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Abstract. We use Kenderov-Moors characterization of fragmentability to show that if
a compact Hausdorff space X with the tree-completeness property contains a disjoint
sequences of clopen sets, then (C(X), weak) is not fragmented by any metric which is
stronger than weak topology. In particular, C(X) does not admit any equivalent locally
uniformly convex renorming.
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1. Introduction. Let (X,τ) be a topological space and ρ a metric on X. Given ε > 0,

a nonempty subset A of X is said to be fragmented by ρ down to ε if each nonempty

subset of A has a nonempty τ-relatively open subset of A with ρ-diameter less than ε.
The set A is said to be fragmented by ρ if A is fragmented by ρ down to ε for each

ε > 0. The set A is said to be sigma-fragmented by ρ [7] if for each ε > 0, A can be

expressed as A=⋃∞n=1An,ε with each An,ε fragmented by ρ down to ε.
The notion of fragmentability was originally introduced in [11] as an abstraction

of phenomena often encountered, for example, in Banach spaces with the Radon-

Nikodym property, in weakly compact subsets of Banach spaces and in the dual of

Banach spaces. The notion of σ -fragmentability appeared in [10] in order to extend

the study of compact fragmented space to noncompact spaces. It turns out that the

question of whether a given Banach space with weak topology is sigma-fragmented

by the norm is closely connected with the question of the existence of an equivalent

Kadec and locally uniformly convex norm. The reader may refer to [6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20] for some application of fragmentability and its

variants in other topics of Banach spaces.

Kenderov and Moors [13, 14] used the following topological game to characterize

fragmentability and sigma-fragmentability of a topological space X.

Two players Σ and Ω alternatively select subsets of X. The player Σ usually starts

the game by choosing some nonempty subset A1 of X, then the Ω-player chooses

some nonempty relatively open subset A1, say B1, then Σ will choose a nonempty set

A2 ⊂ B1 and in turn, Ω picks up some nonempty relatively open subset B2 of A2. By

continuing this procedure, the two players generate a sequence of sets

A1 ⊃ B1 ⊃ ··· ⊃An ⊃ Bn ⊃ ··· (1.1)

which is called a play and is denoted by p = (Ai,Bi)∞i=1. If

pk =
(
A1,B1, . . . ,Ak

)
(1≤ k≤n) (1.2)

are the first “n” move of some play (of the game), then we call pk a partial play of
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the game. The player Ω is said to have won the play if
⋂∞
i=1Ai contains at most one

point. Otherwise the player Σ is said to have won this play. Under the term strategy

for the player Ω, we understand a mapping ω which assigns to every partial play pn
a nonempty relatively open subset Bn =ω(pn) of An. The play (Ai,Bi)∞i=1 is called an

ω-play if Bi =ω(pi) for every i ≥ 1. Similarly, the partial play pn is called a partial

ω-play, if Bi =ω(pi) for each i < n. The map ω is called a winning strategy for the

playerΩ if he/she wins everyω-play. If the space X is fragmentable by a metric d(·,·),
thenΩ has an obvious winning strategyω. Indeed, to each partial play pn this strategy

puts into correspondence some nonempty subset Bn ⊂An which is relatively open in

An and has d-diameter less than 1/n. Clearly, the set
⋂
i≥1Ai =

⋂
i≥1Bi has at most

one point because it has d-diameter 0. It turns out that the existence of a winning

strategy for player Ω characterizes fragmentability.

Theorem 1.1 (see [13]). The topological space X is fragmentable if and only if the

player Ω has a winning strategy.

By Theorem 1.1, it was shown in [15] that X/c0, where X is the Haydon-Zizler sub-

space of �∞ [5] is not fragmented by any metric. According to a result of Ribarska

[18], if a Banach space admits an equivalent strictly convex renorming, then it is frag-

mented by a metric. It follows that X/c0 does not admit strictly convex renorming.

This could be considered as an extension of [1].

Although �∞ taken with its weak topology is not sigma-fragmented by the norm,

it is fragmented by a lower semi-continuous metric (see [9, Example 3.2]). However,

in [14], it is shown that fragmentability and sigma-fragmentability in a Banach space

may be related to each other in the following way.

Theorem 1.2 (see [14, Theorems 1.3, 1.4, and 2.1]). For a Banach space X the

following are equivalent:

(i) (X, weak) is sigma-fragmented by a metric which is stronger than the weak

topology;

(ii) (X, weak) is fragmented by a metric which is stronger than the weak topology;

(iii) there exists a strategy ω for the player Ω such that, for every ω-play p =
(Ai,Bi)i either

⋂
i≥1Bi =∅ or limi→∞ norm-diam(Bi)= 0.

