}} a(x), a_{*}=\inf _{x \in \mathbb{R}^{N}} a(x)$ and

$$
\begin{equation*}
\lambda(q-a)=\inf \left\{\frac{\int_{\mathbb{R}^{N}}\left[|\nabla \phi|^{2}+(q-a) \phi^{2}\right]}{\int_{\mathbb{R}^{N}} \phi^{2}} \phi \in \mathscr{D}\left(\mathbb{R}^{N}\right) \phi \not \equiv 0\right\} \tag{2.5}
\end{equation*}
$$

The operator $-\Delta+q-a$ in \mathbb{R}^{N} has a unique selfadjoint realization (see [2, page 3]) in $L^{2}\left(\mathbb{R}^{N}\right)$ which is denoted L_{q-a}. (Indeed, q is a continuous potential, $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$, so the condition in [2] $(q-a)_{-} \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right)$ for a $p>N / 2$ is satisfied.) We also note that $\lambda(q-a) \leq \lambda(q)-a_{*}$ and for all $m \in \mathbb{R}^{*+}, \lambda(q-a+m)=\lambda(q-a)+m$.

The following theorem is classical.
THEOREM 2.6 (see [1, 6, 10, page 204]). Consider the equation

$$
\begin{equation*}
(-\Delta+q) u=a u+f \quad \text { in } \mathbb{R}^{N}, \quad \text { where } a \in \mathbb{R}, f \in L^{2}\left(\mathbb{R}^{N}\right), f \geq 0 \tag{2.6}
\end{equation*}
$$

and q is a continuous potential on \mathbb{R}^{N} such that $q \geq 1$ and $q(x) \rightarrow+\infty$ when $|x| \rightarrow+\infty$. If $a<\lambda(q)$ then $\exists!u \in V_{q}\left(\mathbb{R}^{N}\right)$ solution of (2.6). Moreover, $u \geq 0$.
2.3. Cooperative systems. In this section, we consider the system (1.1) and we assume that it is cooperative, that is,
$\left(\mathrm{H} 1^{*}\right) a_{i j} \in L^{\infty}\left(\mathbb{R}^{N}\right) ; a_{i j} \geq 0$ a.e. for $i \neq j$.
We recall here a sufficient condition for the maximum principle and existence of solutions for such cooperative systems.

We say that (1.1) satisfies the maximum principle if for all $f_{i} \geq 0,1 \leq i \leq n$, any solution $u=\left(u_{1}, \ldots, u_{n}\right)$ of (1.1) is nonnegative.

Let $E=\left(e_{i j}\right)$ be the $n \times n$ matrix such that for all $1 \leq i \leq n, e_{i i}=\lambda\left(q_{i}-a_{i i}\right)$, and for all $1 \leq i, j \leq n, i \neq j$ implies $e_{i j}=-a_{i j}^{*}$.

Theorem 2.7 (see [6]). Assume that (H1*), (H2), and (H3) are satisfied. If E is a nonsingular M-matrix, then (1.1) satisfies the maximum principle.

Theorem 2.8 (see [6]). Assume that (H1*), (H2), and (H3) are satisfied. If E is a nonsingular M-matrix and if $f_{i} \geq 0$ for each $1 \leq i \leq n$, then (1.1) has a unique solution which is nonnegative.

3. Study of a non-necessarily cooperative system

3.1. Study of a non-necessarily cooperative system of n equations with bounded coefficients. We adapt here an approximation method used in [5] for problems defined on bounded domains.

We consider the following elliptic system defined on \mathbb{R}^{N}; for $1 \leq i \leq n$,

$$
\begin{equation*}
L_{q_{i}} u_{i}:=\left(-\Delta+q_{i}\right) u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+f_{i} \quad \text { in } \mathbb{R}^{N} . \tag{3.1}
\end{equation*}
$$

Let $G=\left(g_{i j}\right)$ be the $n \times n$ matrix such that for all $1 \leq i \leq n, g_{i i}=\lambda\left(q_{i}-a_{i i}\right)$ and for each $1 \leq i, j \leq n, i \neq j$ implies that $g_{i j}=-\left|a_{i j}\right|^{*}$, where $\left|a_{i j}\right|^{*}=\sup _{x \in \mathbb{R}^{N}}\left|a_{i j}(x)\right|$.

We make the following hypothesis:
(H) G is a nonsingular M-matrix.

Theorem 3.1. Assume that (H1), (H2), (H3), and (H) are satisfied. Then system (1.1) has a weak solution $\left(u_{1}, \ldots, u_{n}\right) \in V_{q_{1}}\left(\mathbb{R}^{N}\right) \times \cdots \times V_{q_{n}}\left(\mathbb{R}^{N}\right)$.

First, we prove the following lemma.
Lemma 3.2. Assume that (H), (H1), (H2), and (H3) are satisfied. Let $\left(u_{1}, \ldots, u_{n}\right) \in$ $V_{q_{1}}\left(\mathbb{R}^{N}\right) \times \cdots \times V_{q_{n}}\left(\mathbb{R}^{N}\right)$ be the solution of

$$
\begin{equation*}
L_{q_{i}} u_{i}:=\left(-\Delta+q_{i}\right) u_{i}=\sum_{j=1}^{n} a_{i j} u_{j} \quad \text { in } \mathbb{R}^{N} . \tag{3.2}
\end{equation*}
$$

Then $\left(u_{1}, \ldots, u_{n}\right)=(0, \ldots, 0)$.
Proof of Lemma 3.2. Let $m \in \mathbb{R}^{*+}$ be such that for all $1 \leq i \leq n, m-a_{i i}>0$. Let $q_{i}^{\prime}=q_{i}+m-a_{i i} \geq 1$. For any $1 \leq i \leq n$, we have

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left[\left|\nabla u_{i}\right|^{2}+q_{i}^{\prime}\left|u_{i}\right|^{2}\right] & =\int_{\mathbb{R}^{N}} m\left|u_{i}\right|^{2}+\sum_{j ; j \neq i} \int_{\mathbb{R}^{N}} a_{i j} u_{j} u_{i} \\
& \leq \int_{\mathbb{R}^{N}} m\left|u_{i}\right|^{2}+\sum_{j ; j \neq i} \int_{\mathbb{R}^{N}}\left|a_{i j} u_{j} u_{i}\right|, \tag{3.3}
\end{align*}
$$

and by the characterization (2.4) of the first eigenvalue $\lambda\left(q_{i}^{\prime}\right)$ we get that ($\lambda\left(q_{i}^{\prime}\right)-$ m) $\int_{\mathbb{R}^{N}}\left|u_{i}\right|^{2} \leq \sum_{j ; j \neq i}\left|a_{i j}\right|^{*}\left(\int_{\mathbb{R}^{N}}\left|u_{j}\right|^{2}\right)^{1 / 2}\left(\int_{\mathbb{R}^{N}}\left|u_{i}\right|^{2}\right)^{1 / 2}$. So $\left(\lambda\left(q_{i}^{\prime}\right)-m\right)\left(\int_{\mathbb{R}^{N}}\left|u_{i}\right|^{2}\right)^{1 / 2} \leq$ $\sum_{j ; j \neq i}\left|a_{i j}\right|^{*}\left(\int_{\mathbb{R}^{N}}\left|u_{j}\right|^{2}\right)^{1 / 2}$.

