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Abstract. Using an almost increasing sequence, a result of Mazhar (1977) on |C,1|k sum-
mability factors has been generalized for |C,α;β|k and |N̄,pn;β|k summability factors
under weaker conditions.
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1. Introduction. A sequence of (bn) of positive numbers is said to be δ-quasi-

monotone, if bn → 0, bn > 0 ultimately and ∆bn ≥ −δn, where (δn) is a sequence

of positive numbers (see [2]). Let
∑
an be a given infinite series with (sn) as the

sequence of its nth partial sums. Let σαn and tαn denote the nth (C,α) means of the

sequences (sn) and (nan), respectively, that is,

σαn =
1
Aαn

n∑
v=0

Aα−1
n−vsv , (1.1)

tαn =
1
Aαn

n∑
v=1

Aα−1
n−vvav, (1.2)

where

Aαn =O
(
nα
)
, α >−1, Aα0 = 1, Aα−n = 0, for n> 0. (1.3)

The series
∑
an is said to be summable |C,α|k, k≥ 1 and α>−1, if (see [6])

∞∑
n=1

nk−1
∣∣σαn −σαn−1

∣∣k = ∞∑
n=1

1
n
∣∣tαn∣∣k <∞, (1.4)

and it is said to be summable |C,α;β|k, k≥ 1, α>−1 and β≥ 0, if (see [7])

∞∑
n=1

nβk+k−1
∣∣σαn −σαn−1

∣∣k = ∞∑
n=1

nβk−1
∣∣tαn∣∣k <∞. (1.5)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv �→∞ as n �→∞, P−i = p−i = 0, i≥ 1. (1.6)

The sequence-to-sequence transformation

Tn = 1
Pn

n∑
v=0

pvsv (1.7)
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defines the sequence (Tn) of the Riesz mean or simply the (N̄,pn) mean of the

sequence (sn), generated by the sequence of coefficients (pn) (see [8]).

The series
∑
an is said to be summable |N̄,pn|k, k≥ 1, if (see [3])

∞∑
n=1

(
Pn
pn

)k−1∣∣∆Tn−1

∣∣k <∞, (1.8)

and it is said to be summable |N̄,pn;β|k, k≥ 1, and β≥ 0, if (see [4])

∞∑
n=1

(
Pn
pn

)βk+k−1∣∣∆Tn−1

∣∣k <∞, (1.9)

where

∆Tn−1 =− pn
PnPn−1

n∑
v=1

Pv−1av, n≥ 1. (1.10)

In the special case when β= 0 (resp.,pn = 1 for all values ofn), |N̄,pn;β|k summability

is the same as |N̄,pn|k (resp., |C,1;β|k) summability.

Also it is known that |C,α;β|k and |N̄,pn;β|k summabilities are, in general,

independent of each other.

Mazhar [9] has proved the following theorem for |C,1|k summability factors of

infinite series.

Theorem 1.1 (see [9]). Let λn → 0 as n→∞. Suppose that there exists a sequence

of numbers (Bn) such that it is δ-quasi-monotone with
∑
nδnlogn < ∞,

∑
Bnlogn is

convergent and |∆λn| ≤ |Bn| for all n. If

m∑
n=1

1
n
∣∣tn∣∣k =O(logm) as m �→∞, (1.11)

where (tn) is the nth (C,1) mean of the sequence (nan), then the series
∑
anλn is

summable |C,1|k, k≥ 1.

Remark 1.2. It should be noted that the condition “
∑
nBnlogn is convergent”

is enough to prove Theorem 1.1 rather than the conditions “
∑
nδnlogn < ∞ and∑

Bnlogn is convergent.”

2. The main result. In view of Remark 1.2, the aim of this paper is to generalize

Theorem 1.1 for |C,α;β|k and |N̄,pn;β|k summabilities under weaker conditions. For

this we need the concept of almost increasing sequence. A positive sequence (dn) is

said to be almost increasing if there exists a positive increasing sequence (cn) and

two positive constants A and B such that Acn ≤ dn ≤ Bcn (see [1]). Obviously, every

increasing sequence is almost increasing but the converse need not be true as can be

seen from the example dn = ne(−1)n . Since logn is increasing, we are weakening the

hypotheses of the theorem replacing the increasing sequence by an almost increasing

sequence.
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Now, we prove the following theorems.

Theorem 2.1. Let (Xn) be an almost increasing sequence and λn → 0 as n→∞.

