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1. Introduction. We are pursuing further some of the directions spelled out in

[4] relating Moyal-Weyl-Wigner theory, Hirota formulas, integrable systems, and dis-

cretization, with additional connections involving quantum groups (cf. [1, 2, 3, 6]).

In this paper, we indicate an apparently new q-Moyal type bracket formula arising in

this context. In particular we follow here frameworks from [4, 18, 19, 20, 21, 22] for

deformation quantization and integrable systems and refer to [1, 2, 3, 6] and refer-

ences cited there for q-analysis and quantum groups. One objective will be to examine

various formulas arising in the deformation of integrable systems and see if there are

quantum group versions. Further we are looking for q-analysis versions of deforma-

tion quantization formulas in order to compare q-calculus and quantum group theory

with deformation quantization. Thus for background one recalls for wave functions

ψ there are Wigner functions (WF) given via

f(x,p)= 1
2π

∫
dyψ∗

(
x− �

2
y
)

exp(−iyp)ψ
(
x+ �

2
y
)
. (1.1)

Then defining f ∗g via

f ∗g = f exp
[
i�
2

(←�
∂x
�→
∂p−

←�
∂p
�→
∂x
)]
g;

f(x,p)∗g(x,p)= f
(
x+ i�

2

�→
∂p,p− i�

2

�→
∂x
)
g(x,p)

(1.2)

time dependence of WF’s is given by (H ∼ Hamiltonian)

∂tf (x,p,t)= 1
i�
(
H∗f(x,p,t)−f(x,p,t)∗H)= {H,f}M, (1.3)

where {f ,g}M ∼ Moyal bracket. As �→ 0 this reduces to ∂tf −{H,f} = 0 (standard

Poisson bracket). One can generalize and write out (1.2) in various ways. For example,

replacing i�/2 by κ one obtains as in [15]

f ∗g =
∞∑
0

κs

s!

s∑
j=0

(−1)j
(
s
j

)(
∂jx∂

s−j
p f

)(
∂s−jx ∂jpg

)
(1.4)
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leading to ({f ,g}κ = (f ∗g−g∗f)/2κ)

{f ,g}κ =
∞∑
0

κ2s

(2s+1)!

2s+1∑
j=0

(−1)j
(

2s+1
j

)(
∂jx∂

2s+1−j
p f

)(
∂2s+1−j
x ∂jpg

)
(1.5)

(cf. also [29, 30, 31]) which will also be utilized in the form

f ∗g = feκ(
←�
∂x

�→
∂p−

←�
∂p

�→
∂x)g

= e[κ(∂x1 ∂p2−∂x2 ∂p1 )]f
(
x1,p1

)
g
(
x2,p2

)∣∣
(x,p)

=
∞∑
0

(−1)rκr+s

r !s!
∂r+sf
∂xr∂ps

∂r+sg
∂pr∂xs

=
∞∑
0

κn(−1)n−s

s!(n−s)!
(
∂n−sx ∂spf

)(
∂sx∂n−sp g

)

=
∞∑
0

κn

n!

n∑
0

(−1)r
(
∂rx∂n−rp f

)(
∂n−rx ∂rpg

)

(1.6)

(note there are typos on page 169 in [4]) and for example one has

g∗f = g(x+κ∂p,p−κ∂x)f = f (x−κ∂p,p+δ∂x)g. (1.7)

The Moyal bracket can then be defined via

{f ,g}M = 1
κ

{
f sin

[
κ
(←�
∂x
�→
∂p−

←�
∂p
�→
∂x
)]
g
}

= 1
2κ
(
f ∗g−g∗f )

=
∞∑
0

(−1)sκ2s

(2s+1)!

2s+1∑
0

(−1)j
(

2s+1
j

)[
∂jx∂

2s+1−j
p f

][
∂2s+1−j
x ∂jpg

]
(1.8)

corresponding to κ → iκ in (1.5).

We emphasize also that many formulas in classical integrable systems already have

a quantum mechanical (QM) flavor. For example in [4, 15, 29, 30, 31] it was shown how

there is a Moyal deformation (KP)M of dKP which for a particular value of κ (κ = 1/2
in [4, 15]) creates an equivalence (KP)M ≡ (KP)Sato. Actually QM features in integrable

systems seem inevitable because of Lax operator formulations and the combinatorics

inherent in Hirota equations and tau functions; also early work by the Kyoto school

provided many connections between KP and quantum field theory (QFT) (cf. [7]). Such

connections have since proliferated in topological field theory (TFT), Seiberg-Witten

(SW) theory, and so forth, where for example, effective actions can correspond to tau

functions of integrable systems and, somewhat paradoxically, effective slow dynamics

or Whitham dynamics (obtained by averaging out fast fluctuations of angle variables)

seems to correspond to a quantization (cf. [4, Chapter 5] or [5] for discussion). On the

other hand, the so-called quantum inverse scattering method involving spin chains

for quantum integrable systems (cf. [4, 12]), has a definite quantum group nature
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where the R-matrix provides quasitriangularity. The connection between R and r ma-

trices leads one back to classical dynamics but the theories for two types of integrable

systems (classical and quantum) have developed along different paths. It seems that

various discretizations involving classical integrable systems (surveyed in [4]) should

have a q-analysis foundation and thus there may be other forms of connecting glue

between classical and quantum integrable systems via discretization.