Let

$$
X=\left(\begin{array}{c}
\left(\int_{\mathbb{R}^{N}} u_{1}^{2}\right)^{1 / 2} \tag{3.4}\\
\vdots \\
\left(\int_{\mathbb{R}^{N}} u_{n}^{2}\right)^{1 / 2}
\end{array}\right)
$$

We have $X \geq 0$ and $G X \leq 0$. Since G is a nonsingular M-matrix, by Proposition 2.2, we deduce that $X \leq 0$. So $X=0$, that is, for all $1 \leq i \leq n, u_{i}=0$.

Proof of Theorem 3.1. Let $m \in \mathbb{R}^{*+}$ such that for all $1 \leq i \leq n, m-a_{i i}>0$. Let $q_{i}^{\prime}=q_{i}-a_{i i}+m \geq 1$. (m exists because for all $1 \leq i \leq n, a_{i i} \in L^{\infty}\left(\mathbb{R}^{N}\right)$.)

First, we note that $\left(u_{1}, \ldots, u_{n}\right) \in V_{q_{1}}\left(\mathbb{R}^{N}\right) \times \cdots \times V_{q_{n}}\left(\mathbb{R}^{N}\right)$ is a weak solution of (1.1) if and only if $\left(u_{1}, \ldots, u_{n}\right)$ is a weak solution of (3.5) where, for $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) u_{i}=m u_{i}+\sum_{j ; j \neq i} a_{i j} u_{j}+f_{i} \quad \text { in } \mathbb{R}^{N} \tag{3.5}
\end{equation*}
$$

Let $\epsilon \in] 0,1\left[, B_{\epsilon}=B(0,1 / \epsilon)=\left\{x \in \mathbb{R}^{N},|x|<1 / \epsilon\right\}\right.$, and $1_{B_{\epsilon}}$ be the indicator function of B_{ϵ}.

Let $T: L^{2}\left(\mathbb{R}^{N}\right) \times \cdots \times L^{2}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right) \times \cdots \times L^{2}\left(\mathbb{R}^{N}\right)$ be defined by $T\left(\xi_{1}, \ldots, \xi_{n}\right)=$ $\left(\omega_{1}, \ldots, \omega_{n}\right)$ where for any $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) \omega_{i}=m \frac{\xi_{i}}{1+\epsilon\left|\xi_{i}\right|} 1_{B_{\epsilon}}+\sum_{j ; j \neq i} a_{i j} \frac{\xi_{j}}{1+\epsilon\left|\xi_{j}\right|} 1_{B_{\epsilon}}+f_{i} \quad \text { in } \mathbb{R}^{N} \tag{3.6}
\end{equation*}
$$

(i) First, we prove that T is well defined. Let for all $\left(\xi_{1}, \ldots, \xi_{n}\right) \in L^{2}\left(\mathbb{R}^{N}\right) \times \cdots \times$ $L^{2}\left(\mathbb{R}^{N}\right)$, for all $1 \leq i \leq n$,

$$
\begin{equation*}
\psi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)=m \frac{\xi_{i}}{1+\epsilon\left|\xi_{i}\right|} 1_{B_{\epsilon}}+\sum_{j ; j \neq i} a_{i j} \frac{\xi_{j}}{1+\epsilon\left|\xi_{j}\right|} 1_{B_{\epsilon}} \tag{3.7}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|\frac{\xi_{i}}{1+\epsilon\left|\xi_{i}\right|} 1_{B_{\epsilon}}\right|=\frac{1}{\epsilon}\left|\frac{\epsilon \xi_{i}}{1+\epsilon\left|\xi_{i}\right|} 1_{B_{\epsilon}}\right| \leq \frac{1}{\epsilon} 1_{B_{\epsilon}} . \tag{3.8}
\end{equation*}
$$

Since $1_{B_{\epsilon}} \in L^{2}\left(\mathbb{R}^{N}\right)$ and $a_{i j} \in L^{\infty}\left(\mathbb{R}^{N}\right)$, we deduce that for any $1 \leq i \leq n, \psi_{i}\left(\xi_{1}, \ldots\right.$, $\left.\xi_{n}\right) \in L^{2}\left(\mathbb{R}^{N}\right)$. By $(\mathrm{H} 3), f_{i} \in L^{2}\left(\mathbb{R}^{N}\right)$ and therefore $\psi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)+f_{i} \in L^{2}\left(\mathbb{R}^{N}\right)$.

By Theorem 2.6, we deduce the existence (and uniqueness) of $\left(\omega_{1}, \ldots, \omega_{n}\right) \in$ $V_{q_{1}}\left(\mathbb{R}^{N}\right) \times \cdots \times V_{q_{n}}\left(\mathbb{R}^{N}\right)$. So T is well defined.
(ii) We note that for all $\left(\xi_{1}, \ldots, \xi_{n}\right),\left|\psi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)\right| \leq n \max _{j ; j \neq i}\left(m,\left|a_{i j}\right|^{*}\right)(1 / \epsilon) 1_{B_{\epsilon}}$.

