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1. Introduction. Let

k(s)=
∏P

j=1 Γ
(
pj+αjs

)
∏Q

j=1 Γ
(
qj+βjs

) . (1.1)

Here P and Q are nonnegative integers, pj (1 ≤ j ≤ P), qj (1 ≤ j ≤ Q) are complex

numbers, and αj (1≤ j ≤ P), βj (1≤ j ≤Q) are nonzero complex numbers. Through-

out the present paper an empty product is interpreted as unity and an empty sum

as zero.

Let c be a real number such that c ≠ Re(−pj/αj), for all j with Reαj = 0, and Λc

denote a contour from c−i∞ to c+i∞ not passing through any pole of k(s) and such

that

(1) if Reαj > 0, then all the points

s =−m
αj
− pj
αj

, m= 0,1,2, . . . , (1.2)

are to the left of Λc .

(2) If Reαj < 0, then all the points (1.2) are to the right of Λc .

(3) If Reαj = 0, and Re(−pj/αj) < c, then all the points (1.2) are to the left of Λc .

(4) If Reαj = 0, and Re(−pj/αj) > c, then all the points (1.2) are to the right of Λc .

The authors in [1] introduced the notion of H-function with complex parameters

as a Mellin-Barnes type integral [2] as follows,

HP
Q

(
z,c

∣∣∣∣∣(p,α)P(q,β)Q

)
= 1
2πi

∫
Λc

k(s)z−sds. (1.3)

Here, and elsewhere in this paper, (p,α)P = (p1,α1),(p2,α2), . . . ,(pP ,αP), and simi-

larly for (q,β)Q.
When (α)P and (β)Q are integer vectors, the H-function with complex parameters

reduces to the Meijer G-function (see [4, 11, 12, 13, 14, 15, 16]), and when (α)P and

(β)Q are real vectors, it reduces to the Fox H-function [5, 19]. The G- and H-functions

play an important role in statistics and physical sciences (see [7, 8, 9, 10, 19]).
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In [1], the authors derived necessary and sufficient conditions, under which the

integral (1.3) defining the H-function converges absolutely. The approach in [1] was

based on the following asymptotic expansion of |k(s)|.
Lemma 1.1. For Res ≥ 0, and as |s| →∞,

|k(s)| 	 Y(s)|s|∆0eT(ln|s|)Rese−µ(ln|s|) Imse(Ims)(µ−M−T Args)

×e(Res)[X−L−T−µArgs+(π/2)sign(Ims)(
∑
Reαj=0 Imαj−

∑
Reβj=0 Imβj)]

×
∏Q

j=1
∣∣(1/2)(1+S(βj,s))+(1−S(βj,s))sinπ(qj+βjs)∣∣∏P

j=1
∣∣(1/2)(1+S(αj,s

))+(1−S(αj,s
))
sinπ
(
pj+αjs

)∣∣ ,
(1.4)

where

∆0 =−1
2
(P−Q)+

P∑
j=1

Repj−
Q∑
j=1

Reqj,

µ =
P∑
j=1

Imαj−
Q∑
j=1

Imβj, T =
P∑
j=1

Reαj−
Q∑
j=1

Reβj,

M =
P∑
j=1

[
Arg
(
αj sign

(
Reαj

))
Reαj+

(
ln
∣∣αj
∣∣) Imαj

]

−
Q∑
j=1

[
Arg
(
βj sign

(
Reβj
))
Reβj+

(
ln
∣∣βj∣∣) Imβj

]
,

L=
P∑
j=1

[(
Argαj

)
Imαj−

(
ln
∣∣αj
∣∣)Reαj

]− Q∑
j=1

[(
Argβj

)
Imβj−

(
ln
∣∣βj∣∣)Reβj],

X =π
( ∑
Reαj<0

∣∣ Imαj
∣∣− ∑

Reβj<0

∣∣ Imβj
∣∣)+ π

2

( ∑
Reαj=0

∣∣ Imαj
∣∣− ∑

Reβj=0

∣∣ Imβj
∣∣),

S(α,s)=

−(signImα)signIms, Reα= 0,

signReα, Reα≠ 0,

Y (s)= (2π)(P−Q)/2
∏P

j=1
∣∣αj
∣∣−(1/2)+Repj∏Q

j=1
∣∣βj∣∣−(1/2)+Reqj e

−m(s),

(1.5)

where

m(s)=−π
2
(signIms)

( ∑
Reαj=0

Impj−
∑

Reβj=0
Imqj

)
+
( P∑
j=1

Impj−
Q∑
j=1

Imqj

)
Args

+
∑

Reαj≠0
Arg
(
αj signReαj

)
Impj−

∑
Reβj≠0

Arg
(
βj signReβj

)
Imqj.

(1.6)

Here we write f(z) 	 g(z), as |z| → ∞, α ≤ argz ≤ β, if f(z) = g(z)[1+ o(1)], as
|z| →∞, within the sector α≤ argz ≤ β.
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The following theorem gives the conditions, derived in [1], under which the integral

(1.3) defining the H-function converges absolutely.