2. Discretization and Moyal. In [4] we expanded at some length on a series of

papers by Kemmoku, Saito, and collaborators (cf. [4] for references) and we now want

to organize some of this in a better manner and develop matters somewhat further.

Thus we sketch first some fundamental ideas. One defines

∇= e
λ∂−e−λ∂

2λ
= 1
λ

sinh(λ∂); ∇a = 1
λ

sinh
(
λ
∑
ai∂i

)
, (2.1)

where ai ∼ ∂/∂i and ∂ ∼ ∂x . Evidently (A1) ∇f(x) = (1/2λ)[f(x+λ)−f(x−λ)] and

∇af(x) = (1/2λ)[f(x+a)−f(x−a)] (note that ∇a is not a vector). Then set (the ai
correspond to unspecified local coordinates xi generating a lattice with vectors a in

say RN where N →∞ would require some convergence stipulations)

XD =
∫
davλ(x,a)∇a;

∫
da ∼

∫ ∏
dai. (2.2)

Next a difference one form is defined via (A2) ΩD =
∫
dawλ(x,a)∆a where 〈∆b,∇a〉 =

δ(b−a) and (�a∼ a)

〈
ΩD,XD

〉=
∫
d�a
∫
d�b
〈
wλ
(
�x,�b

)
∆�b,vλ

(
�x, �a

)∇�a

〉
=
∫
d�awλ

(
�x, �a

)
vλ
(
�x, �a

)
. (2.3)

Note also ∆a can be realized via (〈∆a,∇b〉 = δ(a−b))

∆a = λcsch
[
λ
(
�a·�∂)]= 2λ

eλ�a·�∂−e−λ�a·�∂
= 2λ

∞∑
0

e−λ(2n+1)�a·�∂. (2.4)

In this connection we recall the q2 difference operator (A3) ∂q2f(x)=[f (q2x)−f(x)]/
[(q2−1)x] with “dual” a Jackson integral (A4)

∫ y
0 dq2xf(x)=y(1−q2)

∑∞
0 f(yq2n)q2n.

According to [19, 20, 21, 22] there should be an unspecified q-analysis version of (2.4)

related to pseudodifferential operators. We can develop an interesting q-analysis coun-

terpart to (2.4) as follows. Note first that for y = x+λ one can write (A5) (1/2λ)[f(x+
λ)−f(x−λ)]= [f (y+2λ)−f(y)]/2λ and for q2y =y+2λ one has 2λ= (q2−1)y .

Then consider (A6) ∇̃ = [exp(2λ∂)−1]/2λ with

∇̃f(y)= f(y+2λ)−f(y)
2λ

= f
(
q2y

)−f(y)(
q2−1

)
y

= ∂̃q2f(y)

≡ ∂̃qf (z)= f(qz)−f
(
q−1z

)
(
q−q−1

)
z

(qy = z),
(2.5)

where ∂̃q2 involves now a variable q = q(y) if λ is to be regarded as constant (alter-

natively one could regard λ as variable in y and q as constant or dispense with λ
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altogether). For λ constant (2.4) would become formally a y dependent inverse (note

(q2−1)ny = 2nλ)

∇̃−1 =−2λ
(
1−e2λ∂)−1 =−2λ

∞∑
0

e2nλ∂ = (1−q2)y ∞∑
0

e(q
2−1)ny∂ (2.6)

leading to

−2λ
(
1−e2λ∂)−1g(y)=G(y)=−2λ

∞∑
0

g(y+2nλ)

= (1−q2)y ∞∑
0

g
(
y+(q2−1

)
ny

)
.

(2.7)

Evidently (A7) ∇̃G(y) = g(y) so we can state (note a constant of integration in (2.7)

would vanish for
∫ y
0 g ∼G(y))

Proposition 2.1. If we regard q as y dependent via 2λ= (q2−1)y with λ constant

then the inversion (2.7) has a modified Jackson type integral form

G(y)=−
∫ y

0
g(x)dq2x ∼−2λ

(
1−e2λ∂)−1g(y)

= (1−q2)y ∞∑
0

g
(
y+(q2−1

)
ny

)
.

(2.8)

Remark 2.2. Note y is fixed throughout so the calculations make sense and this

reveals also a property of Jackson integrals (A4), namely they do not seem to use the

integration variable x at all (although change of variable techniques should work).