Let $h=(n / \epsilon) \max _{i, j ; i \neq j}\left(m,\left|a_{i j}\right|^{*}\right), 1_{B_{\epsilon}} \in L^{2}\left(\mathbb{R}^{N}\right)$, and $h+f_{i} \in L^{2}\left(\mathbb{R}^{N}\right)$, so, by the scalar case, we deduce that there exists a unique $\xi_{i}^{0} \in V_{q_{i}}\left(\mathbb{R}^{N}\right)$ such that $\left(-\Delta+q_{i}^{\prime}\right) \xi_{i}^{0}=$ $h+f_{i}$ in $\mathbb{R}^{N},\left(\xi_{1}^{0}, \ldots, \xi_{n}^{0}\right)$ is an upper solution of (3.5), for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) \xi_{i}^{0} \geq \psi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)+f_{i} \tag{3.9}
\end{equation*}
$$

In the same way, we construct a lower solution of (3.5), for all $1 \leq i \leq n$, there exists a unique $\xi_{i, 0} \in V_{q_{i}}\left(\mathbb{R}^{N}\right)$ such that $\left(-\Delta+q_{i}^{\prime}\right) \xi_{i, 0}=-h+f_{i}$ in $\mathbb{R}^{N},\left(\xi_{1,0}, \ldots, \xi_{n, 0}\right)$ is a lower solution of (3.5), for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) \xi_{i, 0} \leq \psi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)+f_{i} \tag{3.10}
\end{equation*}
$$

We note that for all $i, \xi_{i, 0} \leq \xi_{i}^{0}$ (because $\left.\left(-\Delta+q_{i}^{\prime}\right)\left(\xi_{i}^{0}-\xi_{i, 0}\right)=2 h \geq 0\right)$. We consider now the restriction of T, denoted by T^{*}, at $\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$. We prove that T^{*} has a fixed point by the Schauder fixed point theorem.
(iii) First, we prove that $\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$ is invariant by T^{*}. Let $\left(\xi_{1}, \ldots, \xi_{n}\right) \in$ $\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$. We put $T^{*}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\omega_{1}, \ldots, \omega_{n}\right)$. We have $\left(-\Delta+q_{i}^{\prime}\right)\left(\xi_{i}^{0}-\right.$ $\left.\omega_{i}\right)=h-\psi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right) \geq 0$. By the scalar case, we deduce that $\xi_{i}^{0} \geq \omega_{i}$ a.e. By the same way we get $\left(-\Delta+q_{i}^{\prime}\right)\left(\omega_{i}-\xi_{i, 0}\right)=\psi_{i}\left(\xi_{1}, \ldots, \xi_{n}\right)+h \geq 0$ and $\omega_{i} \geq \xi_{i, 0}$ a.e. So $\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$ is invariant by T^{*}.
(iv) We prove that T^{*} is a compact continuous operator. T^{*} is continuous if and only if for all i, ψ_{i}^{*} is continuous where ψ_{i}^{*} is the restriction of ψ_{i} to $\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times$ [$\left.\xi_{n, 0}, \xi_{n}^{0}\right]$.

Let $\left(\xi_{1}, \ldots, \xi_{n}\right) \in\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$. Let $\left(\xi_{1}^{p}, \ldots, \xi_{n}^{p}\right)_{p}$ be a sequence in $\left[\xi_{1,0}, \xi_{1}^{0}\right]$ $\times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$ converging to $\left(\xi_{1}, \ldots, \xi_{n}\right)$ for $\|\cdot\|_{\left(L^{2}\left(\mathbb{R}^{N}\right)\right)^{n}}$. We have for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left\|\frac{\xi_{i}^{p}}{1+\epsilon\left|\xi_{i}^{p}\right|} 1_{B_{\epsilon}}-\frac{\xi_{i}}{1+\epsilon\left|\xi_{i}\right|} 1_{B_{\epsilon}}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq \frac{1}{\epsilon}\left\|\frac{\epsilon \xi_{i}^{p}}{1+\epsilon\left|\xi_{i}^{p}\right|}-\frac{\epsilon \xi_{i}}{1+\epsilon\left|\xi_{i}\right|}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \tag{3.11}
\end{equation*}
$$

However, the function l defined on \mathbb{R} by for all $x \in \mathbb{R}, l(x)=x /(1+|x|)$ is Lipschitz and satisfies for all $x, y \in \mathbb{R},|l(x)-l(y)| \leq|x-y|$. So

$$
\begin{equation*}
\left\|\frac{\xi_{i}^{p}}{1+\epsilon\left|\xi_{i}^{p}\right|}-\frac{\xi_{i}}{1+\epsilon\left|\xi_{i}\right|}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq \frac{1}{\epsilon}\left\|\epsilon \xi_{i}^{p}-\epsilon \xi_{i}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}=\left\|\xi_{i}^{p}-\xi_{i}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} . \tag{3.12}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{\xi_{i}^{p}}{1+\epsilon\left|\xi_{i}^{p}\right|} 1_{B_{\epsilon}}-\frac{\xi_{i}}{1+\epsilon\left|\xi_{i}\right|} 1_{B_{\epsilon}} \rightarrow 0 \quad \text { in } L^{2}\left(\mathbb{R}^{N}\right) \text { when } p \rightarrow+\infty \text {. } \tag{3.13}
\end{equation*}
$$

So ψ_{i}^{*} is continuous and therefore T^{*} is a continuous operator. Moreover, by Proposition 2.5, $\left(-\Delta+q_{i}^{\prime}\right)^{-1}$ is a compact operator. So T^{*} is compact.
(v) $\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$ is a closed convex subset. Hence, by the Schauder fixed point theorem, we deduce the existence of $\left(\xi_{1}, \ldots, \xi_{n}\right) \in\left[\xi_{1,0}, \xi_{1}^{0}\right] \times \cdots \times\left[\xi_{n, 0}, \xi_{n}^{0}\right]$ such that $T^{*}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\xi_{1}, \ldots, \xi_{n}\right)$ for all i, ξ_{i} depends of ϵ, so we denote $\xi_{i}=u_{i, \epsilon}$ and $u_{1, \epsilon}, \ldots, u_{n, \epsilon}$ satisfy for $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) u_{i, \epsilon}=m \frac{u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|} 1_{B_{\epsilon}}+\sum_{j ; j \neq i} a_{i j} \frac{u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|} 1_{B_{\epsilon}}+f_{i} \quad \text { in } \mathbb{R}^{N} . \tag{3.14}
\end{equation*}
$$

(vi) Now we prove that for all i, $\left(\epsilon \mathcal{U}_{i, \epsilon}\right)_{\epsilon}$ is a bounded sequence in $V_{q_{i}^{\prime}}\left(\mathbb{R}^{N}\right)$. Let $\|u\|_{q_{i}^{\prime}}=\left[\int_{\mathbb{R}^{N}}|\nabla u|^{2}+q_{i}^{\prime}|u|^{2}\right]^{1 / 2}$. Multiply (3.14) by $\epsilon^{2} u_{i, \epsilon}$ and integrate over \mathbb{R}^{N}. So we get

$$
\begin{align*}
\left\|\epsilon u_{i, \epsilon}\right\|_{a_{i}^{\prime}}^{2} \leq & m \int_{\mathbb{R}^{N}}\left|\frac{\epsilon u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|} 1_{B_{\epsilon}} \epsilon u_{i, \epsilon}\right| \\
& +\sum_{j ; j \neq i}\left|a_{i j}\right|^{*} \int_{\mathbb{R}^{N}}\left|\frac{\epsilon u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|} 1_{B_{\epsilon}} \epsilon u_{i, \epsilon}\right|+\int_{\mathbb{R}^{N}}\left|\epsilon f_{i} \epsilon u_{i, \epsilon}\right| . \tag{3.15}
\end{align*}
$$

