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ON A FAMILY OF DENDRITES
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Abstract. We study the open images of members of a countable family � of dendrites.
We show that only two members of � are minimal and only one of them is unique minimal
with respect to open mappings.
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1. Introduction. Let � be a family of topological spaces and F a class of mappings

between members of �. Then � can be quasi-ordered with respect to F, writing for any

X,Y ∈�

(
Y ≤F X

) ⇐⇒ (there exists a surjection f ∈ F of X onto Y),
(
X =F Y

) ⇐⇒ (
Y ≤F X and X ≤F Y

)
.

(1.1)

A member X0 of � is said to be

• minimal in � with respect to F provided that, for each Y in � the condition

Y ≤F X0 implies Y =F X0;

• unique minimal in � with respect to F provided that for each Y in � if Y ≤F X0

then Y is homeomorphic to X0.

Thus, in particular, all spaces in � which are homeomorphic to all its images under

mappings belonging to F are unique minimal in � with respect to F. (See [5, Chapter 3,

page 7] for more information.)

In this paper, we take as � the family � of dendrites (i.e., locally connected continua

containing no simple closed curves) and as F the class O of open mappings (i.e., ones

which map open subsets of the domain onto open subsets of the range). Various

properties of the relation ≤O on the family � are discussed in [5, Chapter 6, pages 22–

51]. Examples of dendrites which are homeomorphic to all its open images can be

found, for example, in [2, Corollary, page 493 and the paragraph following it] and in

[5, Theorem 6.45, page 30].

Answering a question in [5, Q2(O), page 51] (see also [3, Section 6, 2, page 245]) a

dendriteC is constructed in [9, Section 2] which is minimal with respect toO and which

has two topologically distinct open images, thus is not unique minimal with respect

to O (see [9, Proposition 3.5(α)]). The quoted paper contains also a construction of a

countable family � of dendrites, with C ∈ �. Since each member of � has a similar

structure as the one of C , it is natural to ask about open mapping properties of other

members of �, especially properties which are related to the minimality of members

of � with respect to the class O. This is a subject of the present paper.
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All spaces considered in the paper are assumed to be metric and all mappings are

continuous. A continuum means a compact connected space. Given a space X and its

subset S, we denote by clS the closure of S and by intS its interior in X. As usual N
denotes the set of positive integers, and R stands for the space of real numbers.

We will use the notion of order of a point in the sense of Menger-Urysohn (cf. [7,

Section 51, I, page 274]), and we denote by ord(p,X) the order of the space X at a

point p ∈X. It is well known (cf. [7, Section 51, pages 274–307]) that the function ord

takes its values from the set

S = {0,1,2, . . . ,n, . . . ,ω,ℵ0,2ℵ0
}
. (1.2)

Points of order 1 in a space X are called end points of X; the set of all end points of

X is denoted by E(X). Points of order 2 are called ordinary points of X. It is known

that the set of all ordinary points is a dense subset of a dendrite. And for each r ∈
{3,4, . . . ,ω,ℵ0,2ℵ0} points of order r are called ramification points of X; the set of all

ramification points is denoted by R(X). It is known that for each dendrite X the set

R(X) is at most countable, and that the points of order ℵ0 and 2ℵ0 do not occur in

any dendrite.

A space X is said to be universal in a class of spaces if it belongs to the class and it

contains a homeomorphic copy of every element of that class.

2. The construction. It should be stressed that the construction below is modeled

onto the one described in [9, Section 2], and also the proofs of the properties of the

dendritesD(r ,s) are patterned after the corresponding ones presented in [9, Sections

2 and 3].

To construct the mentioned family � of dendrites, we fix some notation and termi-

nology. For n∈N let Fn denote the simple n-od, that is, a continuum homeomorphic

to the cone over a (discrete) set of n points. The vertex of the cone is called the vertex

of Fn. In the Cartesian coordinates in the plane R2 put v = (0,0), and for each n∈N
let en = (1/n,1/n2). Denoting by pq the straight line segment in the plane with end

points p and q, define

Fω =
⋃{

ven :n∈N}. (2.1)

The continua Fn and Fω are called fans of order n and ω, respectively. Any fan of

order n ∈N (thus having the set E(Fn) of its end points finite) is also named a finite

fan, and Fω is also termed an infinite locally connected fan. Obviously fans Fn and Fω
are dendrites.