We emphasize that care is needed in using (2.5) in the form ∂̃q2 when computing

∂̃q2G(y)= g(y). Thus ∂̃q2 defined via ∇̃ in (2.5) is not the same as ∂q2 unless provision

is made for λ = c. If we try to compute ∂q2G(y) without keeping λ constant there

arises an awkward term (1−q2)q2y
∑∞

0 g(q2y+(q2−1)nq2y) and ∂q2G(y) 
= g(y).
The point is that 2λ is constant and (1−q2)y = 2λ 
→ (1−q2)q2y . Nor does y+2nλ=
y+(1−q2)ny go toy+(1−q2)nq2y =y+2nλq2 (rather e.g.,y+2nλ→ q2y+2nλ=
y+2(n+1)λ=y+(1−q2)(n+1)y). Thus for ∂̃q2G(y) one must write (1/2λ)[G(y+
2λ)−G(y)] = [(1−q2)y]−1[G(q2y)−G(y)] = ∂q2G(y) as desired. If we regard this

as a generally viable procedure of transferring “standard” differencing techniques in

λ to q-analysis then constant λ steps for any y correspond to constant steps (1−q2)y
which means for large y , q→ 1, so if G′ is continuous for example, then

∂̃q2G(y)= G
(
q2y

)−G(y)(
q2−1

)
y

∼ g(y+2λ)−G(y)
2λ

=G′(ξ) (2.9)

for y ≤ ξ ≤ y +2λ = q2y and for t large y +2λ 
 y corresponds to q2 → 1. There

seems to be no reason not to use the q, λ correspondence in general as long as com-

putational consistency is maintained.

Remark 2.3. We will eventually dispense with λ altogether in rephrasing matters

entirely in q so that ∂̃q2 or ∂̃q will not arise.
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Continuing now from [4] one can define difference 2-forms ΩD2 , an exterior differ-

ence operator ∆, and a Lie difference operator via (standard ∧ product)

ΩD2 =
∫
da
∫
dbwλ(x,a,b)∆a∧∆b;

∆ΩD2 =
∫
da
∫
db
∫
dc∇awλ(x,a,b)∆c∧∆a∧∆b.

(2.10)

Since [∇a,∇b]= 0 one has ∆∆= 0 and finally for XD as in (2.2)

i∇c

(
∆a∧∆b

)= δ(c−a)∆b−δ(c−b)∆a; LXD =∆·iXD +iXD ·∆. (2.11)

Now consider a phase space �x ∼ x= (x,p) and in place of (A8)Xfg = (fp∂x−fx∂p)g
one writes (A9) XDf =

∫
da1da2vλ[f](x,p,a1,a2)∇a where (cf. (2.2))

vλ[f]
(
x,p,a1,a2

)

=
(
λ

2π

)2∫
db1db2 exp

[−iλ(a1b2−a2b1
)]
f
(
x+λb1,p+λb2

) (2.12)

which should correspond to 〈∆a,XDf 〉 (cf. Section 3). Note a1b2−a2b1 can be written

as �a×�b and (1/λ)(�a×�b) is the area in λ units of the parallelogram formed by �a×�b (λ
is essentially a scaling factor here and not a Fourier variable). The symplectic structure

of (A8) is retained via an interchange of �a and �b. We note that (A9) can be written in

the form (the details are in [4])

XDf =−
iλ

(2π)2

∫
da1da2

∫
db1db2 sin

[
λ
(
a1b2−a2b1

)]
×f (x+λb1,p+λb2

)
eλ(a1∂x+a2∂p)

(2.13)

leading to

XDf g =−
iλ

(2π)2

∫ ∫
da1da2

∫ ∫
db1db2 sin

[
λ
(
a1b2−a2b1

)]
f
(
x+λb1,p+λb2

)
×exp

[
λ
(
a1∂x+a2∂p

)]
g(x,p)

=− iλ
(2π)2

∫
da
∫
dbsin

[
λ
(
a1b2−a2b1

)]
f
(
x+λb1,p+λb2

)
×g(x+λa1,p+λa2

)
.

(2.14)

Subsequent calculation gives, using x+λa1 =α1 and p+λa2 =α2 (cf. [4])∫
da
∫
dbeiλ(a1b2−a2b1)f

(
x+λb1,p+λb2

)
g
(
x+λa1,p+λa2

)

= 1
λ2

(∫
f
(
x+iλ∂α2 ,p−iλ∂α1

)∫
ei[b2(α1−x)−b1(α2−p)]db

)
g
(
α1,α2

)
dα

=
(

2π
λ

)2

f
(
x−iλ∂p,p+iλ∂x

)
g(x,p)∼

(
2π
λ

)2

g∗f

(2.15)

leading finally to

XDf g =
i
λ

sin
[
λ
(
∂x1∂p2−∂p1∂x2

)]
f
(
p1,x1

)
g
(
p2,x2

)|(p,x) = {f ,g}M. (2.16)
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In addition, from the Jacobi identity for the Moyal bracket one has

[
XDf ,X

D
g
]
h=XDf {g,h}−XDg {f ,h} =

{
f ,{g,h}}−{g,{f ,h}}

= {{f ,g},h}=XD{f ,g}h. (2.17)

A symplectic form can also be given via

Ω = 1
2λ

∫ ∫
da1da2

∫ ∫
db1db2eiλ(a1b2−a2b1)∆a∧∆b (2.18)

and this satisfies iXDf Ω = ∆f (analogous to iXfω = dω for a symplectic form ω).