But for all $j,\left|\epsilon u_{j, \epsilon} /\left(1+\epsilon\left|u_{j, \epsilon}\right|\right)\right|<1$. So there exists a strictly positive constant K such that $\left\|\epsilon \mathcal{u}_{i, \epsilon}\right\|_{q_{i}^{\prime}}^{2} \leq K\left\|\epsilon \mathcal{u}_{i, \epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq K\left\|\epsilon \mathcal{u}_{i, \epsilon}\right\|_{q_{i}^{\prime}}$ and therefore, $\left\|\epsilon \mathcal{u}_{i, \epsilon}\right\|_{q_{i}^{\prime}} \leq K$.
(vii) We prove now that $\epsilon u_{i, \epsilon} \rightarrow 0$ when $\epsilon \rightarrow 0$ strongly in $L^{2}\left(\mathbb{R}^{N}\right)$ and weakly in $V_{q_{i}^{\prime}}\left(\mathbb{R}^{N}\right)$. We know that the imbedding of $V_{q_{i}^{\prime}}\left(\mathbb{R}^{N}\right)$ into $L^{2}\left(\mathbb{R}^{N}\right)$ is compact. The sequence $\left(\epsilon u_{i, \epsilon}\right)_{\epsilon}$ is bounded in $V_{q_{i}^{\prime}}\left(\mathbb{R}^{N}\right)$ so (for a subsequence), we deduce that there exist u_{i}^{*} such that $\epsilon u_{i, \epsilon} \rightarrow u_{i}^{*}$ when $\epsilon \rightarrow 0$ strongly in $L^{2}\left(\mathbb{R}^{N}\right)$ and weakly in $V_{q_{i}^{\prime}}\left(\mathbb{R}^{N}\right)$. Multiplying (3.14) by ϵ, we get

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) \epsilon u_{i, \epsilon}=m \frac{\epsilon u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|} 1_{B_{\epsilon}}+\sum_{j ; j \neq i} a_{i j} \frac{\epsilon u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|} 1_{B_{\epsilon}}+\epsilon f_{i} \quad \text { in } \mathbb{R}^{N} . \tag{3.16}
\end{equation*}
$$

But $\epsilon \mathcal{u}_{i, \epsilon} \rightarrow u_{i}^{*}$ weakly in $V_{q_{i}}\left(\mathbb{R}^{N}\right)$. So for all $\phi \in \mathscr{D}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\nabla\left(\epsilon u_{i, \epsilon}\right) \cdot \nabla \phi+q_{i}^{\prime} \epsilon u_{i, \epsilon} \phi\right] \rightarrow \int_{\mathbb{R}^{N}}\left[\nabla u_{i}^{*} \cdot \nabla \phi+q_{i}^{\prime} u_{i}^{*} \phi\right] \quad \text { when } \epsilon \rightarrow 0 \tag{3.17}
\end{equation*}
$$

Moreover, for all $\phi \in \mathscr{D}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} \epsilon f_{i} \phi \rightarrow 0$ when $\epsilon \rightarrow 0$. Moreover, we have for all j

$$
\begin{align*}
& \left\|\frac{\epsilon u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|} 1_{B_{\epsilon}}-\frac{u_{j}^{*}}{1+\left|u_{j}^{*}\right|}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} \tag{3.18}\\
& \quad=\int_{B_{\epsilon}}\left[\frac{\epsilon u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|}-\frac{u_{j}^{*}}{1+\left|u_{j}^{*}\right|}\right]^{2}+\int_{\mathbb{R}^{N}-B_{\epsilon}}\left(\frac{u_{j}^{*}}{1+\left|u_{j}^{*}\right|}\right)^{2} .
\end{align*}
$$

Since $\left|u_{j}^{*} /\left(1+\left|u_{j}^{*}\right|\right)\right| \leq\left|u_{j}^{*}\right|, u_{j}^{*} /\left(1+\left|u_{j}^{*}\right|\right) \in L^{2}\left(\mathbb{R}^{N}\right)$, hence $\int_{\mathbb{R}^{N}-B_{\epsilon}}\left(u_{j}^{*} /\left(1+\left|u_{j}^{*}\right|\right)\right)^{2}$ $\rightarrow 0$ when $\epsilon \rightarrow 0$. Moreover,

$$
\begin{align*}
\int_{B_{\epsilon}}\left[\frac{\epsilon u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|}-\frac{u_{j}^{*}}{1+\left|u_{j}^{*}\right|}\right]^{2} & \leq \int_{\mathbb{R}^{N}}\left[\frac{\epsilon u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|}-\frac{u_{j}^{*}}{1+\left|u_{j}^{*}\right|}\right]^{2} \tag{3.19}\\
& \leq\left\|\epsilon u_{j, \epsilon}-u_{j}^{*}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} .
\end{align*}
$$

But $\epsilon u_{j, \epsilon} \rightarrow u_{j}^{*}$ when $\epsilon \rightarrow 0$ strongly in $L^{2}\left(\mathbb{R}^{N}\right)$. So, $\left(\epsilon u_{j, \epsilon} / 1+\epsilon\left|u_{j, \epsilon}\right|\right) 1_{B_{\epsilon}} \rightarrow u_{j}^{*} /(1+$ $\left.\left|u_{j}^{*}\right|\right)$ when $\epsilon \rightarrow 0$ strongly in $L^{2}\left(\mathbb{R}^{N}\right)$. Therefore, we can pass through the limit and we get for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) u_{i}^{*}=m \frac{u_{i}^{*}}{1+\left|u_{i}^{*}\right|}+\sum_{j ; j \neq i} a_{i j} \frac{u_{j}^{*}}{1+\left|u_{j}^{*}\right|} \quad \text { in } \mathbb{R}^{N} . \tag{3.20}
\end{equation*}
$$

We prove now that for any $i, u_{i}^{*}=0$. Multiply (3.20) by u_{i}^{*}, integrate over \mathbb{R}^{N}, and obtain