An arc pq with end points p and q in a continuum X is called a free arc provided

that pq\{p,q} is an open subset ofX. If a free arc is not properly contained in another

one, it is called a maximal free arc . Then three cases are possible: either both p and

q are ramification points (and then it is called an interior free arc), or one of them is

a ramification point and the other is an end point of X (and then pq is called an end

free arc), or finally both p and q are end points of X. Note that the third possibility

holds only in a trivial case when X = pq.
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Theorem 2.1. For every r ∈ {3,4, . . . ,ℵ0} and s ∈ {0,1,2, . . . ,ℵ0} there exists a den-

drite D(r ,s) such that:

(2.1.1) each ramification point of D(r ,s) belongs to exactly r interior free arcs in

D(r ,s);
(2.1.2) each ramification point of D(r ,s) belongs to exactly s end free arcs in

D(r ,s);
(2.1.3) any two ramification points of D(r ,s) are contained in an arc in D(r ,s)

containing only finitely many ramification points of D(r ,s).
Moreover, conditions (2.1.1), (2.1.2), and (2.1.3) determine the dendrite D(r ,s) up to

a homeomorphism.

Proof. Let X1 = F1
r ∪F1

s be the one-point union of the fans F1
r and F1

s such that

F1
r ∩F1

s = {v}, where v is the common vertex of the two fans. If s = 0, we take Fs = {v},
and if s = 1 or s = 2 we understood F1

s as the union of one or two arcs, respectively,

emanating from the point v and disjoint out of this point. Thus X1 is a fan with the

vertex v , either finite or homeomorphic to Fω. In the set E(X1)we distinguish a subset

E1 = E(F1
r ).

Assume that a dendrite Xn is defined for some n ∈N and that in the set E(Xn) of

its end points a nonempty subset En is distinguished. Consider the one point union

U = Fr−1 ∪ Fs where the vertices of the fans Fr−1 and Fs are identified to a point

v(U). Then Xn+1 is obtained from Xn by attaching to each end point e ∈ En ⊂ Xn a

properly diminished copy U(e) = Fn+1
r−1 (e)∪Fn+1

s (e) of U with the points e ∈ Xn and

v(U(e)) ∈ U(e) identified, in such a way that Xn ∩U(e) = {e}, where Fn+1
r−1 (e) and

Fn+1
s (e) denote the corresponding copies of the fans Fr−1 and Fs , respectively. Thus

Xn+1 is a dendrite by its definition. Further, define En+1 =
⋃{E(Fr−1(e)) : e∈ En}.

Note that Xn ⊂ Xn+1 for each n ∈ N. We assume that the diameters of the compo-

nents of Xn+1 \Xn tend to 0 if n tends to infinity. Let fn : Xn+1 → Xn be a monotone

retraction. Thus fn shrinks each of the attached fans U(e) back to its vertex v(U(e))
which is identified with the corresponding end point e∈ En ⊂ E(Xn).

Consider the inverse sequence {Xn,fn : n ∈ N} of dendrites Xn with monotone

bonding mappings fn, and define

D(r ,s)= lim←�����������������������������������
{
Xn,fn :n∈N}. (2.2)

By [8, Theorem 10.36, page 180 and Theorem 2.10, page 23] the defined inverse

limit D(r ,s) is a dendrite which is homeomorphic to cl(
⋃{Xn : n ∈ N}). Neglecting

the homeomorphism we can simply write

D(r ,s)= cl
(⋃{

Xn :n∈N}
)
. (2.3)

It is evident from the construction that D(r ,s) has properties (2.1.1), (2.1.2), and

(2.1.3). In [9, Proposition 3.3] it is proved that these properties uniquely determine

D(r ,s). The proof is then complete.

Finally we put

�= {D(r ,s) : r ∈ {3,4, . . . ,ℵ0
}
, s ∈ {0,1,2, . . . ,ℵ0

}}
. (2.4)



684 JANUSZ J. CHARATONIK

Properties (2.1.1) and (2.1.2) imply the following.

Statement 2.2. The dendrite D(r ,s) is composed exclusively of points of order 1,

2, and r + s, with a convention that, in the case when one of r or s is ℵ0, points of

order r +s are understood as ones of order ω.

The next statement is a consequence of property (2.1.3).

Statement 2.3. Let an integer r ≥ 3 and s ∈ {0,1,2, . . . ,ℵ0} be fixed. If {pm :m∈N}
is a convergent sequence of distinct ramification points of D(r ,s), then limpm is an

end point.

As a consequence of (2.3) and Statement 2.3, we get the following inclusion.

W = cl
(⋃{

Xn :n∈N}
)
\
⋃{

Xn :n∈N}⊂ E(D(r ,s)). (2.5)

The next inclusion is obvious.