Our formulas differ at times by ±i from [18, 19, 20, 21, 22] but everything seems

consistent and correct here; the philosophy of running ai over R∼ (−∞,∞) is crucial

in the calculations (alternatively
∫

could represent a sum over a discrete symmetric set,

for example, [−N,N] with N infinite or not). We note also a somewhat quasi Fourier

theoretic version of the formulas (A9), (2.12), (2.13), and so forth, developed in [4].

Thus consider

vλ[f](x,a)=
(
λ

2π

)2∫
dbe−iλ(a×b)eλ�b·�∂f . (2.19)

Hence (using b→−b)

vλ[f](x,−a)=
(
λ

2π

)2∫
dbeiλ(a×b)eλ�b·�∂f =

(
λ

2π

)2∫
dbe−iλ(a×b)e−λ�b·�∂f (2.20)

and since ∇−a =−∇a one gets

XDf =
∫
davλ[f](x,a)∇a =−

∫ −∞
∞
davλ[f](x,−a)∇−a =−

∫
davλ[f](x,−a)∇a. (2.21)

Consequently,

XDf =
1
2

∫
da
[
vλ[f](x,a)−vλ[f](x,−a)

]∇a

= λ3

4π2

∫
da
∫
dbe−iλ(a×b)

{
eλ�b·�∂−e−λ�b·�∂

2λ

}
f∇a

= λ3

4π2

∫
da
∫
dbe−iλ(a×b)∇bf∇a.

(2.22)

This formula provides another representation for XDf via

XDf =
∫
daṽλ[f ](x,a)∇a; ṽλ[f ](x,a)= λ3

4π2

∫
dbe−iλ(a×b)∇bf . (2.23)

The above gives a direct discretization of phase space and the natural difference

analogue of Lie bracket leads to the Moyal bracket. Thus one takes λ∼ �/2 and defines

XQA = �XDA for functionsA(x,p) and there is a Heisenberg equation (H ∼ Hamiltonian)

(A10) i�∂tX
Q
A = [XQA ,XQH ] (where bothA andH may contain �). This is compatible with

(A11) ∂tA= {A,H}M (cf. (2.16) and (2.17)). To see how this works we recall the standard

quantum mechanical (QM) idea of Wigner distribution function Fw with
∫
Fwdx =

1 and 〈Â〉 =
∫
FwAdx for the expectation value of an operator Â associated to the
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observable function A (Weyl ordering is to be invoked when ordering is needed and

details are in [4]). The corresponding discrete version is given via a difference 1-form

PFw =
�
4

∫ ∫
da1da2

∫ ∫
db1db2ei�(a1b2−a2b1)/2Fw

(
x+ �

2
b1,p+ �

2
b2

)
∆a (2.24)

so (A12) 〈PFw ,XQA 〉 =
∫
dxdpFw(x,p)A(x,p)= 〈Â〉. In the Heisenberg picture the time

dependence is (A13) ∂t〈PFw ,XQA 〉 = 〈PFw ,XQA (t)〉 which in the Schrödinger picture be-

comes (A14) ∂t〈PFw ,XQA 〉 = 〈PFw (t),XQA 〉. Here the solution of (A10) necessarily is

XQA (t)= exp
(
− it
�
XQH
)
XQA exp

(
it
�
XQH
)

(2.25)

(simply differentiate XQA = exp[(it/�)XQH ]X
Q
A (t)exp[(−it/�)XQH ] and note that in

(A10) XQA ∼ XQA (t)). This corresponds to a solution of (A11) of the form (A15) A(t) =
[exp(it/�)XQH ]A and in the Heisenberg picture

−i� d
dt
〈
PFw ,X

Q
A (t)

〉= 〈PFw ,[XQA (t),XQH ]〉=
〈
PFw ,X

Q{
A(t),H

}
M

 
, (2.26)

where the right side is 〈P{H,Fw(t)}M,XQA 〉 upon defining (A16) Fw(t)=exp[−(it/�)XQH ]Fw
so that (A17) ∂tPFw(t) = P{H,Fw(t)}M ≡ ∂tFw(t)= {H,Fw(t)}M .