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left[\left|\nabla u_{i}^{*}\right|^{2}+q_{i}^{\prime}\left|u_{i}^{*}\right|^{2}\right] & =\int_{\mathbb{R}^{N}} m \frac{\left|u_{i}^{*}\right|^{2}}{1+\left|u_{i}^{*}\right|}+\sum_{j ; j \neq i} \int_{\mathbb{R}^{N}} a_{i j} \frac{u_{j}^{*} u_{i}^{*}}{1+\left|u_{j}^{*}\right|} \\
& \leq \int_{\mathbb{R}^{N}} m \frac{\left|u_{i}^{*}\right|^{2}}{1+\left|u_{i}^{*}\right|}+\sum_{j ; j \neq i} \int_{\mathbb{R}^{N}}\left|a_{i j}\right|^{*} \frac{\left|u_{j}^{*}\right|\left|u_{i}^{*}\right|}{1+\left|u_{j}^{*}\right|} . \tag{3.21}
\end{align*}
$$

But for all $j, 1 /\left(1+\left|u_{j}^{*}\right|\right) \leq 1$. So we get

$$
\begin{equation*}
\lambda\left(q_{i}^{\prime}\right) \int_{\mathbb{R}^{N}}\left|u_{i}^{*}\right|^{2} \leq m \int_{\mathbb{R}^{N}}\left|u_{i}^{*}\right|^{2}+\sum_{j ; j \neq i}\left|a_{i j}\right|^{*}\left(\int_{\mathbb{R}^{N}}\left|u_{j}^{*}\right|^{2}\right)^{1 / 2}\left(\int_{\mathbb{R}^{N}}\left|u_{i}^{*}\right|^{2}\right)^{1 / 2} \tag{3.22}
\end{equation*}
$$

Replacing u_{i} by u_{i}^{*}, we proceed exactly as in Lemma 3.2 and we get that for all $1 \leq$ $i \leq n, u_{i}^{*}=0$.
(viii) We prove now by contradiction that for all $1 \leq i \leq n,\left(u_{i, \epsilon}\right)_{\epsilon}$ is bounded in $V_{q_{i}}\left(\mathbb{R}^{N}\right)$. We suppose that there exists $i_{0},\left\|u_{i_{0}, \epsilon}\right\|_{q_{i_{0}}} \rightarrow+\infty$ when $\epsilon \rightarrow 0$. Let for all $1 \leq$ $i \leq n$,

$$
\begin{equation*}
t_{\epsilon}=\max _{i}\left(\left\|u_{i, \epsilon}\right\|_{q_{i}}\right), \quad v_{i, \epsilon}=\frac{1}{t_{\epsilon}} u_{i, \epsilon} . \tag{3.23}
\end{equation*}
$$

We have $\left\|v_{i, \epsilon}\right\|_{q_{i}} \leq 1$ so $\left(v_{i, \epsilon}\right)_{\epsilon}$ is a bounded sequence in $V_{q_{i}}\left(\mathbb{R}^{N}\right)$. Since the imbedding of $V_{q_{i}}\left(\mathbb{R}^{N}\right)$ in $L^{2}\left(\mathbb{R}^{N}\right)$ is compact (see Proposition 2.4), there exists v_{i} such that $v_{i, \epsilon} \rightarrow$ v_{i} when $\epsilon \rightarrow 0$ strongly in $L^{2}\left(\mathbb{R}^{N}\right)$ and weakly in $V_{q_{i}}\left(\mathbb{R}^{N}\right)$.

In a weak sense, we have for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) v_{i, \epsilon}=m \frac{v_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|} 1_{B_{\epsilon}}+\sum_{j ; j \neq i} a_{i j} \frac{v_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|} 1_{B_{\epsilon}}+\frac{1}{t_{\epsilon}} f_{i} \quad \text { in } \mathbb{R}^{N} \tag{3.24}
\end{equation*}
$$

We have for all $\phi \in \mathscr{D}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\nabla v_{i, \epsilon} \cdot \nabla \phi+q_{i}^{\prime} v_{i, \epsilon} \phi\right] \longrightarrow \int_{\mathbb{R}^{N}}\left[\nabla v_{i} \cdot \nabla \phi+q_{i}^{\prime} v_{i} \phi\right] \quad \text { when } \epsilon \longrightarrow 0 \tag{3.25}
\end{equation*}
$$

Moreover, $t_{\epsilon} \rightarrow+\infty$ when $\epsilon \rightarrow 0$ so, for all $\phi \in \mathscr{D}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}\left(1 / t_{\epsilon}\right) f_{i} \phi \rightarrow 0$ when $\epsilon \rightarrow 0$. We also have for all $1 \leq j \leq n$,

$$
\begin{equation*}
\left\|\frac{v_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|} 1_{B_{\epsilon}}-v_{j}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}=\int_{B_{\epsilon}}\left[\frac{v_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|}-v_{j}\right]^{2}+\int_{\mathbb{R}^{N}-B_{\epsilon}} v_{j}^{2} \tag{3.26}
\end{equation*}
$$

But $v_{j} \in L^{2}\left(\mathbb{R}^{N}\right)$ so, $\int_{\mathbb{R}^{N}-B_{\epsilon}} v_{j}^{2} \rightarrow 0$ when $\epsilon \rightarrow 0$. Moreover,

$$
\begin{align*}
\int_{B_{\epsilon}}\left[\frac{v_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|}-v_{j}\right]^{2} & \leq \int_{\mathbb{R}^{N}}\left[\frac{v_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|}-v_{j}\right]^{2} \\
& \leq 2\left[\int_{\mathbb{R}^{N}} \frac{\left(v_{j, \epsilon}-v_{j}\right)^{2}}{\left(1+\epsilon\left|u_{j, \epsilon}\right|\right)^{2}}+\int_{\mathbb{R}^{N}} \frac{\left(\epsilon v_{j}\left|u_{j, \epsilon}\right|\right)^{2}}{\left(1+\epsilon\left|u_{j, \epsilon}\right|\right)^{2}}\right] \tag{3.27}
\end{align*}
$$

But $1+\epsilon\left|u_{j, \epsilon}\right| \geq 1$. So, $\int_{\mathbb{R}^{N}}\left(v_{j, \epsilon}-v_{j}\right)^{2} /\left(1+\epsilon\left|u_{j, \epsilon}\right|\right)^{2} \leq \int_{\mathbb{R}^{N}}\left(v_{j, \epsilon}-v_{j}\right)^{2}$. Since $v_{j, \epsilon} \rightarrow$ v_{j} in $L^{2}\left(\mathbb{R}^{N}\right)$, we get $\int_{\mathbb{R}^{N}}\left(v_{j, \epsilon}-v_{j}\right)^{2} /\left(1+\epsilon\left|u_{j, \epsilon}\right|\right)^{2} \rightarrow 0$ when $\epsilon \rightarrow 0$. Moreover,

$$
\begin{equation*}
\frac{\left(\epsilon v_{j}\left|u_{j, \epsilon}\right|\right)^{2}}{\left(1+\epsilon\left|u_{j, \epsilon}\right|\right)^{2}} \longrightarrow 0 \quad \text { a.e. when } \epsilon \longrightarrow 0 \tag{3.28}
\end{equation*}
$$