Suppose that there exists a sequence of numbers (Bn) such that it is δ-quasi-monotone

with
∑
nBnXn convergent and |∆λn| ≤ |Bn| for all n. If the sequence (uαn), defined by

(see [10])

uαn =



∣∣tαn∣∣, α= 1,

max
1≤v≤n

∣∣tαv∣∣, 0<α< 1,
(2.1)

satisfies the condition

m∑
n=1

nβk−1(uαn)k =O(Xm) as m �→∞, (2.2)

then the series
∑
anλn is summable |C,α;β|k, k≥ 1 and 0≤ β <α≤ 1.

Theorem 2.2. Let (Xn) be an almost increasing sequence and λn → 0 as n → ∞.

Suppose that there exists a sequence of numbers (Bn) such that it is δ-quasi-monotone

with
∑
nBnXn convergent and |∆λn| ≤ |Bn| for all n. If (pn) is a sequence such that

∞∑
n=v+1

(
Pn
pn

)βk−1 1
Pn−1

=O
{(

Pv
pv

)βk 1
Pv

}
,

m∑
n=1

(
Pn
pn

)βk−1∣∣tn∣∣k =O(Xm) as m �→∞,

m∑
n=1

(
Pn
pn

)βk 1
n
∣∣tn∣∣k =O(Xm) as m �→∞,

m∑
n=1

∣∣λn∣∣
n

=O(1) as m �→∞,

(2.3)

then the series
∑
anλn is summable |N̄,pn;β|k for k≥ 1 and 0≤ β < 1/k.

We need the following lemmas for the proof of our theorems.

Lemma 2.3 (see [5]). If 0<α≤ 1 and 1≤ v ≤n, then

∣∣∣∣∣
v∑
p=0

Aα−1
n−pap

∣∣∣∣∣≤ max
1≤m≤v

∣∣∣∣∣
m∑
p=0

Aα−1
m−pap

∣∣∣∣∣. (2.4)

Under the conditions of Theorem 2.2 we obtain the following result.

Lemma 2.4. The following equation holds:

∣∣λn∣∣Xn =O(1) as n �→∞. (2.5)
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Proof. Since λn→ 0 as n→∞, we have

∣∣λn∣∣Xn =Xn
∣∣∣∣∣

∞∑
v=n

∆λv

∣∣∣∣∣≤Xn
∞∑
v=n

∣∣∆λv∣∣≤
∞∑
v=0

Xv
∣∣∆λv∣∣≤

∞∑
v=0

Xv
∣∣Bv∣∣<∞. (2.6)

Hence |λn|Xn =O(1) as n→∞.

3. Proof of Theorem 2.1. Let (Tαn ) be the nth (C,α), with 0 < α ≤ 1, mean of the

sequence (nanλn). Then, by (1.1), we have

Tαn =
1
Aαn

n∑
v=1

Aα−1
n−vvavλv. (3.1)

Applying Abel’s transformation, we get

Tαn =
1
Aαn

n−1∑
v=1

∆λv
v∑
p=1

Aα−1
n−ppap+

λn
Aαn

n∑
v=1

Aα−1
n−vvav, (3.2)

so that making use of Lemma 2.3, we have

∣∣Tαn ∣∣≤ 1
Aαn

n−1∑
v=1

∣∣∆λv∣∣
∣∣∣∣∣

v∑
p=1

Aα−1
n−ppap

∣∣∣∣∣+
∣∣λn∣∣
Aαn

∣∣∣∣∣
n∑
v=1

Aα−1
n−vvav

∣∣∣∣∣
≤ 1
Aαn

n−1∑
v=1

Aαvuαv
∣∣∆λv∣∣+∣∣λn∣∣uαn

= Tαn,1+Tαn,2.

(3.3)

Since ∣∣Tαn,1+Tαn,2∣∣k ≤ 2k
(∣∣Tαn,1∣∣k+∣∣Tαn,2∣∣k), (3.4)

to complete the proof of Theorem 2.1, it is enough to show that

∞∑
n=1

nβk−1
∣∣Tαn,r∣∣k <∞ for r = 1,2. (3.5)

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1/k+1/k′ =
1, we get

m+1∑
n=2

nβk−1
∣∣Tαn,1∣∣k

≤
m+1∑
n=2

nβk−1(Aαn)−k
{ n−∑
v=1

Aαvuαv
∣∣Bv∣∣

}k
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≤
m+1∑
n=2

nβk−1(Aαn)−k
{n−1∑
v=1

(
Aαv
)k(uαv)k∣∣Bv∣∣

}{n−1∑
v=1

∣∣Bv∣∣
}k−1

=O(1)
m+1∑
n=2

nβk−αk−1

{n−1∑
v=1

vαk
(
uαv
)k∣∣Bv∣∣

}

=O(1)
m∑
v=1

vαk
(
uαv
)k∣∣Bv∣∣

m+1∑
n=v+1

1
n1+αk−βk

=O(1)
m∑
v=1

vαk
(
uαv
)k∣∣Bv∣∣

∫∞
v

dx
x1+αk−βk

=O(1)
m∑
v=1

vβk
(
uαv
)k∣∣Bv∣∣=O(1)

