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ON AN APPLICATION OF ALMOST INCREASING SEQUENCES
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ABSTRACT. Using an almost increasing sequence, a result of Mazhar (1977) on |C,1|; sum-
mability factors has been generalized for |C,o; Bl and |N,py;Bl; summability factors

under weaker conditions.
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1. Introduction. A sequence of (b,) of positive numbers is said to be §-quasi-
monotone, if b,, — 0, b,, > 0 ultimately and Ab,, > —,, where (§,) is a sequence
of positive numbers (see [2]). Let > a, be a given infinite series with (s,) as the
sequence of its nth partial sums. Let o and t5 denote the nth (C,«) means of the

sequences (s,) and (na,), respectively, that is,
1 n
oy = Ax > AXTLSy,
nv=0
1 n
t% = Ax z A%:ivavs
An v=1

where
A¥=0(n%), a>-1, Af=1, A%, =0, forn>D0.

The series > a,, is said to be summable |C, x|, k > 1 and « > —1, if (see [6])

Me

(o)
1
o —op = Y et <o,

n=1 n=1

and it is said to be summable |C,;B|;, k=1, x> —1 and B = 0, if (see [7])

0 0
> ool [f = ¥ P < oo
n=1 n=1

Let (py) be a sequence of positive numbers such that
n
Pp=> py—o asn—ow, Pi=p_;=0,i=1.
v=0
The sequence-to-sequence transformation

1z
Tn:szvsv

ny=0

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)


http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com

8 HUSEYIN BOR

defines the sequence (T,) of the Riesz mean or simply the (N,p,) mean of the
sequence (s,), generated by the sequence of coefficients (p,) (see [8]).
The series > a, is said to be summable |N, py |y, k > 1, if (see [3])

® k-1
S (&) | AT ¥ < w, (1.8)
n=1 Pn
and it is said to be summable |N,py;Bli, k=1, and B = 0, if (see [4])
) Bk+k-1
D (5—") | ATy |¥ < oo, (1.9)
n= n

where

ATnfl

P , > 1. 1.10
PnPn o Z v-1dy, N = ( )

In the special case when B = 0 (resp., p,, = 1 for all values of n), |N, py; Bl;, summability
is the same as [N, py|; (resp., |C,1;Bl,) summability.

Also it is known that |C,o;8l, and |N,py;Bl, summabilities are, in general,
independent of each other.

Mazhar [9] has proved the following theorem for |C,1|; summability factors of
infinite series.

THEOREM 1.1 (see [9]). Let A,, — 0 as n — . Suppose that there exists a sequence
of numbers (B,) such that it is §-quasi-monotone with > nd,logn < oo, > Bylogn is
convergent and |AA,| < |By| for all n. If

ltn|k=0(logm) asm — o, (1.11)

Mz
S|=

n=1

where (t,) is the nth (C,1) mean of the sequence (nay), then the series > ayA, is
summable |C,1|y, k = 1.

REMARK 1.2. It should be noted that the condition “> nB,logn is convergent”
is enough to prove Theorem 1.1 rather than the conditions “> né,logn < « and
> Buplogn is convergent.”

2. The main result. In view of Remark 1.2, the aim of this paper is to generalize
Theorem 1.1 for |C, &; Bl; and |N, py; Bl; summabilities under weaker conditions. For
this we need the concept of almost increasing sequence. A positive sequence (d,) is
said to be almost increasing if there exists a positive increasing sequence (c,) and
two positive constants A and B such that Ac, < d,, < Bc, (see [1]). Obviously, every
increasing sequence is almost increasing but the converse need not be true as can be
seen from the example d,, = ne!~1". Since logn is increasing, we are weakening the
hypotheses of the theorem replacing the increasing sequence by an almost increasing
sequence.
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Now, we prove the following theorems.

THEOREM 2.1. Let (X,) be an almost increasing sequence and A, — 0 as n — oo.
Suppose that there exists a sequence of numbers (B,,) such that it is 6-quasi-monotone
with Y. nBn, X, convergent and |AA,| < |By| for all n. If the sequence (u%), defined by
(see [10])

[t5], x=1,
us = 2.1)
" | max [t&], 0<a&<]1,
l<sv=n
satisfies the condition
m
S T () = 0(Xm) asm — o, 2.2)

n=1

then the series >, ay Ay is summable |C,o; B, k=1 and0 < B <x<1.