(At least for a subsequence because $\epsilon u_{j, \epsilon} \rightarrow 0$ when $\epsilon \rightarrow 0$.) By using the dominated convergence theorem, we deduce that $\int_{\mathbb{R}^{N}}\left(\epsilon v_{j}\left|u_{j, \epsilon}\right|\right)^{2} /\left(1+\epsilon\left|u_{j, \epsilon}\right|\right)^{2} \rightarrow 0$ when $\epsilon \rightarrow 0$. So we can pass through the limit and we get for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) v_{i}=m v_{i}+\sum_{j ; j \neq i} a_{i j} v_{j} \quad \text { in } \mathbb{R}^{N} \tag{3.29}
\end{equation*}
$$

By Lemma 3.2, we deduce that for all $1 \leq i \leq n, v_{i}=0$. However, there exists a sequence $\left(\epsilon_{n}\right)$ such that there exists $i_{1},\left\|v_{i_{1}, \epsilon_{n}}\right\|_{i_{i_{1}}}=1$. But $v_{i_{1}, \epsilon_{n}} \rightarrow v_{i_{1}}$ when $n \rightarrow+\infty$. So we get a contradiction.
(ix) There exists u_{i}^{0} such that $u_{i, \epsilon} \rightarrow u_{i}^{0}$ strongly in $L^{2}\left(\mathbb{R}^{N}\right)$ and weakly in $V_{q_{i}}\left(\mathbb{R}^{N}\right)$. We have in a weak sense

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) u_{i, \epsilon}=m \frac{u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|} 1_{B_{\epsilon}}+\sum_{j ; j \neq i} a_{i j} \frac{u_{j, \epsilon}}{1+\epsilon\left|u_{j, \epsilon}\right|} 1_{B_{\epsilon}}+f_{i} \quad \text { in } \mathbb{R}^{N} \tag{3.30}
\end{equation*}
$$

But $u_{i, \epsilon}-u_{i}^{0}$ when $\epsilon \rightarrow 0$ weakly in $V_{q_{i}}\left(\mathbb{R}^{N}\right)$. Hence, for all $\phi \in \mathscr{D}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\nabla u_{i, \epsilon} \cdot \nabla \phi+q_{i}^{\prime} u_{i, \epsilon} \phi\right] \longrightarrow \int_{\mathbb{R}^{N}}\left[\nabla u_{i}^{0} \cdot \nabla \phi+q_{i}^{\prime} u_{i}^{0} \phi\right] \quad \text { when } \epsilon \longrightarrow 0 \tag{3.31}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left\|\frac{u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|} 1_{B_{\epsilon}}-u_{i}^{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}=\int_{B_{\epsilon}}\left[\frac{u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|}-u_{i}^{0}\right]^{2}+\int_{\mathbb{R}^{N}-B_{\epsilon}}\left|u_{i}^{0}\right|^{2} \tag{3.32}
\end{equation*}
$$

By $u_{i}^{0} \in L^{2}\left(\mathbb{R}^{N}\right)$ we derive $\int_{\mathbb{R}^{N}-B_{\epsilon}}\left|u_{i}^{0}\right|^{2} \rightarrow 0$ when $\epsilon \rightarrow 0$. Moreover,

$$
\begin{align*}
\int_{B_{\epsilon}}\left[\frac{u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|}-u_{i}^{0}\right]^{2} & \leq \int_{\mathbb{R}^{N}}\left[\frac{u_{i, \epsilon}}{1+\epsilon\left|u_{i, \epsilon}\right|}-u_{i}^{0}\right]^{2} \\
& \leq 2\left[\int_{\mathbb{R}^{N}} \frac{\left(u_{i, \epsilon}-u_{i}^{0}\right)^{2}}{\left(1+\epsilon\left|u_{i, \epsilon}\right|\right)^{2}}+\int_{\mathbb{R}^{N}} \frac{\left(\epsilon u_{i}^{0}\left|u_{i, \epsilon}\right|\right)^{2}}{\left(1+\epsilon\left|u_{i, \epsilon}\right|\right)^{2}}\right] \tag{3.33}
\end{align*}
$$

Since $1+\epsilon\left|u_{i, \epsilon}\right| \geq 1$ we get $\int_{\mathbb{R}^{N}}\left(u_{i, \epsilon}-u_{i}^{0}\right)^{2} /\left(1+\epsilon\left|u_{i, \epsilon}\right|\right)^{2} \leq \int_{\mathbb{R}^{N}}\left(u_{i, \epsilon}-u_{i}^{0}\right)^{2}$. But $u_{i, \epsilon} \rightarrow$ u_{i}^{0} in $L^{2}\left(\mathbb{R}^{N}\right)$. So $\int_{\mathbb{R}^{N}}\left(u_{i, \epsilon}-u_{i}^{0}\right)^{2} /\left(1+\epsilon\left|u_{i, \epsilon}\right|\right)^{2} \rightarrow 0$ when $\epsilon \rightarrow 0$. Moreover,

$$
\begin{equation*}
\frac{\left(\epsilon u_{i}^{0}\left|u_{i, \epsilon}\right|\right)^{2}}{\left(1+\epsilon\left|u_{i, \epsilon}\right|\right)^{2}} \longrightarrow 0 \quad \text { a.e. when } \epsilon \rightarrow 0 \tag{3.34}
\end{equation*}
$$

(At least for a subsequence because $\epsilon u_{i, \epsilon} \rightarrow 0$ when $\epsilon \rightarrow 0$) and $\left(\epsilon u_{i}^{0}\left|u_{i, \epsilon}\right|\right)^{2} /(1+$ $\left.\epsilon\left|u_{i, \epsilon}\right|\right)^{2} \leq\left|u_{i}^{0}\right|^{2}$ and $\left|u_{i}^{0}\right|^{2} \in L^{1}\left(\mathbb{R}^{N}\right)$.