3. Q-discretization. Consider now a variation on Section 2 based on a q-lattice.

This will constitute a different approach from those in Remark 2.2 and Proposition 2.1

in that we keep q fixed. Indeed q (or f(q)) can play the role of λ and we write

∇̂mnf(x,p)= f
(
xq2m,pq2n)−f(x,p)(
q2m−1

)
x
(
q2n−1

)
p

, (3.1)

∇̌mng(x,p)= g
(
xqm,pqn

)−g(xq−m,pq−n)(
qm−q−m)(qn−q−n)xp

= e
λ(m,n)·(∂̂1, ∂̂2)−e−λ(m,n)·(∂̂1, ∂̂2)(
qm−q−m)(qn−q−n)xp ĝ

(
log(x), log(p)

)

= qm+ne−λ(m,n)·(∂̂1, ∂̂2)∇̂mng =G,

(3.2)

so (m,n) plays the role of Fourier variables (a1,a2)∼ a. We recall from [4] the device

(A18) λ= log(q), exp(λ)=q, f(x)= f̂ (log(x)), q2mx∂xf (x)=exp[2mλ∂log(x)]f̂ (log(x))
= f̂ (log(x)+2m log(q)) = f̂ (log(q2mx)) = f(xq2m). This suggests an inversion for

∇̂mn written via

∇̂mnf(x,p)=
(
e2λ(m,n)·(∂̂1, ∂̂2)−1

)
(
q2m−1

)
x
(
q2n−1

)
p
f̂
(
log(x), log(p)

)
(3.3)

(∂̂1 = ∂/∂ log(x), ∂̂2 = ∂/∂ log(p)) in a form similar to a Jackson integral. Thus first we
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can derive a Jackson integral as follows. Write

∇f(x)= ∂q2f(x)= f
(
q2x

)−f(x)(
q2−1

)
x

=
(
e2λx∂x −1

)
(
q2−1

)
x
f(x)= g(x) (3.4)

with formally

f(x)= (1−q2) ∞∑
0

e2kλx∂x
(
xg(x)

)= (1−q2) ∞∑
0

q2kxg
(
q2kx

)
(3.5)

which is the Jackson integral
∫ x
0 dq2yg(y). Similarly, we can write now formally

∇̂−1
mng(x,p)=−

(
q2m−1

)(
q2n−1

) ∞∑
0

e2λk(m,n)·(∂̂1,∂̂2)
(
xpg(x,p)

)

=−(q2m−1
)(
q2n−1

) ∞∑
0

q2mkxq2nkpg
(
q2mkx,q2nkp

)
=G(x,p)

(3.6)

This can be checked via

G
(
q2mx,q2np

)−G(x,p)(
q2m−1

)
x
(
q2n−1

)
p

= g(x,p)

=−
∞∑
0

q2m(k+1)q2n(k+1)g
(
q2m(k+1)x,q2n(k+1)p

)

+
∞∑
0

q2mkq2nkg
(
q2mkx,q2nkp

)
.

(3.7)

Hence we have proved

Proposition 3.1. The difference operator ∇̂mn of (3.1) can be inverted via (3.6) as

a kind of extended Jackson integral. Similarly one has

∇̌−1
mng(x,p)= q−m−n∇̂−1

mng
(
xq−m,pq−n

)
=−q−m−n(q2m−1

)(
q2n−1

)

×
∞∑
0

q2mk−mxq2nk−npg
(
q2mk−mx,q2nk−np

)
=−(qm−q−m)(qn−q−n)xp
×

∞∑
0

q(2k−1)(m+n)g
(
q(2k−1)mx,q(2k−1)np

)
.

(3.8)

It should be possible now to duplicate most of the machinery in Section 2 with q
discretization as above. We note that this procedure and the resulting formulas appear

to be different from any of the phase space discretizations in [8, 10, 13, 16, 23, 24,

25, 26, 27, 28, 32, 33]. We will consider an analogue of XDf in (A9) or (2.23) via

X̂Df =
∑
m,n

vq[f ](x,p,m,n)∇̂mn or X̌Df =
∑
vq[f](x,p,m,n)∇̌mn, (3.9)

where we need then a formula for vq[f] which can perhaps be modeled on (2.23) in
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a quasi-Fourier spirit. Note that the stipulation 〈∆a,∇b〉 = δ(a−b), or ∆̂mn = ∇̂−1
mn as

in (3.6) and (3.7) simply provides a tautology (A19) vq[f](x,p,m,n) = 〈∆̂mn,X̂Df 〉 or

as in (2.12) the equation (A20) 〈∆a,XDf 〉 = 〈∆a,
∫
dbvλ[f](x,p,b)∇b〉 = va[f ](x,p,a).

Thus one should realize that vλ[f] is simply selected in an ad hoc manner so that

XDf g = {f ,g}M . It turns out that the use of ∇̂mn and X̂Df would not reproduce a suitable

± symmetry for a quasi-Fourier approach so we will concentrate on X̌Df and ∇̌mn.

In [9] a quantum q-Moyal bracket (� 
= 0) is suggested in the form

{
pmxn,pkx�

}
qM =

1
i�
(
qnkpmxn∗pkx�−qm�pkx�∗pmxn), (3.10)

where ∗ can refer to standard or antistandard orderings via (ν = log(q) and Dz ∼ ∂q)

∗S ≡
∞∑
0

(i�)r

[r]!
←�
Dr
p exp

(
ν
←�
∂ppx

�→
∂x
) �→
Dr
x ;

∗A ≡
∞∑
s=0

(
−ν←�∂ xx

)s s∑
r=0

(−i�)rqr(r−1)/2

[r]!
←�
Dr
x
�→
Dr
p

(
p
�→
∂ p
)s
.