THEOREM 2.2. Let (X;,) be an almost increasing sequence and A,, — 0 as n — oo.
Suppose that there exists a sequence of numbers (B, ) such that it is 6-quasi-monotone
with > nB, X, convergent and |AAy| < |By,| for all n. If (py,) is a sequence such that

00

2 o) s
Pn Pnfl Pv Pv ’

n=v+l

n=1
(2.3)
m
Z (P—"> l|tn|k =0(Xy) asm — oo,
n=1 \Pn n
m
> [An] =0(1) asm — oo,
n=1 n
then the series Y an Ay is summable |N,py;Bl; fork=1and0 < B <1/k.
We need the following lemmas for the proof of our theorems.
LEMMA 2.3 (see [5]). IfO<x<1landl <v <mn, then
v m
D AnTpap| < max | > Ajhap|. (2.4)
p=0 p=0

Under the conditions of Theorem 2.2 we obtain the following result.

LEMMA 2.4. The following equation holds:

[An|Xn=0() asn— o. (2.5)
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PROOF. Since A,, — 0 as n — o, we have

[

SXp D AN = D X [AN | = D X [By| <. (2.6)
v=n v=0 v=0

|An|Xn:Xn

iMs
>
>

Hence [A,| X, =O(1) as n — oo, O

3. Proof of Theorem 2.1. Let (T%) be the nth (C,«), with 0 < @ < 1, mean of the
sequence (na,Ay). Then, by (1.1), we have

n - zx ZAn vvav v (3-1)
Applying Abel’s transformation, we get
n An Z A)\U z An ppal’) Z An vvavy (32)

so that making use of Lemma 2.3, we have

n-1

v A n B
151 = 4 3 10| 3 aihpay |+ 5| S agdva,
v=1 p=1 noly=1
n-l (3.3)
Y3 Z Aff(umA/\v | + |An|“1o{
ny=1
= T‘V‘i‘,l + T‘YOL(,Z
Since
k k k
| Ty + Tz | S2k<|:rr?(,1| + [ Taz | )v (3.4)
to complete the proof of Theorem 2.1, it is enough to show that
S Pl Te | <o forr=1,2. (3.5)
n=1

Now, when k > 1, applying Holder’s inequality with indices k and k', where 1/k+1/k’ =
1, we get

m+1

_ k
Z"Bk 1|T1§i(,1|

n=2

m+1 k
<z 5k1Ao< {ZAo( 0‘|Bv|}

n=2 v=1
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m+1

11
=S nﬂk*(A:’;)‘k{E (A
n=2

k-1
w1, 1{}'S 15,1}
v=1 v=1
m+1 -1
=0(1) > an"‘kl{ S vk (u)* B, I}
v=1

> IR L NI S—

1+ok—Bk
n=v+l n

m [
k dx
=0(1) Zlv"‘k(uff) ‘BU{L Tk BK
oo
=0(1) > vF*(ug |Bv|=O(l)Zv|Bv|v[‘k’1(u§’,‘)
v=1 =
m-1
=0(1) > A(W|By]) Zer Lu)*+0(1)m|Bm| Zvﬂk L(ugk
v=1 v=1
m-1
=0(1) [A(V|By|) | Xy +O(1)m| B | X
v=1
-1

:O(l)

v=1
as m — oo

V[By Xy +0(1) D (v+1)|Byi1| Xps1 +O(1)m | By | Xm

by virtue of the hypotheses of Theorem 2.1
Finally, since [A,|

(3.6)
0O(1), by hypothesis
< k< k-1 k
D T [T = 3 AT P ()
n=1 n=1
_0(1)z|2\ [ nPk=1(u z |AA, |
i } o 3.7)
=0(1) D |AA, | > nfEt(ul
v=1 n=1

=0(1) > |By| Xy <0

v=1
by virtue of the hypotheses of Theorem 2.1
Therefore, we get

m
> nfEt n,r1k=0(1) asm — oo, forr =12
n=1

(3.8)
This completes the proof of Theorem 2.1

O
can say with certainty is that our proof fails if & > 1, for our estimate of T,5; depends

REMARK 3.1. It is natural to ask whether our theorem is true with « > 1. All we
upon Lemma 2.3, and Lemma 2.3 is known to be false when « > 1 (see [5] for details)
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PROOF OF THEOREM 2.2 . Let (T,) denotes the (N, p,) mean of the series > a,Ay.
Then, by definition and changing the order of summation, we have