By using the dominated convergence theorem, we deduce that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{\left(\epsilon u_{i}^{0}\left|u_{i, \epsilon}\right|\right)^{2}}{\left(1+\epsilon\left|u_{i, \epsilon}\right|\right)^{2}} \longrightarrow 0 \quad \text { when } \epsilon \longrightarrow 0 \tag{3.35}
\end{equation*}
$$

So we can pass through the limit and we get for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) u_{i}^{0}=m u_{i}^{0}+\sum_{j ; j \neq i} a_{i j} u_{j}^{0}+f_{i} \quad \text { in } \mathbb{R}^{N} \tag{3.36}
\end{equation*}
$$

So we get $\left(-\Delta+q_{i}\right) u_{i}^{0}=a_{i i} u_{i}^{0}+\sum_{j ; j \neq i} a_{i j} u_{j}^{0}+f_{i}$ in $\mathbb{R}^{N},\left(u_{1}^{0}, \ldots, u_{n}^{0}\right)$ is a weak solution of (1.1).
3.2. Study of a limit case. We use again a method in [5]. We rewrite system (1.1), assuming for all $1 \leq i \leq n, q_{i}=q$

$$
\begin{equation*}
L_{q} u_{i}:=(-\Delta+q) u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+f_{i}\left(x, u_{1}, \ldots, u_{n}\right) \quad \text { in } \mathbb{R}^{N} \tag{3.37}
\end{equation*}
$$

Each $a_{i j}$ is a real constant. We denote $A=\left(a_{i j}\right)$ the $n \times n$ matrix, I the $n \times n$ identity matrix, ${ }^{t} U=\left(u_{1}, \ldots, u_{n}\right)$ and ${ }^{t} F=\left(f_{1}, \ldots, f_{n}\right)$.

Theorem 3.3. Suppose that (H1), (H2), and (H3) are satisfied. Suppose that A has only real eigenvalues. Suppose also that $\lambda(q)$, the principal eigenvalue of $-\Delta+q$, is the largest eigenvalue of A and that it is simple.

Let $X \in \mathbb{R}^{N}$ such that ${ }^{t} X(\lambda(q) I-A)=0$. Then (3.37) has a solution if and only if $\int_{\mathbb{R}^{N}}{ }^{t} X F \phi_{q}=0$, where ϕ_{q} is the eigenfunction associated to $\lambda(q)$.

Proof of Theorem 3.3. Let P be a $n \times n$ nonsingular matrix such that the last line of P is ${ }^{t} X$ and such that $T=P A P^{-1}:=\left(t_{i j}\right)$ where, $t_{i j}=0$ if $i>j ; t_{n n}=\lambda(q)$ and for all $1 \leq i \leq n-1, t_{i i}<\lambda(q)$.

Let $W=P U$. The system (3.37) is equivalent to the system (3.2) $(-\Delta+q) W=T W+$ PF. Let ${ }^{t} W=\left(w_{1}, \ldots, w_{n}\right)$ and $\pi_{i}=\left(\delta_{i j}\right)$ where, $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i i}=1$. So (3.2) is

$$
\begin{equation*}
L_{q} w_{i}:=(-\Delta+q) w_{i}=t_{i i} w_{i}+\sum_{j ; j>i} t_{i j} w_{j}+\pi_{i} P F \quad \text { in } \mathbb{R}^{N}, \tag{3.38}
\end{equation*}
$$

for $1 \leq i \leq n$. We have

$$
\begin{equation*}
(-\Delta+q) w_{n}=\lambda(q) w_{n}+{ }^{t} X F \quad \text { in } \mathbb{R}^{N} . \tag{3.39}
\end{equation*}
$$

Equation (3.39) has a solution if and only if $\int_{\mathbb{R}^{N}}{ }^{t} X F \phi_{q}=0$. If $\int_{\mathbb{R}^{N}}{ }^{t} X F \phi_{q}=0$ is satisfied, first we solve ($2 n$), then we solve ($2 n-1$) until $n=1$ because for all $1 \leq i \leq$ $n-1, t_{i i}<\lambda(q)$. Then we deduce U (because matrix P is a nonsingular matrix).
3.3. Study of a non-necessarily cooperative semilinear system of n equations. We rewrite system (3.37), for $1 \leq i \leq n$,

$$
\begin{equation*}
L_{q_{i}} u_{i}:=\left(-\Delta+q_{i}\right) u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+f_{i}\left(x, u_{1}, \ldots, u_{n}\right) \quad \text { in } \mathbb{R}^{N} . \tag{3.40}
\end{equation*}
$$

We recall that the $n \times n$ matrix $G=\left(g_{i j}\right)$ defined by $g_{i i}=\lambda\left(q_{i}-a_{i i}\right)$, for all $1 \leq i \leq n$, and

$$
\begin{equation*}
\forall 1 \leq i, j \leq n, i \neq j \Rightarrow g_{i j}=-\left|a_{i j}\right|^{*}, \quad \text { where }\left|a_{i j}\right|^{*}=\sup _{x \in \mathbb{R}^{N}}\left|a_{i j}(x)\right| . \tag{3.41}
\end{equation*}
$$

Let I be the identity matrix.
Theorem 3.4. Assume that (H1), (H2), and (H3) are satisfied. Also assume that hypothesis (H4), (H5), and (H6) are satisfied, where
(H4) $\exists s>0$ such that $F-s I$ is a nonsingular M-matrix,
(H5) for all $1 \leq i \leq n, \exists \theta_{i} \in L^{2}\left(\mathbb{R}^{N}\right), \theta_{i}>0$, such that for all $1 \leq i \leq n$, for all u_{1}, \ldots, $u_{n}, 0 \leq f_{i}\left(x, u_{1}, \ldots, u_{n}\right) \leq s u_{i}+\theta_{i}$,
(H6) for all $1 \leq i \leq n, f_{i}$ is Lipschitz for $\left(u_{1}, \ldots, u_{n}\right)$, uniformly in x.
Then (3.40) has at least a solution.
Proof of Thorem 3.4. (a) Construction of an upper and lower solution. We consider the following system (3.42)

$$
\begin{equation*}
\forall 1 \leq i \leq n, \quad L_{q_{i}} u_{i}:=\left(-\Delta+q_{i}\right) u_{i}=a_{i i} u_{i}+\sum_{j ; j \neq i}\left|a_{i j}\right| u_{j}+s u_{i}+\theta_{i} \quad \text { in } \mathbb{R}^{N} . \tag{3.42}
\end{equation*}
$$

By hypothesis (H4) and (H5) we can apply Theorem 2.8. We deduce the existence of a
positive solution $U^{0}=\left(u_{1}^{0}, \ldots, u_{n}^{0}\right)$ in $V_{q_{1}}\left(\mathbb{R}^{N}\right) \times \cdots \times V_{q_{n}}\left(\mathbb{R}^{N}\right)$ for the system (3.42). U^{0} is an upper solution of (3.40).