m∑
v=1

v
∣∣Bv∣∣vβk−1(uαv)k

=O(1)
m−1∑
v=1

∆
(
v
∣∣Bv∣∣)

v∑
r=1

rβk−1(uαr )k+O(1)m∣∣Bm∣∣
m∑
v=1

vβk−1(uαv)k

=O(1)
m−1∑
v=1

∣∣∆(v∣∣Bv∣∣)∣∣Xv+O(1)m∣∣Bm∣∣Xm

=O(1)
m−1∑
v=1

v
∣∣Bv∣∣Xv+O(1)

m−1∑
v=1

(v+1)
∣∣Bv+1

∣∣Xv+1+O(1)m
∣∣Bm∣∣Xm

=O(1) as m �→∞,
(3.6)

by virtue of the hypotheses of Theorem 2.1.

Finally, since |λn| =O(1), by hypothesis

m∑
n=1

nβk−1
∣∣Tαn,2∣∣k =

m∑
n=1

∣∣λn∣∣k−1nβk−1(uαn)k

=O(1)
m∑
n=1

∣∣λn∣∣nβk−1(uαn)k
∞∑
v=n

∣∣∆λv∣∣

=O(1)
∞∑
v=1

∣∣∆λv∣∣
v∑
n=1

nβk−1(uαv)k

=O(1)
∞∑
v=1

∣∣Bv∣∣Xv <∞,

(3.7)

by virtue of the hypotheses of Theorem 2.1.

Therefore, we get

m∑
n=1

nβk−1
∣∣Tαn,r∣∣k =O(1) as m �→∞, for r = 1,2. (3.8)

This completes the proof of Theorem 2.1.

Remark 3.1. It is natural to ask whether our theorem is true with α > 1. All we

can say with certainty is that our proof fails if α> 1, for our estimate of Tαn,1 depends

upon Lemma 2.3, and Lemma 2.3 is known to be false when α> 1 (see [5] for details).
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Proof of Theorem 2.2 . Let (Tn) denotes the (N̄,pn)mean of the series
∑
anλn.

Then, by definition and changing the order of summation, we have

Tn = 1
Pn

n∑
v=0

pv
v∑
i=0

aiλi = 1
Pn

n∑
v=0

(
Pn−Pv−1

)
avλv. (3.9)

Then, for n≥ 1, we have

Tn−Tn−1 = pn
PnPn−1

n∑
v=1

Pv−1avλv = pn
PnPn−1

n∑
v=1

Pv−1λv
v

vav. (3.10)

By Abel’s transformation, we have

Tn−Tn−1 = n+1
nPn

pntnλn− pn
PnPn−1

n−1∑
v=1

pvtvλv
v+1
v

+ pn
PnPn−1

n−1∑
v=1

Pv∆λvtv
v+1
v

+ pn
PnPn−1

n−1∑
v=1

Pvtvλv+1
1
v

= Tn,1+Tn,2+Tn,3+Tn,4.

(3.11)

Since

∣∣Tn,1+Tn,2+Tn,3+Tn,4∣∣k ≤ 4k
(∣∣Tn,1∣∣k+∣∣Tn,2∣∣k+∣∣Tn,3∣∣k+∣∣Tn,4∣∣k), (3.12)

to complete the proof of Theorem 2.2, it is enough to show that

∞∑
n=1

(
Pn
pn

)βk+k−1∣∣Tn,r∣∣k <∞ for r = 1,2,3,4. (3.13)

Since (λn)→ 0 as n→∞ by the hypothesis of Theorem 2.2, we have

m∑
n=1

(
Pn
pn

)βk+k−1∣∣Tn,1∣∣k =O(1)
m∑
n=1

(
Pn
pn

)βk−1∣∣λn∣∣k−1∣∣λn∣∣∣∣tn∣∣k

=O(1)
m∑
n=1

∣∣λn∣∣
(
Pn
pn

)βk−1∣∣tn∣∣k

=O(1)
m−1∑
n=1

∆
∣∣λn∣∣

n∑
v=1

(
Pv
pv

)βk−1∣∣tv∣∣k

+O(1)
∣∣λm∣∣

m∑
n=1

(
Pn
pn

)βk−1∣∣tn∣∣k

=O(1)
m−1∑
n=1

∣∣∆λn∣∣Xn+O(1)∣∣λm∣∣Xm

=O(1)
m−1∑
n=1

∣∣Bn∣∣Xn+O(1)∣∣λm∣∣Xm =O(1) as m �→∞,

(3.14)