(3.11)

Here standard ordering involves XP products and antistandard has PX products (see

Section 4). The symbol map is SS(XmPn)= SA(PmXn)= pmxn; Weyl ordering is also

considered but there are some complications. We note also for �= 0 one has classical

star products based on (ν = log(q)—cf. [9, 11])

∗qS ≡ exp
(
ν
←�
∂ppx

�→
∂x
)
;

∗qA ≡ exp
(
−ν←�∂xxp

�→
∂p
)
;

∗qW ≡ exp
(
− ν

2

(←�
∂xxp

�→
∂p−

←�
∂ ppx

�→
∂x
)) (3.12)

(here ∗qW refers to Weyl ordering); these star products all satisfy

qnkpmxn∗q pkx�−qm�pkx�∗q pmxn = 0 (3.13)

as required for standard q-deformed operators.

4. Calculations. For completeness we will give a number of calculations to show

how our results are parallel to Section 2 and can be reached through some quasi-

Fourier type procedures. First we recall some useful formulas (cf. [7, 14, 17]), namely

δ(z−w)= z−1
∑
n∈Z

(
z
w

)n
= z−1δ̂

(
q
w

)
. (4.1)

There are many nice calculations available using (4.1); we mention for example,

(Resz
∑
anzn = a−1 and Dz = z(d/dz))

δ(w−z)=w−1
∑
Z

(
w
z

)
=w−1

∑
Z

(
z
w

)n
= z−1

∑(
z
w

)n
= δ(z−w);

Resz f (z)δ(z−w)= f(w); f(z)δ̂(az)= f (a−1)δ̂(az);
Resz ∂a(z)b(z)=−Resz a(z)∂b(z).

(4.2)
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This will provide a delta function corresponding to
∫

exp[ib2(α1−x)−ib1(α2−p)]db.

Now, leaving aside possible multiplicative factors (cf. Remark 4.4), consider (2.12) in

the form

vq[f](x,p,a)= c(q)
∑
r ,s
qms−nrf

(
qrx,qsp

)
(4.3)

leading to (cf. (2.13) and (2.14))

XDf = ĉ(q)
∑

m,n,r ,s

(
qms−nr −q−ms+nr )f (qrx,qsp)·q(m,n)·(∂̂1, ∂̂2);

XDf g = ĉ(q)
∑

m,n,r ,s

(
qms−nr −q−ms+nr )f (qrx,qsp,)g(qmx,qnp) (4.4)

while (2.15) can be written as (x+λa1 =α1 and p+λa2 =α2)

∫
da
∫
dbeiλ(a1b2−a2b1)f

(
x+λb1,p+λb2

)
g
(
x+λa1,p+λa2

)

× 1
λ2

∫ ∫
dαdbei[b2(α1−x)−b1(α2−p)]f

(
x+λb1,p+λb2

)
g
(
α1,α2

)

= 1
λ2

(∫
f
(
x+iλ∂α2 ,p−iλ∂α1

)∫
ei[b2(α1−x)−b1(α2−p)]db

)
g
(
α1,α2

)
dα

=
(

2π
λ

)2∫ [
f
(
x+iλ∂α2 ,p−iλ∂α1

)
δ
(
α1−x,α2−p

)]
g
(
α1,α2

)
dα

=
(

2π
λ

)2

f
(
x−iλ∂p,p+iλ∂x

)
g(x,p)∼

(
2π
λ

)2

g∗f .

(4.5)

Intuitively one thinks of λ ∼ log(q), a ∼ (m,n), and b ∼ (r ,s) so the substitution

x+λa1 = α1 corresponds to α1/x = qm; similarly α2/p = qn and the second and

third lines in (4.5) correspond to

Γ1 = c(q,p,x)
∑
α

∑
r ,s

(
α1

x

)s(α2

p

)r
f
(
xqr ,pqs

)
g
(
α1,α2

)
, (4.6)

where
∑
α ∼ Resα(1/α1α2). The first question is to ask if we can write something like

∑
r ,s
f
(
xqr ,pqs

)(α1

x

)s(α2

p

)−r
∼ f (xq∂̂1 ,pq−∂̂2

)
δ̂
(
α1

x

)
δ̂
(
p
α2

)
(4.7)

in analogy to lines 3 and 4 of (4.5). We could imagine for example, f(x,p)=∑ak�xkp�
and look at

∑
r ,s
xkp�qkrq�s

(
α1

x

)s(α2

p

)−r
=
∑
r ,s
xkp�q−k∂̂2q�∂̂1

(
α1

x

)s(α2

p

)−r

= xkp�q−k∂̂2q�∂̂1 δ̂
(
α1

x

)
δ̂
(
p
α2

) (4.8)

since q−k∂̂2(α2/p)−r = (q−kα2/p)−r = qkr (α2/p)r . Consequently, for f =∑ak�xkp�
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in (4.6) we have