Let $U_{0}=-U^{0}=\left(-u_{1}^{0}, \ldots,-u_{n}^{0}\right)$. We have for all $1 \leq i \leq n,\left(-\Delta+q_{i}\right)\left(-u_{i}^{0}\right)=-(-\Delta+$ $\left.q_{i}\right) u_{i}^{0}$. Hence, $\left(-\Delta+q_{i}\right)\left(-u_{i}^{0}\right)=-a_{i i} u_{i}^{0}-\sum_{j ; j \neq i}\left|a_{i j}\right| u_{j}^{0}-s u_{i}^{0}-\theta_{i}$. So, for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}\right)\left(-u_{i}^{0}\right) \leq a_{i i}\left(-u_{i}^{0}\right)+\sum_{j ; j \neq i} a_{i j}\left(-u_{j}^{0}\right)+f_{i}\left(x,-u_{1}^{0}, \ldots,-u_{n}^{0}\right) \tag{3.43}
\end{equation*}
$$

Therefore, U_{0} is a lower solution of (3.40).
(b) We first recall the definition of a compact operator. Let $m \in \mathbb{R}^{*+}$ be such that for all $1 \leq i \leq n, m-a_{i i}>0$. Let $q_{i}^{\prime}=q_{i}-a_{i i}+m$. Let $T:\left(L^{2}\left(\mathbb{R}^{N}\right)\right)^{n} \rightarrow\left(L^{2}\left(\mathbb{R}^{N}\right)\right)^{n}$ defined by $T\left(u_{1}, \ldots, u_{n}\right)=\left(w_{1}, \ldots, w_{n}\right)$ such that for all $1 \leq i \leq n$,

$$
\begin{equation*}
\left(-\Delta+q_{i}^{\prime}\right) w_{i}=m u_{i}+\sum_{j=1 ; j \neq i}^{n} a_{i j} u_{j}+f_{i}\left(x, u_{1}, \ldots, u_{n}\right) \quad \text { in } \mathbb{R}^{N} \tag{3.44}
\end{equation*}
$$

We easily prove that T is a well-defined operator by the scalar case, continuous by (H6) and compact (because $\left(-\Delta+q_{i}^{\prime}\right)^{-1}$ is compact). We prove now that $T\left(\left[U_{0}, U^{0}\right]\right) \subset$ [U_{0}, U^{0}]. Let $U=\left(u_{1}, \ldots, u_{n}\right) \in\left[U_{0}, U^{0}\right]$. We have for all $1 \leq i \leq n,-u_{i}^{0} \leq u_{i} \leq u_{i}^{0}$. We have

$$
\begin{align*}
\left(-\Delta+q_{i}^{\prime}\right)\left(u_{i}^{0}-w_{i}\right)= & m\left(u_{i}^{0}-u_{i}\right)+\sum_{j ; j \neq i}\left|a_{i j}\right| u_{j}^{0} \tag{3.45}\\
& -\sum_{j ; j \neq i} a_{i j} u_{j}+s u_{i}^{0}+\theta_{i}-f_{i}\left(x, u_{1}, \ldots, u_{n}\right)
\end{align*}
$$

So $m\left(u_{i}^{0}-u_{i}\right) \geq 0$. By (H5), we have $f_{i}\left(x, u_{1}, \ldots, u_{n}\right) \leq s u_{i}+\theta_{i} \leq s u_{i}^{0}+\theta_{i}$. Moreover, $\left|a_{i j} u_{j}\right| \leq\left|a_{i j}\right| u_{j}^{0}$ so, $a_{i j} u_{j} \leq\left|a_{i j}\right| u_{j}^{0}$. So, $\left(-\Delta+q_{i}^{\prime}\right)\left(u_{i}^{0}-w_{i}\right) \geq 0$ and by the scalar case $u_{i}^{0}-w_{i} \geq 0$. In the same way, we have

$$
\begin{align*}
\left(-\Delta+q_{i}^{\prime}\right)\left(w_{i}-\left(-u_{i}^{0}\right)\right)= & m\left(u_{i}^{0}+u_{i}\right)+\sum_{j ; j \neq i}\left|a_{i j}\right| u_{j}^{0} \tag{3.46}\\
& +\sum_{j ; j \neq i} a_{i j} u_{j}+s u_{i}^{0}+\theta_{i}+f_{i}\left(x, u_{1}, \ldots, u_{n}\right)
\end{align*}
$$

But $-u_{i}^{0} \leq u_{i}$. So $m\left(u_{i}^{0}+u_{i}\right) \geq 0$. Moreover, $-a_{i j} u_{j} \leq\left|a_{i j}\right| u_{j}^{0}$. By using (H5), we conclude that $\left(-\Delta+q_{i}^{\prime}\right)\left(w_{i}+u_{i}^{0}\right) \geq 0$ and hence, $w_{i} \geq-u_{i}^{0}$. So $T\left(\left[U_{0}, U^{0}\right]\right) \subset\left[U_{0}, U^{0}\right]$. [U_{0}, U^{0}] is a convex, closed, and bounded subset of $\left(L^{2}\left(\mathbb{R}^{N}\right)\right)^{n}$, so by the Schauder fixed point theorem, we deduce that T has a fixed point. Therefore, (3.40) has at least a solution.

Acknowledgement. I thank J. Fleckinger for her remarks.

References

[1] A. Abakhti-Mchachti, Systèmes semilinéaires d'équations de Schrödinger, Université de Toulouse III, thèse numéro 1338, 1993.
[2] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N -body Schrödinger Operators, Mathematical Notes, vol. 29, Princeton University Press, New Jersey, 1982. MR 85f:35019. Zbl 0503.35001.
[3] _-_ Bounds on exponential decay of eigenfunctions of Schrödinger operators, Schrödinger Operators (Como, 1984), Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp. 1-38. MR 87i:35157. Zbl 583.35027.
[4] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics, Academic Press, New York, 1979. MR 82b:15013. Zbl 484.15016.
[5] L. Boccardo, J. Fleckinger-Pellé, and F. de Thélin, Existence of solutions for some nonlinear cooperative systems, Differential Integral Equations 7 (1994), no. 3-4, 689-698. MR 95c:35097. Zbl 811.35033.
[6] L. Cardoulis, Problèmes elliptiques: applications de la théorie spectrale et étude des systèmes, existence des solutions, Ph.D. thesis, Université de Toulouse I, 1997.
[7] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Mathematical Monographs, Oxford University Press, New York, 1987. MR 89b:47001. Zbl 628.47017.
[8] J. Fleckinger, Estimate of the number of eigenvalues for an operator of Schrödinger type, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 3-4, 355-361. MR 83f:35085. Zbl 474.35072.
[9] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, vol. 132, Springer-Verlag, Berlin, 1980. Zbl 435.47001.
[10] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978. MR 58\#12429c. Zbl 401.47001.

Laure Cardoulis: Ceremath, Université des Sciences Sociales, 21 Allée de Brienne, 31042 Toulouse Cedex, France

E-mail address: cardouli@math.univ-t1se1.fr