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.
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Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1/k+
1/k′ = 1, as in Tn,1, we have

m+1∑
n=2

(
Pn
pn

)βk+k−1∣∣Tn,2∣∣k =O(1)
m+1∑
n=2

(
Pn
pn

)βk−1 1
Pn−1

{n−1∑
v=1

pv
∣∣λv∣∣k∣∣tv∣∣k

}

×
{

1
Pn−1

n−1∑
v=1

pv

}k−1

=O(1)
m∑
v=1

pv
∣∣λv∣∣k−1∣∣λv∣∣∣∣tv∣∣k

m+1∑
n=v+1

(
Pn
pn

)βk−1 1
Pn−1

=O(1)
m∑
v=1

(
Pv
pv

)βk−1∣∣tv∣∣k∣∣λv∣∣=O(1) as m �→∞.

(3.15)

Again, we have

m+1∑
n=2

(
Pn
pn

)βk+k−1∣∣Tn,3∣∣k =O(1)
m+1∑
n=2

(
Pn
pn

)βk−1 1
Pn−1

{n−1∑
v=1

Pv
∣∣Bv∣∣∣∣tv∣∣k

}

×
{

1
Pn−1

n−1∑
v=1

Pv
∣∣Bv∣∣

}k−1

=O(1)
m∑
v=1

Pv
∣∣Bv∣∣∣∣tv∣∣k

m+1∑
n=v+1

(
Pn
pn

)βk−1 1
Pn−1

=O(1)
m∑
v=1

∣∣Bv∣∣
(
Pv
pv

)βk∣∣tv∣∣k

=O(1)
m∑
v=1

v
∣∣Bv∣∣

(
Pv
pv

)βk 1
v
∣∣tv∣∣k

=O(1)
m−1∑
v=1

∆
(
v
∣∣Bv∣∣)

v∑
i=1

(
Pi
pi

)βk 1
i
∣∣ti∣∣k

+O(1)m
∣∣Bm∣∣

m∑
v=1

(
Pv
pv

)βk 1
v
∣∣tv∣∣k

=O(1)
m−1∑
v=1

∣∣∆(v∣∣Bv∣∣)∣∣Xv+O(1)m∣∣Bm∣∣Xm

=O(1)
m−1∑
v=1

vXv
∣∣Bv∣∣+O(1)

m−1∑
v=1

(v+1)
∣∣Bv+1

∣∣Xv+1

+O(1)m
∣∣Bm∣∣Xm

=O(1) as m �→∞,

(3.16)

by virtue of the hypotheses of Theorem 2.2.
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Finally, we have

m+1∑
n=2

(
Pn
pn

)βk+k−1∣∣Tn,4∣∣k =O(1)
m+1∑
n=2

(
Pn
pn

)βk−1 1
Pn−1

n−1∑
v=1

Pv

∣∣λv+1

∣∣
v

∣∣tv∣∣k

×
{

1
Pn−1

n−1∑
v=1

Pv

∣∣λv+1

∣∣
v

}k−1

=O(1)
m∑
v=1

Pv

∣∣λv+1

∣∣
v

∣∣tv∣∣k
m+1∑
n=v+1

(
Pn
pn

)βk−1 1
Pn−1

=O(1)
m∑
v=1

∣∣λv+1

∣∣( Pv
pv

)βk 1
v
∣∣tv∣∣k

=O(1)
m−1∑
v=1

∆
∣∣λv+1

∣∣ v∑
r=1

(
Pr
pr

)βk 1
r
∣∣tr∣∣k (3.17)

+O(1)
∣∣λm+1

∣∣ m∑
v=1

(
Pv
pv

)βk 1
v
∣∣tv∣∣k

=O(1)
m−1∑
v=1

∣∣∆λv+1

∣∣Xv+1+O(1)
∣∣λm+1

∣∣Xm+1

=O(1)
m−1∑
v=1

∣∣Bv+1

∣∣Xv+1+O(1)
∣∣λm+1

∣∣Xm+1

=O(1) as m �→∞,

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.

Therefore, we get

m∑
n=1

(
Pn
pn

)βk+k−1∣∣Tn,r∣∣k =O(1) as m �→∞, for r = 1,2,3,4. (3.18)

This completes the proof of Theorem 2.2.

If we take pn = 1 for all values of n in this theorem, then we get a result concerning

the |C,1;β|k summability factors.
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