1 n v 1 n
Tn:?vaZ Ai = ?z —Py1 av/\v (3.9)
ny=0 i=0 v=0
Then, for n > 1, we have

14 n P 1)\
_ n v-10\p
Z Py_iayAy = PPy Z " vay. (3.10)

v=1

Tn - Tn—l =

PnPn 1

v=1

By Abel’s transformation, we have

n+1 v+1
Tn—Th-1= nP pntn n— PnPn | Z PotvAdy ——
v+1 1 (3.11)
PyAAE Pyt,A
PnPnlzv viv PnPnlz viv v+1v
:Tn’1+Tn’2+Tn,3+Tn’4.
Since

k k k k k

| Ty + Tpo+Tpz+Tnal|” <4(|Tua |+ | Tn2 "+ | Tuz|® + [ Tual"), (3.12)

to complete the proof of Theorem 2.2, it is enough to show that
© p o\ Bkek-1 .
> (—") [Ty | <o forvr=1,2,3,4. (3.13)
n1 \Pn

Since (A,) — 0 as n — o by the hypothesis of Theorem 2.2, we have

m — m —
P Bk+k—-1 P Bk-1 B

> () |Tn,1|":o<1>z(;") a2 ]
n — n

Bk-1
n|( ) ta]*
Pn

+0(1)|A Z( ) |tn|k

m-—
Z |AAn | X +O (1) | A | Xim

m-—

Z 2 | X +O(1) | A | Xim = 0(1) as m — oo,

(3.14)

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.
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Now, when k > 1, applying Holder’s inequality with indices k and k’, where 1/k +
1/k’ =1, as in Ty,1, we have

m+1(Pn>[3k+k1|Tn‘2|kzo(l)1§:(z>ﬁklpn {ZPU|A | ™ }

v=1

v N N (3.15)
_ " P -1
:O(I)va|?\v|kl|?\v\|tv|k D (i) .
v=1 n-v+1 \Pn n-1
< (P
=o<1)z(—) 10 1%Ap| =O(1) asm — w.
v=1 Pv
Again, we have
m+1 P Bk+k-1 m+1 Bk—-1 1 n-1 r
() Tl —0(1>Z( ) 5 {va|3v||tv|}
n=2 Pn n-1 Ly-1
1 n-1 k-1
P,|B
{P” vzl v| ! }
m+1 Bk—1
P 1
:0(1)213 By |t ]* S (—”)
v=1 ’ " ! n=v+1 Pn Pn—l
2 P
—om Y 1B |(12) Il
v=1 Pv
m Bkl
-0 Y vlB| (5e) el
Pv v
v o p ) (3.16)
1)ZA |By |) Z(J) =k
i Pi/ L
P, \Fk1
+0(1)m|Bm\Z( ) L1k
v=1 v v

m-1
=0(1) > |A(W][By )| Xo +O(1)M | B | X

m-1 m-1
=0(1) > vXy|By | +0(1) > (v+1)|Bus1|Xpi1

v=1 v=1

+0(1)m|By | Xm

=0(1) asm — oo,

by virtue of the hypotheses of Theorem 2.2.
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Finally, we have

m+1 Bk+k-1 m+1 Bk—1 n-1
P, p 1 A
S () maltcom Y ()7 L s e Realy
n

n=2 \Pn n=2 \P Pr v=1
_ k-1
1 = |)\v+l|
X — pP,———
{Pnl Ugl v

m+1

m k-1
_ Avar ],k (&)ﬁ 1
=0(1) > P, . [t |5 > P

v=1 n-vs1 \Pn

N P, \F*1
=0() > |Am|(—“) ~ |ty |*
Pv

v=1 v
m-1 v Bk
P, \Pr1
=0) > Aldval > (—*) =1t ¥ (3.17)
v=1 r=1 \Pr L4

< (P, \Pr1
O A | Y () el
v=1 \Pv v

m-1

:O(l) Z |AAv+1|Xv+1 +O(l)|/\m+1|Xm-¢—1
v=1
m-1

=0(1) Z |Byi1| Xos1+O0 (1) [Ams1 | Ximsa
v=1

=0(1) asm — oo,

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.
Therefore, we get

m P Bk+k—-1 k
> (f) | Tny|"=0(1) asm — o, forr=1,2,3,4. (3.18)
— n

This completes the proof of Theorem 2.2. O

If we take p, = 1 for all values of n in this theorem, then we get a result concerning
the |C, 1; B|x summability factors.
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