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ABSTRACT. We study the quaternion CR-submanifolds of a quaternion Kaehler manifold.
More specifically we study the properties of the canonical structures and the geometry
of the canonical foliations by using the Bott connection and the index of a quaternion
CR-submanifold.
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1. Introduction. The notion of a CR-submanifold of a Kaehler manifold was intro-
duced by Bejancu [3]. Subsequently a number of authors studied these submanifolds
(see [4] for details). In [1], Barros et al. studied quaternion CR-submanifolds of a quater-
nion Kaehler manifold and obtained many interesting results. The aim of this paper
is to continue the study of quaternion CR-submanifolds of a quaternion Kaehler man-
ifold. The paper is organized as follows: in Section 2 we collect some basic formulas
and results for later use and in Section 3 we study some properties of canonical struc-
tures, particularly its parallelism and QR-product. In Section 4 we study the geometry
of the canonical foliations using the Bott connection and the index of a quaternion CR-
submanifold. Finally, as an extension of the work of Chen [5] for the Kaehler manifolds
we give a complete classification of the totally umbilical quaternion CR-submanifolds
of a quaternion Kaehler manifold.

2. Preliminaries. Let M be a quaternion Kaehler manifold with metric tensor g and
quaternion structure V [7]. We will denote by ¢; =1, @2 = J, and 3 = K a local basis
of almost Hermitian structures for V.

Let X be a unit vector tangent to the quaternion Kaehler manifold M. Then the
vectors X, IX, JX, KX form an orthonormal frame. Let Q (X) be the quaternion sec-
tion determined by X. Any plane in a quaternion section is called a quaternion plane
and the sectional curvature of a quaternion plane is called a quaternion sectional cur-
vature. A quaternion Kaehler manifold is called a quaternion space form, which is
denoted by M(c), if its quaternion sectional curvature is equal to a constant ¢ at any
point of the manifold. The curvature tensor R of M(c) is given by, [7],

3
REYZ= 5[ 0x-g0, DY+ 3 g, v, 2)w, X
r=1 2.1)

— g (W X, Z) Y +2g (X, er)uJVZ],

where ¢y =1, Y2 =J, 3 =K.
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Let M be a Riemannian manifold isometrically immersed in a quaternion Kaehler
manifold M. We also denote by g the metric tensor induced on M. If V is the covariant
differentiation induced on M, the Gauss and Weingarten formulas are given by

WXY:VXY+h(X,Y), va:—ANX-FV)L(N, 2.2)

respectively, for any X, Y tangent to M and N normal to M. Here h and V+ are the sec-
ond fundamental form associated with M, and the connection of the normal bundle,
respectively. The second fundamental tensor Ay is related to h by

A differentiable distribution D, on M such that ¢, (Dy) € D, for all » = 1,2,3 is
called a quaternion distribution. In other words, D, is a quaternion distribution if D,
is contained into itself by its quaternion structure.

It is known [1] that a submanifold M of a quaternion Kaehler manifold M is called
a quaternion CR-submanifold if it admits a quaternion distribution D, such that its
orthogonal complementary distribution D, is totally real, thatis, ¢, (D5) < T;+ M for
all x e M and r =1, 2,3, where T;; M denotes the normal space of M at x.

A submanifold M of a quaternion Kaehler manifold M is called a quaternion (resp.,
totally real) submanifold if dim Dy =0 (resp., dim D, =0). A quaternion CR-submanifold
is said to be proper if it is neither quaternion nor totally real.

We denote by u the subbundle of the normal bundle T+ M which is the orthogonal
complement of 1D+ @ Y,D+ @ 3D+, that is,

T*M =y 1D+*ey,D*eoypsD*eou; g(u,@,D*) =0. (2.4)

The mean curvature vector H of M in M is defined by H = (1/n) traceh, where n
denotes the dimension of M. If we have

h(X,Y)=9g(X,Y)H (2.5)

for any X,Y € TM, then M is called a totally umbilical submanifold. In particular, if
h(X,Y) = 0 identically for all X,Y € TM, M is called a totally geodesic submanifold.
Finally M is called mixed totally geodesic if h(X,Y) =0 for X € D, Y € D*. For totally
umbilical CR-submanifolds, equations (2.2) take the forms