D
(
r1,s1

)⊂D(r2,s2
)

for every r1,r2 ∈
{
3,4, . . . ,ℵ0

}
,

s1,s2 ∈
{
0,1,2, . . . ,ℵ0

}
with r1 ≤ r2, s1 ≤ s2.

(2.6)

In particular, we have the following:

D(r ,0)⊂D(r ,1)⊂D(r ,2)⊂ ··· ⊂D(r ,ℵ0
)

for each r ∈ {3,4, . . . ,ℵ0
}
, (2.7)

D(3,s)⊂D(4,s)⊂D(5,s)⊂ ··· ⊂D(ℵ0,s
)

for each s ∈ {0,1,2, . . . ,ℵ0
}
. (2.8)

Note that D(ℵ0,1) is C1
ω of [9].

For each integer n ≥ 3, a dendrite Gn is constructed in [1, Chapter 4] which is

universal in the class of all dendrites with a closed set of end points and of orders of

their ramification points not greater thann (see [1, Theorems 4.1 and 4.2]). Comparing

the two constructions, namely, of D(r ,s) and of Gn, it is evident that

D(r ,0) is homeomorphic to Gr for each integer r ≥ 3, (2.9)

whence it follows from (2.7) that for every r ∈ {3,4, . . .} and s ∈ {0,1,2, . . . ,ℵ0} the

dendrite Gr is contained in D(r ,s) even in such a way that E(Gr )⊂ E(D(r ,s)).
The next result follows from [1, Theorem 3.3] which gives a characterization of

dendrites with a closed set of end points. But it is also a direct consequence of the

definition of D(r ,s).

Proposition 2.4. If r ∈ {3,4,5, . . .} and s ∈ {0,1,2, . . .}, then the dendrite D(r ,s)
has a closed set of end points.

Therefore Proposition 2.4, (2.9), and the above mentioned universality of dendrites

Gn imply the following corollary.

Corollary 2.5. If r ∈ {3,4,5, . . .} and s ∈ {0,1,2, . . .}, then D(r ,s) can be embed-

ded in D(r +s,0).
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3. Open images. In this section, we intend to study open images of members of

the family �. We start with recalling some theorems which are useful tools for the

study of open mapping properties of some continua.

Proposition 3.1. Let a mapping f : X → Y be a nonconstant open surjection

between continua. Then

(3.1.1) the order of a point is not increased, that is, ord(f (x),Y) ≤ ord(x,X); in

particular f(E(X))⊂ E(Y);
(3.1.2) if X is an arc, or a dendrite, or the infinite locally connected fan Fω, then so

is Y ;

(3.1.3) if X is a dendrite, then

(a) f−1(y) is finite for each y ∈ Y \E(Y);
(b) f−1(E(Y))\E(X) is finite;

(c) if ord(x,X)=ω, then ord(f (x),Y)=ω;

(d) the image under f of a free arc in X is a free arc in Y .

Proof. The proof of (3.1.1) follows from [10, Chapter 8, (7.31), page 147].

(3.1.2): for an arc and a dendrite see [10, Chapter 10, (1.3), page 184], [10, Chapter 8,

(7.7), page 148, and Chapter 10, page 185]; compare [5, (6.1), page 22]; for Fω see [4,

Proposition 9.4, page 42].

(3.1.3): see [5, Propositions 6.16, page 25, 6.5 and Corollary 6.7, page 23].

Using the above facts concerning open mappings, the following proposition is

shown in [9, Proposition 3.5(α)].

Proposition 3.2. Each open image of the dendriteD(ℵ0,1) is homeomorphic either

to D(ℵ0,1) or to the one-point union U of D(ℵ0,1) with an end free arc pq, where

p ∈ R(D(ℵ0,1)).

Recall that an open mapping of D(ℵ0,1) onto the union U is obtained as follows:

locate D(ℵ0,1) in the plane in such a way that

(1) all free arcs in D(ℵ0,1) are straight line segments, and

(2) D(ℵ0,1) is symmetric with respect to a straight line L which is perpendicular

to an interior free segment S and passes through its mid point m so that

D(ℵ0,1)∩L= {m} (see [9, Figure 3]).

Then the mentioned open mapping is the identity on one half of D(ℵ0,1) (lying on

one half-plane determined by L) and it is the symmetry on the other; equivalently, if

∼ denotes the symmetry with respect to L, then U is homeomorphic to D(ℵ0,1)/ ∼,

and pq is homeomorphic to S/∼.