Γ1 = c(q,p,x)
∑
k,�

ak�xkp�q−kp∂pq�x∂xg(x,p) (4.9)

since Resα(1/α1α2)δ̂(α1/x)δ̂(p/α2)g(α1,α2) = g(x,p) and for example, ∂̂1 in α1

becomes ∂̂1 = x∂x . This leads to

Γ1 = c(q,p,x)
∑
ak�xkp�g

(
xq�,pq−k

)
(4.10)

as a putative g∗f (cf. (4.5)). For g =∑bγβxγpβ this corresponds to

Γ1(f ,g)= c
∑
k,�,γβ

ak�bγβxk+γp�+βq�γ−kβ ∼ g∗f . (4.11)

The terms of the form (2.15) corresponding to exp[−iλ(a1b2−a2b1)] in (2.14) involve

now in place of (4.7) a term

−
∑
r ,s
f
(
xqr ,pqs

)(α1

x

)−s(α2

p

)r
=−f (xq−∂̂1 ,pq∂̂2

)
δ̂
(
x
α1

)
δ̂
(
α2

p

)
. (4.12)

Hence we get for f and g as before

Γ2 ∼ f ∗g =−c(q,p,x)
∑
ak�xkp�bγβ

(
xq−�

)γ(pqk)β
= c

∑
aklbγβxk+αp�+βqkβ−�γ

(4.13)

leading to the following proposition.

Proposition 4.1. For f(x,p) =∑ak�xkp� and g(x,p) =∑bγ,βxγpβ one obtains

in a heuristic manner

{f ,g}M ∼ f
(
xq−p∂p ,pqx∂x

)
g(x,p)−g(xq−p∂p ,pqx∂x)f(x,p)

∼ c(q,p,x)
∑

k,�,γ,β

ak�bγβxk+γp�+β
(
qkβ−�γ−q�γ−kβ), (4.14)

where c(q,p,x) is to be stipulated (cf. Corollary 4.3 for an essentially equivalent for-

mula). Note by inspection or construction {f ,g}M =−{g,f}M , and (4.14) appears sim-

ilar to ∗qW in (3.12).

If we use the formulation of (2.19), (2.20), (2.21), (2.22), and (2.23) a slightly different

formula emerges involving a multiplicative factor which is missed by the analogy

constructions above. Thus we check the passage (2.19) to (2.23). Equation (2.19) is the

same as (2.12) corresponding to (4.3) and (2.20) corresponds to

vq[f](x,p,−a)∼ c
∑
r ,s
qms−nrf

(
q−rx,q−sp

)
(4.15)

which would follow from (4.3) by sending (m,n)→−(m,n) and (r ,s)→−(r ,s). This

makes sense if the sums are −∞→∞ and there seems to be no objection to that. Then
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one would have (taking now ∇a ∼ ∇̌mn as in (3.2))

XDf =
∫
davλ[f](x,a)∇a ∼ c

∑
m,n

vq[f ](x,p,m,n)∇̌mn

= c
∑
m,n

∑
r ,s
qms−nrf

(
qrx,qsp

)qmx∂xqnp∂p −q−mx∂xq−np∂p(
qm−q−m)(qn−q−n)xp ,

(4.16)

XDf =−
∫
davλ[f](x,−a)∇a ∼XDf = c

∑
m,n

vq[f ](x,p,−m,−n)∇̌−m,−n

= c
∑

m,n,r ,s
qms−nrf

(
q−rx,q−sp

)q−mx∂xq−np∂p −qmx∂xqnp∂p(
q−m−qm)(q−n−qn)xp

=−c
∑

m,n,r ,s
qms−nrf

(
q−rx,q−sp

)qmx∂xqnp∂p −q−mx∂xq−np∂p(
qm−q−m)(qn−q−n)xp

(4.17)

exactly as in (2.21) (note the minus sign appears in the last equation instead of at the

beginning). Hence

XDf =
1
2

(
(4.16)+(4.17)

)= c ∑
m,n,r ,s

qms−nr
[
f
(
qrx,qsp

)−f (q−rx,q−sp)]∇̌mn
= c

∑
m,n,r ,s

qms−nr
(
qr −q−r )(qs−q−s)xp∇̌rsf ∇̌mn

(4.18)

which is a difference version of (2.22). One sees that factors of (qr −q−r ), (qs−q−s),
(qm−q−m), and (qn−q−n) have become involved in place of powers of λ and this

must be clarified; otherwise the patterns go over.