VxY =VxY+g(X,Y)H, VxN=-g(H,N)X+V%N. (2.6)

The Codazzi equation for a totally umbilical CR-submanifold M, is given by
R(X,Y;Z,N)=g(Y,Z)g(V+H,N)-g(X,Z)g(Vy+H,N). (2.7)
DEFINITION 2.1 (see [1]). Let M be a quaternion CR-submanifold of a quaternion

Kaehler manifold M. Then M is called a QR-product, if M is locally the Riemannian
product of a quaternion submanifold and a totally real submanifold of M.
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Forany X € TM and N € T+ M, we put

WrX =P X+ Q. X, 2.8)
WyN =t,N+ f/N, (2.9)

where P, X, t,N (resp., Q, X, frN) are the tangential (resp., the normal) components
of ¢, X and ¢, N forr =1,2,3.
For the second fundamental form h, the covariant differentiation is defined by

(Vxh)(Y,Z) =Vxh(Y,Z) - h(VxY,Z)-h(Y,VxZ) (2.10)
and the Gauss-Codazzi equations are given by

RX,Y,Z,W)=R(X,Y,Z,W) +g(h(X,W),h(Y,Z))-g(h(X,Z),h(Y,W)), (2.11)
[R(X,Y)Z]" = (Vxh)(Y,Z)- (Vyh)(X,Z), VX,Y,Z,W tangent to M, (2.12)

where R is the curvature tensor associated with V and L in (2.12) denotes the normal
component.

We collect from Barros et al. [1] the following results which we shall need in the
sequel.

LEMMA 2.2. Every quaternion submanifold of a quaternion Kaehler manifold is
totally geodesic.

LEMMA 2.3. The quaternion distribution D of a quaternion CR-submanifold M in a
quaternion Kaehler manifold M is integrable if and only if h(D,D) = 0.

LEMMA 2.4. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold
M. Then the leaf M+ of D* is totally geodesic in M if and only if g(h(D,D*),y,D*) =0,
r=1,2,3.

LEMMA 2.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold
M. Then

Ay,wZ =Ay,zW forany W,Z € D*. (2.13)

3. Canonical parallel structures and QR-product. LetP,, f;,Q,, and t, be the endo-
morphisms and the vector-bundle-valued 1-forms defined in (2.8), respectively. We
define the covariant differentiation of P,,Q,,t,, and f, as follows:

(vXPT)(Y) = VX(PVY) _PTVXY1 (vXQY)(Y) = V)L((QVY) _QTVXYa

_ _ (3.1)
(Vxty)(N) = Vx(t,N) —t, VN, (Vxfr)(N) = Vx(frN) - fr VxN,
for any vector fields X,Y € TM and N € T+ M.
The endomorphisms P, (resp., the endomorphisms f;, the 1-forms Q, and t,) are
parallel if VP, = 0 (resp., V.f, =0, VQ, =0, and Vt, = 0).
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Now using the definition of a quaternion Kaehler manifold and taking account of
(2.2), (2.8), we can easily obtain the following:

(VxP)(Y) = Ag, v X +t,h(X,Y), (3.2)
(VxQr)(Y) = frh(X,Y) —h(X,P.Y), (3.3)
(Vxty)(N) = ApnX — Py AxX, (3.4)
(Vxfyr)(N) = —h(X,t,N), (3.5)

forany X, Y€ TM and N € T+ M.
REMARK 3.1. Since the second fundamental form is symmetric, it follows from (3.2)
that P, is parallel if and only if

Ay, uV = Ay,vU, YU,V €TM. (3.6)

Now if we set V = X € D in (3.6), we find that Ay,yX = 0 for all U € TM, which
is equivalent to g(h(X,Y),y,U) = 0 for any X € D, and Y,U € TM. In particular
gh(X,Y),y,Z)=0forany X e Dand Y,Z € D-.

Thus, using Lemma 2.4 we obtain the following lemma.

LEMMA 3.2. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold
M. If P, is parallel then the leaf M+ of D+ is totally geodesic in M.

Now we state and prove the following proposition.