Exactly the same arguments as in the proof of [9, Proposition 3.5] can be applied

to show the next two propositions. In particular, observe that if the above recalled

open mapping is applied to D(ℵ0,ℵ0), then the resulting union U is homeomorphic

to D(ℵ0,ℵ0). The details are left to the reader.

Proposition 3.3. Each open image of the dendriteD(ℵ0,0) is homeomorphic either

to D(ℵ0,0) or to the one-point union U of D(ℵ0,0) with an end free arc pq, where

p ∈ R(D(ℵ0,0)).
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Proposition 3.4. Each open image of the dendrite D(ℵ0,ℵ0) is homeomorphic to

D(ℵ0,ℵ0).

Remark 3.5. According to (3.1.2), an arc and Fω are examples of dendrites homeo-

morphic to their open images. Recall that such dendrites are said to be unique minimal

elements of the class �≤O (see [5, Chapter 3, pages 7–8]). Among all universal dendrites

DS with S ⊂ {3,4, . . . ,ω}, only D3, Dω and D{3,ω} have this property (see [2, Corollary,

page 493] and [6, Corollary 6.10, page 232]). An uncountable family of some dendrites

such that each member of the family is homeomorphic to any of its open images

is constructed in [5, Theorem 6.45, page 30]. However, the internal structure of all

dendrites having the considered property is not known (see [5, Chapter 7, problem

Q1(O), page 51]). Proposition 3.4 gives a new example of a dendrite which is a unique

minimal element of the class �≤O .

As it is shown in [9, Proposition 3.5(γ)], each open image ofD(ℵ0,1) can by mapped

onto D(ℵ0,1) under an open mapping, that is, D(ℵ0,1) is a minimal (but not unique

minimal, according to Proposition 3.2) element of the class �≤O . Thus [5, Chapter 7,

problem Q1(O), page 51] has a negative answer (this is the main result of [9]). Note that

it is not the case for D(ℵ0,0) because (by (3.1.1) above) the union U of Proposition 3.3

cannot be openly mapped ontoD(ℵ0,0). For further results in this direction see below.

Propositions 3.2, 3.3, and 3.4 describe open images of D(ℵ0,s) for s ∈ {0,1,ℵ0}. For

s ∈ {2,3, . . .} some open images of D(ℵ0,s) can be obtained in the following way. Fix

any nonempty subset P ⊂ R(D(ℵ0,s)). For any ramification point p ∈ P let Fs(p) ⊂
D(ℵ0,s) be the union of s end free arcs pep1 ,pes

p
2 , . . . ,pe

p
s , every two of which have the

singleton {p} in common only. Further, for a fixed t ∈ {1,2, . . . ,s} let Ft(p) ⊂ Fs(p)
be the union of t end free arcs pepi1 ,pe

p
i2 , . . . ,pe

p
it . Then there is an open surjective

mapping f (p) : Fs(p) → Ft(p) which is a homeomorphism on each free arc pepj for

each j ∈ {1,2, . . . ,s} with f (p)(p) = p and f (p)(epj ) = e
p
ij for some ij ∈ {i1, i2, . . . , it}.

Then the mapping f : D(ℵ0,s)→ Y ⊂ D(ℵ0,s) such that f |Fs(p) = f (p) for each p ∈
P and defined as a homeomorphism otherwise is obviously open. In particular, if

P = R(D(ℵ0,s)) and if t ∈ {1,2, . . . ,s} is the same fixed number for all ramification

points p, then Y =D(ℵ0, t), and the following proposition is obtained.

Proposition 3.6. For each s ∈ {2,3, . . .} and for each t ∈ {1,2, . . . ,s} there is an

open mapping of D(ℵ0,s) onto D(ℵ0, t).

Taking t = 1 in the above construction we conclude from Proposition 3.2 that for

each s ∈ {2,3, . . .} there is no open mapping from D(ℵ0,1) onto D(ℵ0,s). Therefore

the next result follows.

Proposition 3.7. For each s ∈ {2,3, . . .} no dendrite D(ℵ0,s) is minimal in the

class �≤O .

We now consider open images of other members of �, namely of dendrites D(r ,s)
for r ∈ {3,4, . . .} and s ∈ {0,1,2, . . . ,ℵ0}. To see that no one of them is minimal in

the class �≤O we need some facts about the structure of the set of end points of

D(r ,s). To this aim represent D(r ,s) as in (2.2) and observe that if r 
= ℵ0, then the
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set (Xn+1 \Xn)∩R(D(r ,s)) is finite. Putting

R1 = {v}, Rn+1 =
(
Xn+1 \Xn

)∩R(D(r ,s)) ∀n∈N, (3.1)

we see that R(D(r ,s)) = ⋃{Rn : n ∈ N}, and that the sets Rn are mutually disjoint.