To clarify we compare (4.4) and (4.18) and write (4.18) in the form

1XDf g =
c
xp

∑
qms−nr

[
f
(
qrx,qsp

)−f (q−rx,q−sp)]G(q,m,n)
×[g(xqm,pqn)−g(xq−m,pq−n)], (4.19)

where G−1(q,m,n)= (qm−q−m)(qn−q−n)=G(q,−m,−n). Set f± ∼ f(q±mx,q±np)
so in an obvious notation

1XDf g =
c
xp

∑
qms−nrG(q,m,n)

[
f+g++f−g−−f+g−−f−g+

]
. (4.20)

Now evidently, changingm,n→−m,−n, one obtains a formula
∑
qms−nrG(q,m,n)f+g−

→∑
e−ms+nrG(q,m,n)f−g+, and so forth, so

1XDf g =
c
xp

∑
q−ms+nr

(
f+g−+f−g+−f+g+−f−g−

)
(4.21)

leading to

1XDf g = cxp
∑
G(q,m,n)

(
qms−nr −q−ms+nr )[f (qrx,qsp)−f (q−rx,q−sp)]

×[g(xqm,pqn)−g(xq−m,pq−n)]. (4.22)
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This is similar to (4.4) which has the form

2XEf g = ĉ
∑(

qms−nr −q−ms+nr )f+g+
= ĉ

∑
( )f−g− = −ĉ

∑
( )f+g− = −ĉ

∑
( )f−g+

(4.23)

which implies

2XDf g = ĉ
∑(

qms−nr −q−ms+nr )[f (qrx,qsp)−f (q−rx,q−sp)]
×[g(xqm,pqn)−g(xq−m,pq−n)]. (4.24)

This is essentially the same as 1XDf except for the G(q,m,n) factor. For esthetic rea-

sons one prefers the form 1XDf g since it has the more visibly meaningful form (4.16)

and λ plays a consistent role (cf. Remark 4.4 below). Thus in summary we have the

following proposition.

Proposition 4.2. The difference version of Section 2 can be expressed via

XDf =
∑
m,n

vq[f ](x,p,m,n)∇̌mn;

vq[f]=
∑
r ,s
qms−nrf

(
qr s,qsp

)
;

∇̌mng = g
(
xqm,pqn

)−g(xq−m,pq−n)(
qm−q−m)(qn−qn)xp ;

XDf g =
1

2xp

∑
m,n,r ,s

qms−nr

×
[
f
(
qrx,qsp

)−f (q−rx,q−sp)][g(qmx,qnp)−g(q−mx,q−np)](
qm−q−m)(qn−q−n) .

(4.25)

The latter expression is our putative Moyal bracket and we have the following

corollary.

Corollary 4.3. Writing out XDd g for monomials f = xapb and g = xcpd yields

XDf g = {f ,g}M

= 1
2xp

∑
qms−nr

xa+cpb+d
[(
qra+bs−q−ra−bs)(qmc+nd−q−mc−nd)](
qm−q−m)(qn−q−n) .

(4.26)

Further since, as in (4.20), (4.21), and (4.22), one has

−
∑
m,n

qms−nrGg− = −
∑
m,n

q−ms+nrGg+,

−
∑
r ,s
qms−nrf− = −

∑
q−ms+nrf+

(4.27)

there results

XDf g =
1

2xp

∑ qms−nr −q−ms+nr(
qm−q−m)(qn−q−n)f

(
qrx,qsp

)
g
(
qmx,qnp

)
. (4.28)
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This is reminiscent of (4.4) but with a G(q,m,n) factor so the calculation (4.14)

applies with G(q,m,n) inserted and consequently {f ,g}M = −{g,f}M as before, al-

though this is not immediately visible from (4.28). We note also from (4.25) or (4.28)

that it does no harm to use alternatively a form based on (2.23) in the form (cf. (4.18))

XDf g = c
∑

m,n,r ,s
qms−nr ∇̌rsf ∇̌mng (4.29)

which inserts an additional factor G(q,r ,s) into (4.25).

Remark 4.4. The multiplicative factors involve terms (qm − q−m), (qn − q−n),
(qr −q−r ), or (qs−q−s), all of which correspond to a λ arising from ∇̌mn or ∇̌rs ; in-

stead of coming out of the integral signs as λ in the continuous versions of Section 2

they have to be summed. Note the correspondence x+λa1 = α1 corresponding to

α1/x = qm uses λ in a different manner so it is at first glance surprising that 2XDf
even comes close to 1XDf . The relations of our formulas to the star products and

Moyal brackets of (3.10), (3.11), (3.12), and (3.13) will be examined later as well as the

expansion of material in [4] related to work of Curtright, Fairlie, Zachos, and the Saito

school (cf. [4] for references). We note also that for a complex phase space {z,ζ} (not

clarified) an interesting variation on the q-Moyal bracket of (4.14) or (4.25) is given

in [18] for a KP situation (cf. also [4] where this is expanded). This is applied to a

KP hierarchy context using complex variable methods and, although powers of q are

inserted in various places, it is not developed systematically in a q-analysis manner

and no recourse to q-derivatives is indicated. We will expand further the treatment of

[4] for this situation in a subsequent paper.
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