PROPOSITION 3.3. Let M be a quaternion CR-submanifold of a quaternion Kaehler
manifold M. Then Q, is parallel if and only if t, is parallel.

PROOF. Suppose t, is parallel. Then from (3.4) we have
A NU =P,ANU, foranyU e TM. (3.7)

Thus for any vector fields U,V € TM and N € T+ M, we get

9(AfNUV) = g(PrANU,V), (3.8)
or equivalently
frh(U,V)-h(U,P,V) =0, (3.9)
thatis, VQ, =0
The proof of the converse statement is similar. O

LEMMA 3.4. Let M be a QR-product of a quaternion Kaehler manifold M. Then
(@ VzXeD,
(b) VxZ e D+,

forall X e D and Z € D*.
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PROOF. By using (2.2) and the definition of a quaternion Kaehler manifold, we find

YrVzX =V, X+h(Z,y, X) -, (X,Z) forXeD, ZeD"*. (3.10)

The above equation yields

(W VX, W) = g(Vzu X, W, W) + g(h(Z,p, X), Wy W),

3.11
9(VzX,W)=g(h(Z,p,X),pyW) forXeD, W,ZeD". G0

Since M is a QR-product the leaf M+ of D+ is totally geodesic. Thus using Lemma 2.4
we get (a).
Next for X € D, Z € D+ we have

vXWTZ = (l—’rvXZ (3.12)
which, by virtue of (2.2), gives
WYrVxZ =—-Ay,2X+VxW, Z -y, h(X,Z). (3.13)

Taking inner products with Y € D and using the fact that the leaf M+ of D+ is totally
geodesic, we find

W VxZ,Y) = -g(Ay,zX,Y) = —g(h(X,Y),y,Z) forX,Y €D, ZeD*. (3.14)
On the other hand, for X € D and W, Z € D* and the use of Lemma 2.5, (3.13) gives

(W VxZ,W) = —g(wrh(X,2),W) - g(h(X, W),y Z)
=g(Ay,wZ,X) - g(Ay,zW,X)
=9(Ay,wZ — Ay, zW,X)
=0.

(3.15)

Thus from (3.14) and (3.15) we see that ¢, VxZ is normal to M. So VxZ € D+ for all
XeDand ZeD*. O

THEOREM 3.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler
manifold M. Then M is a QR-product if and only if P, is parallel.

PROOF. Suppose P, is parallel, then from (3.2), we have
Ag, vy X+t h(X,Y)=0 VX, YeTM. (3.16)

IfY € D,then Q,Y = 0.Hence (3.16)isreduced to t, h(X,Y) =0forall X € TM,Y € D.
Therefore by virtue of [1, Lemma 5.1, page 403], we get h(D,D*) =0 or h(D,D) = 0.
So the quaternion distribution D is integrable by virtue of Lemma 2.3. Thus it follows
that each leaf M+ is totally geodesic in M and in particular M+ is totally geodesic in
M by virtue of Lemma 2.2.
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Again from (3.2), we have

Ay, wZ+th(W,Z) =0 VW,Z e D*. (3.17)
So for X € D, we have
9(Ay,wZ,X) +g(trh(W,2),X) =0 (3.18)
which means
9(h(X,2),Q,W)-g(h(W,Z),Q,X) =0, (3.19)
that is,
g(h(X,2),Q,W)=0 (3.20)
or
g(h(D,D*),Q,D*) =0. (3.21)

Thus using Lemma 2.4, it follows that the leaf M+ of D+ is totally geodesic. Hence M
is a QR-product.

Conversely, let M be a QR-product. First we show that Vy X € D for any X € D and
U tangent to M. Since M is a QR-product, that is, locally a Riemannian product of a
quaternion submanifold and a totally real submanifold, it is sufficient to show that
VzX € D for any X € D, Z € D* but this was proved in Lemma 3.4(a). Using this fact,
we have

Vo X+h(U,p,X) =, VyX+y, h(X,U) forany X € D, U tangent to M, (3.22)

which vields
Yrh(U,X) = h(U,yp,X), Vy,y X = VyX. (3.23)

Thus (VyP,)(X) = VyP, X —P,VyX =0, for any X € D, and U tangent to M.
Similarly, by using Lemma 3.4(b), it follows that VyZ € D+ for any Z € D+, and U
tangent to M. But since M is a QR-product, it follows that VxZ € D* for U = X € D
and Z € D+.
Thus, we have (VyP,)(Z) =0 for any Z € D*, U tangent to M. Therefore VP, = 0,
which completes the proof. O

COROLLARY 3.6. Let M be a QR-product of a quaternion Kaehler manifold M. Then
M is mixed totally geodesic, that is, h(D,D+) = 0.