It is known that wheneverX is compact and extremely disconnected, then C(X) con-

tains an isometric copy of �∞ (see [2, page 18]), therefore it is not sigma-fragmented

by the norm. However, there exists a compact Hausdorff space X (with the tree com-

pleteness property) such that C(X) does not contain a copy of �∞ (see [4]). It is natural

to ask if such a space is sigma-fragmented by the norm. The above result enable us

to give an answer to this question. More precisely, thanks to Theorem 1.2, we will

show that if a compact Hausdorff space X with the tree-completeness property has a

sequence of disjoint clopen sets, then (C(X), weak) is not (sigma) fragmented by any

metric which is stronger than the weak topology. It follows that C(X) does not admit

any equivalent locally uniformly convex norm.

2. Results. Let T = ⋃∞
k=0{0,1}k. The elements of T , are finite (possibly empty)

strings of 0’s and 1’s. The empty string ( ) is the unique string of length 0; more
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generally, the length |t| of a string t is n if t ∈ {0,1}n. The tree-order is defined by

s ≺ t if |s| < |t| and t(m) = s(m) for m ≤ |s|. Each t ∈ T has exactly two immediate

successors, that is, t0 and t1.

A topological space X is said to have the tree-completeness property if whenever

{Vt}t∈T is a sequence of disjoint clopen sets in X there exists some b ∈ {0,1}N∗ ,

N∗ = N∪{0}, such that
⋃
n∈N∗ Vb|n is open. Evidently, every infinite extremally dis-

connected space [3] has the tree-completeness property. However, as it was mentioned

in Section 1, there exists a compact Hausdorff space with the tree-completeness prop-

erty which is not extremally disconnected.

Definition 2.1. A subset Y of a compact Hausdorff space X is C∗-embedded [3]

in X if every function in C(Y) can be extended to a function in C(X).

Lemma 2.2. Let {Nt}t∈T be a sequence of infinite subsets of N , such that

(i) Nt ⊂Ns , whenever s ≺ t.
(ii) Nt∩Ns =∅, if t and s are not comparable.

Let {Vn}n∈N∗ be a sequence of clopen subsets of a compact Hausdorff space X, such

that
⋃
k∈Nt Vk is open for each t ∈ T . If X has the tree-completeness property, then there

exists some b ∈ {0,1}N∗ , such that
⋃∞
n=0(X \∪k∈Nb|nVk) is C∗-embedded.

Proof. Let

Z( ) =X \∪k∈N( )Vk, Zti =
(
X \∪k∈NtiVk

)\
⋃
s
t
Zs, (2.1)

for i = 0,1 and t ∈ T . Then {Zt}t∈T is a sequence of disjoint clopen subsets of X. By

the tree-completeness property of X, there exists some b ∈ {0,1}N∗ , such that

⋃

n∈N∗
Zb|n =

⋃

n∈N∗

(
X \∪k∈Nb|nVk

)
(2.2)

is clopen in X, thus it is C∗-embedded.

Lemma 2.3. Let {Vn}n∈N be an infinite disjoint sequence of clopen subsets of a com-

pact Hausdorff space X and µ ∈ C(X)∗, where X has the tree-completeness property.

Then there exists an infinite set N1 ⊂ N , such that ∪n∈N1Vn is clopen subset of X and

|µ(f)|< ε, whenever supp(f )⊂∪n∈N1Vn and ‖f‖ ≤ 2.

Proof. Suppose that 2‖µ‖<nε. Note that for every infinite subset M of N , there

exists some infinite subset M1 of M such that ∪n∈M1Vn is clopen.

If the lemma were not true, we can find infinite disjoint subsetsM1, . . . ,Mn of N and

continuous functions f1, . . . ,fn such that

supp
(
fi
)⊂∪n∈MiVn(clopen), ‖fi‖ ≤ 2, µ

(
fi
)≥ ε. (2.3)

Put f = ∑n
i=1fi, since fi’s have disjoint support, we have ‖f‖ ≤ 2, but µ(f) =∑n

i=1µ(fi)≥nε. This is a contradiction.