For each point q ∈ Rn let Fns (q) denote, as previously, the union of s end free arcs in

D(r ,s) every two of which have the point q in common only. Since according to (2.5)

the remainder W consists of end points of D(r ,s) only, we have

E
(
D(r ,s)

)=W ∪
(⋃{⋃{

E
(
Fns
(
q
))

: q ∈ Rn
}

:n∈N
})
. (3.2)

Observe that, simply by the construction, each point of E(Fns (q)) is an isolated point

of E(D(r ,s)). Further, sinceGr is homeomorphic toD(r ,0)⊂D(r ,s) by (2.7) and (2.9)

and since E(Gr ) is homeomorphic to the Cantor set according to [1, Theorem 4.1], it

follows again from (2.9) that

W is homeomorphic to the Cantor set. (3.3)

Note further that if K is a component of the set

S =D(r ,s)\
(
W ∪

⋃{⋃{
Fns
(
q
)

: q ∈ Rn
}

:n∈N
})
, (3.4)

then

there is n∈N such that K ⊂Xn \Rn, (3.5)

cl(K) is an interior free arc of D(r ,s) with one end point in Rn and the other in Rn+1.
(3.6)

Therefore D(r ,s) can be written as the following union:

D(r ,s)=W ∪
(⋃{

K :K is a component of S
})

∪
(⋃{⋃{

Fns
(
q
)

: q ∈ Rn
}

:n∈N
})
.

(3.7)

Now we are ready to show the next result.

Example 3.8. For every r ∈ {3,4, . . .} and s ∈ {0,1,2, . . . ,ℵ0} there are a subdendrite

Y ⊂ D(r ,s) and an open retraction g : D(r ,s) → Y such that D(r ,s) is not an open

image of Y .

Proof. Fix r and s as assumed. Let D(r ,s) be defined as the inverse limit by (2.2)

and let, as previously, v be the only ramification point of the fan X1. For each n ∈N
choose a ramification point pn ∈ Rn ⊂D(r ,s). Thus p1 = v and pn ∈ vpn+1 for each

n ∈ N. Then the sequence {pn} is convergent, and its limit e0 = limpn is, according

to Statement 2.3, an end point of D(r ,s) lying in the set W . Thus all points pn lie in

the arc ve0, and if < is the natural ordering of ve0 from v to e0, then

v = p1 <p2 < ···<pn < pn+1 < ···< e0. (3.8)

Further, for eachn∈N take Fns (pn)⊂Xn ⊂D(r ,s) and note that ve0∩Fns (pn)= {pn}.
Put

Y = ve0∪
⋃{

Fns
(
pn
)

:n∈N
}
⊂D(r ,s). (3.9)
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Define a mapping g :D(r ,s)→ Y such that

• g | Y : Y → Y is the identity;

• for each component K = ab of S as in (3.4), if a ∈ Rn and b ∈ Rn+1, where n is

determined by (3.5), the restriction g | K : K → pnpn+1 ⊂ ve0 is a homeomor-

phism such that g(a)= pn and g(b)= pn+1;

• for each Fns (q) with q ∈ Rn for some n ∈ N the restriction g | Fns (q) : Fns (q)→
Fns (pn) is a homeomorphism;

• g(W)= {e0}.
By (3.7) the mapping g is well defined. It can be verified that g is the needed open

retraction.

To see that Y cannot be openly mapped ontoD(r ,s), it is enough to observe that the

set E(Y) is countable, while E(D(r ,s)) is not countable by (2.9). Hence the conclusion

follows from (3.1.1) and (3.1.3)(b).

Corollary 3.9. For every r ∈ {3,4, . . .} and s ∈ {0,1,2, . . . ,ℵ0} the dendrite D(r ,s)
is not minimal in the class �≤O .

The above results can be summarized in the following theorem.

Theorem 3.10. There are only two minimal elements of the class �≤O among all

members D(r ,s) of � for r ∈ {3,4, . . . ,ℵ0} and s ∈ {0,1,2, . . . ,ℵ0}, namely, D(ℵ0,1)
and D(ℵ0,ℵ0). Only one of them, namely, D(ℵ0,ℵ0), is unique minimal.
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