REMARK 3.7. If M is a proper QR-product of a quaternion space form M (c), then
the ambient manifold M is necessarily a space of zero curvature. Hence there does
not exist a proper QR-product of a quaternion space form M (c) with ¢ # 0.

4. Canonical foliations and index of a quaternion CR-submanifold

DEFINITION 4.1 (see [8]). Let D be a distribution on the Riemannian manifold M,
D+ the orthogonal distribution, IT*+ : TM — D* the projection and V the Levi-Civita
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connection. Then the second fundamental form of the plane field D, is defined by
Sy(X,Y) = %rﬁ(vxwr VyX). (4.1)

The distribution D is called a totally geodesic plane field, if the geodesics tangent to
it at one point remain tangent for all their length.
Thus we say that the distribution D is a totally geodesic plane field if

Sy(X,Y) =TI*(VxY+VyX) =0 VX,YeD. (4.2)

A geometric definition of this notion is given in [9].

A foliation f on a Riemannian manifold M is called a Riemannian foliation, if the
Bott connection V xY =TI[X,Y] in the normal bundle of f preserves the Riemannian
metric. Also f is a Riemannian foliation if and only if the second fundamental form
Sy of the plane field D vanishes (see [9, page 157]).

THEOREM 4.2. Let M be a quaternion CR-submanifold of a quaternion Kaehler mani-
fold M such that Dy; is a totally real foliation of M. Then the Bott connection of Dj;
preserves the volume form @ of Dy, that is, %Z(,U =0, for all Z € Dy;.

PROOF. For any X,Y € D and Z € D+, we have

a((Vzur)0,Y) =g (Vzur X, Y) - g (0, V2X,Y)
=9([Z, 9y X],Y) +9(1Z,X],rY)
=g(VzyrX,Y)—g(Vy,xZ,Y)
+9(VzX, @, Y) = g(VxZ,yrY)
=9(X,rVzY)+9(Vy,xY,Z) 4.3)
-9(X, V2, Y) +g(Vxw,Y,Z)
(Vy,xY,Z) +g(Vxy,Y,Z)
Vo, xY,Z) +g(Vxwr Z,Y)

=g
=g(

IV, xY,Z) —g(Ay,2zX,Y).
Also,

9(VxX,Z) =g(VxX,Z)
=g(Y,rVxX, P, Z)
=g(VxyrX, 0, 2) (4.4)
=-9(VxurZ,p,X)
=g(Ay,zX, W, X).

If Dj; is Riemannian then Dy is a totally geodesic plane field and so (4.4) gives
Ay, zX, Py X) =0.
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Therefore g(Ay,z(X+Y),p,(X+Y)) =0, and hence we obtain
Ay, zX, 0 Y)+g(Ay, Y, X) =0. 4.5)

Thus using (4.3) and (4.5), we have

(V1) X, 0, Y) = (Vg xWr Y, Z) = g (Ay, 2X, 0, Y)
= 9Ty xr Y, 2) +g(Ag, 2V, X) (4.6)
=0.

Moreover, it is known that D), is a minimal distribution [2], which implies that
(dp)(Z,Xq,...,X4n) =0 for ZeD*, Xy,...,X4n €D. 4.7)

Hence

o

4n
(VZW)(le---:X4n) = ZW(le---aXAIn) - Z W(Xls"'1H[Z|Xa]|"'ax4n) (4 8)
a=1 .
X4n) =0