Theorem 2.4. Let X be a compact Hausdorff space with the tree-completeness prop-

erty. If X contains a disjoint sequence of clopen sets. Then (C(X),weak) is not (sigma)

fragmented by any metric which is stronger than weak topology.
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Proof. By Theorem 1.2, it is enough to show that for each strategy ω for the

player Ω there exists an ω-play p = (Ai,Bi)i such that,
⋂
i≥1Bi ≠∅ and limi→∞ norm-

diam(Bi) > 0. Fix a strategy ω for the player Ω. By induction on |t|, t ∈ T , we will

construct partial ω-plays pt = (A( ),B( ),At|1, . . . ,At). Then, we will show that there

is some b ∈ {0,1}N∗ , such that the ω-play pb = (A( ),B( ),Ab|1, . . .) has the required

properties.

Let {Vn}n∈N be an infinite disjoint sequence of nonempty clopen subsets of X. Let

N( ) be an infinite subset of N such
⋃
n∈N( ) Vn is a clopen subset of X. For some f( )

in the unit ball of C(X), we define

A( ) =

f : ‖f‖ ≤ 1, f (x)= f( )(x) for x ∈X\

⋃
n∈N( )

Vn


 (2.4)

as the first choice of the player Σ. Therefore, we have the partial ω-play p( ) = (A( )),
clearly norm-diam(A( )) = 1. Suppose that for every t with |t| ≤ n, the partial ω-

play pt = (A( ),B( ),At|1,Bt|1, . . . ,At) has already been defined. Let Bt =ω(pt) be the

relatively open subset of At , chosen by the player Ω according to his/her strategy as

the answer to this movement. Let f ′t ∈ Bt , since Bt is a relatively open subset of At ,
there are linear functionals µt1, . . . ,µ

t
Kt on C(X) and εt > 0, such that

{
f ∈At : ‖f‖ ≤ 1,

∣∣µti
(
f −f ′t

)∣∣< εt, 1≤ i≤Kt
}⊂ Bt. (2.5)

Applying Lemma 2.3, we can find an infinite subset N′t of Nt , such that
⋃
n∈N′t Vn is

clopen and

∣∣µti (f )
∣∣< εt whenever supp(f )⊂

⋃

n∈N′t

Vn, ‖f‖ ≤ 2 for 1≤ i≤Kt. (2.6)

Suppose thatNt0 andNt1 are two disjoint infinite subset ofN′t , such that each
⋃
n∈Nti Vn

is clopen, i= 0,1. Let fti = f ′t .χX\⋃n∈Nti Vn and define

Ati =

f ∈At : f(x)= fti(x) for x ∈X \

⋃
n∈Nti

Vn


 (i= 0,1). (2.7)

Then At0 and At1 are subsets of Bt with norm diameter 1 and we have the partial

ω-plays

pti =
(
A( ),B( ),At|1,Bt|1, . . . ,At,Bt,Ati

)
(i= 0,1). (2.8)

Thus, by induction on |t|, we proved that, there are partial ω-plays

pt =
(
A( ),B( ), . . . ,At

)
, (t ∈ T), (2.9)

such that the following conditions hold:

(i) At is of the form

f : ‖f‖ ≤ 1, f (x)= ft(x) for x ∈X \

⋃
n∈Nt

Vn


, (2.10)

(ii) for each Nt ,
⋃
n∈Nt Vn is clopen,
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(iii) Nt ⊂Ns , when s ≺ t,
(iv) Nt∩Ns =∅, when s and t are not comparable,

(v) norm-diam(At)= 1 for each t ∈ T ,

(vi) ft(x)= fti(x) for x ∈X \⋃n∈Nt Vn and i= 0,1.

Applying Lemma 2.2, we can find some b ∈ {0,1}N∗ , such that every continuous

function on
⋃
n∈N∗(X \

⋃
k∈Nb|n Vk) has a continuous extension on X. By (vi), the func-

tion f∗b (x) = limn→∞fb|n(x) is continuous on
⋃
n∈N∗(X \

⋃
k∈Nb|n Vk), thus it has a

continuous extension fb on X without increasing norm. Clearly fb ∈
⋂
n∈N∗Ab|n. Thus⋂

Ab|n ≠∅ and limn→∞ norm-diam(Ab|n)= 1, that is, the ω-play pb = (A( ),B( ),Ab|1,
Bb|1, . . .) does not satisfy Theorem 1.2(iii). This proves the theorem.

Corollary 2.5. If a compact Hausdorff spaceX with the tree-completeness property

has an infinite sequence of clopen sets, then C(X) does not admit any equivalent locally

uniformly convex norm.

Proof. It is known that if (C(X), weak) admits an equivalent locally uniformly

convex norm then it is norm-fragmented (see [7, Theorem 4.2]). Thus the result follows

from Theorem 2.4.
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