= dy)(Z,X1,...,

which completes the proof. O

Now, let M be a compact totally geodesic quaternion CR-submanifold of a quater-
nion Kaehler manifold M. Let N be a normal vector field and denote by v”' (N) the
second normal variation of M induced by N. Then we have (see [6, Chapter 1]),

n
V'(N) = JM {HVLNH2 - > R(Xi,N,N,X;) - ||AN||2}dV, 4.9)
i=1
where N € T*M, dV denotes the volume element of M and {X;} is an orthonormal
frame in TM. Applying the Stokes theorem to the integral of the first term of (4.9), we
have

I(N,N)z:v”(N)zj g(LN,N) %1, (4.10)

M

where L is a selfadjoint, strongly elliptic linear differential operator of the second
order. The differential operator L is called the Jacobi operator of M in M and has dis-
crete eigenvalues A1 < Ap < ---. WeputEy = {N € T+*M:L(N)=AN}. The dimension
of the space E, dim(E,), is called the index of M in M. For two normal vector fields
N1,N> to a minimal submanifold M in M, their index form is defined by

(N1, Na) =JMg(LN1,N2)>k1. @.11)

It is easy to see that the index form I is a symmetric bilinear form; I : T*M xT*M — R.
Now we prove the following theorem.

THEOREM 4.3. Let M be a compact n-dimensional minimal quaternion CR-submani-
fold of a quaternion Kaehler manifold M. If M has nonpositive holomorphic bisectional
curvature, then the index form satisfies

I(N,N)+I(¢yN,yN) =0 foranyN € p. (4.12)
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PROOF. By using the Weingarten equation we have that for all X,Y € D+,

g(v)L(N! WVY) = g(vXNv lIJVY)

= _g((,vaXN, Y)
_ (4.13)
= _g(vXWTNl Y)
=9g(Ay,nX,Y)
which implies that
IVANI]? = [[Ap,nll5 [[VE@eN|* = [|Ax]]® for any N € p, (4.14)

where u is defined in (2.4). Thus by using (4.9), (4.10), (4.13), and (4.14) we get

I(N,N)+I(yyN,y,N) = — JM S{R(N,ei,ei,N) +R(WyN,ei, e,y N)} 1 (4.15)
i=1

from which the proof follows, since M has nonpositive holomorphic bisectional cur-
vature. O

Finally, we prove a classification theorem for the totally umbilical quaternion CR-
submanifolds of a quaternion Kaehler manifold.

THEOREM 4.4. Let M be a compact totally umbilical quaternion CR-submanifold of
a quaternion Kaehler manifold M. Then

(@) M is a totally geodesic submanifold, or,

(b) M is locally the Riemannian product of a quaternion submanifold and a totally
real submanifold, or,

(c) M is a totally real submanifold, or,

(d) the totally real distribution is one dimensional, that is, dimD+ =1,

(e) VxH e, for X eD.

PROOF. We take X,W € D+ and using (2.6) with the fact that M is a quaternion
Kaehler manifold, we have

Wr VW +g(X, W)Y, H = = Ay, wX + Vi, W. (4.16)
Taking inner product with X we get
GH, Y W)X = g(X,W)g(H,prX). 4.17)
Exchanging X and W in (4.17) we have
GH, W X)W = g(X,W)g(H,p, W). (4.18)
This together with (4.17) gives

g(X,W)?
HyW)=—"——F—"=gH,p,W). 4.19
g(H, W) \|X||2|\W|\2g( wrW) (4.19)
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The possible solutions of (4.19) are
(i) H=0,
(i) HLy,W,
(iil) X||w.

Suppose that condition (i) holds, thatis, H = 0. This implies that M is totally geodesic
which proves (a). Combining (ii) with a resultin [1, page 407] we get (b) of the theorem.

Now from (2.7) we have
O=RUIX,JX,KX,N)
=R(KX,N,IX,JX)
= —R(KX,N,X,KX)
= -R(X,KX,KX,N)
= —g(VxH,N)IX|?

which implies that
ViHeu VXeD

proving (e). Next we have
VXLIIVH = L[IVVXH for X e D
which, by (2.6) gives

Vy@,H=—-gHH)Y, X+, VyH.

(4.20)

(4.21)

(4.22)

(4.23)

Since VyH € y, from (4.23) we have ¢, X = 0 for all X € D. Hence D = {0} which

proves (c). Finally if (iii) is valid then dim D+ = 1, which completes the proof.

O
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