Theorem 1.2. If

N =
P∑
j=1

∣∣Reαj
∣∣− Q∑

j=1

∣∣Reβj∣∣, (1.7)

and M , T , and µ are as in Lemma 1.1, then the integral (1.3) converges absolutely if

and only if,

(1) µ = 0, N > 0, and for |argz−M|< (π/2)N , or
(2) µ = 0, N ≥ 0, argz =M±(π/2)N , and ∆c =∆0+cT <−1.
These conditions, naturally, reduce to those of the classical case where the αj ’s and

βj ’s are real. Also in [1] some well-known integrals that are not special cases of the

classical Fox H-function were expressed as H-function with complex parameters.

The present paper is a continuation of the work in [1]. In this paper, we determine

sufficient conditions that enable one to compute the H-function with complex param-

eters (1.3) as a sum of residues at the right or the left poles of k(s)z−s . It should be

mentioned that Braaksma [3] was the first to apply the residue theorem to evaluate

the integral (1.3) in the special case whenαj =±1 and βj =±1. See also [17, 18], where
the residue theorem was used to compute the integral (1.3), with real αj ’s and βj ’s,
for two other contours. It is striking that under some conditions, the H-function with

complex parameters can be computed, in certain annulus of the complex plane, by the

residues at the right poles as well as the residue at the left poles. This phenomenon

has no parallel when the vectors (αj)P and (βj)Q are real vectors. We apply our result

to compute the H-function (1.3) in some particular cases.

2. Evaluation by means of residues. We need the following remark.

Remark 2.1. If w is a complex number, that is, not a zero of sinz, and z0 is the
zero of sinz closest to w, then

|sinw| ≥min
{
1
π
∣∣w−z0∣∣, 1

4

}
e| Imw|. (2.1)

To see this, observe that |sinx| ≥ (2/π)|x|, for all −π/2 ≤ x ≤ π/2. Since z0 is the
zero of sinz closest to w, then necessarily, |Re(w−z0)| ≤π/2, and moreover,

|sinw|2 = ∣∣sin(w−z0)∣∣2 = sin2Re
(
w−z0

)+sinh2 Im(w−z0)

≥
(
2
π

)2
Re2
(
w−z0

)+ Im2 (w−z0)≥ 4
π2

∣∣w−z0∣∣2. (2.2)

If | Imw|> ln2,

|sinw| ≥ |sinhImw| ≥ 1
2

(
e| Imw| −1)= 1

2
e| Imw|(1−e−| Imw|)> 1

4
e| Imw|. (2.3)

If | Imw| ≤ ln2, then (2.2) implies

1
π
∣∣w−z0∣∣e| Imw| ≤ 2

π
∣∣w−z0∣∣≤ |sinw|. (2.4)

Combining (2.3) and (2.4) yields (2.1).
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Let Ωc denote a contour from c−i∞ to c+i∞ not passing through any pole of the

function k(s), defined by (1.1). Denote by PO, (PO)r , and (PO)l the set of poles of k(s),
the set of poles of k(s) that are to the right of Ωc , and the set of poles of k(s) that
are to the left of Ωc , respectively.

Theorem 2.2. Let
∫
Ωc k(s)z

−sds converge absolutely, that is, the conditions of

Theorem 1.2 are satisfied.

(a) If T ≤ 0, then

∫
Ωc
k(s)z−sds =−2πi

∑
sj∈(PO)r

z−sj Res
(
k(s),sj

)
; (2.5)

and in case T = 0, z must also satisfy |z|> exp(−L+2π∑Reαj<0 | Imαj|).
(b) If T ≥ 0, then

∫
Ωc
k(s)z−sds = 2πi

∑
sj∈(PO)l

z−sj Res
(
k(s),sj

)
; (2.6)

and in case T = 0, z must also satisfy |z| < exp(−L+π(∑P
j=1 | Imαj|−

∑Q
j=1 | Imβj|)−

2π
∑

Reαj>0 | Imαj|).
Proof. Making the change of variable s → s−c, one sees that
∫
Ωc
k(s)z−sds = z−c

∫
Ω0
kc(s)z−sds, kc(s)=

∏P
j=1 Γ
(
pj+cαj+αjs

)
∏Q

j=1 Γ
(
qj+cβj+βjs

) , (2.7)

where the contour of integration Ω0 is the horizontal shifting of the contour Ωc by

c units. The poles of kc(s) are precisely the horizontal shifting of the poles of k(s)
by c units, and have the same position with respect to Ω0 as the corresponding poles

of k(s) with respect to Ωc ; and moreover, if s0 is a pole of k(s), then Ress=s0 k(s) =
Ress=s0−c kc(s). Thus, without a loss of generality we may assume that c = 0.

We construct a family of circles with centers at the origin and whose radii Rr ap-

proaching infinity. Moreover, we insure that the family stays a positive distance away

from the set PO. The poles of k(s) are lying on finitely many half-lines, and equidis-

tant on each of these half-lines. Let l1, l2, . . . , lJ be those half-lines. Note that J ≤ P .
Let zi and yi be the initial point and the distance between consecutive poles on li,
respectively, i = 1,2, . . . ,J. For each positive integer r , the annulus r − 1 ≤ |s| ≤ r ,
contains finitely many poles of k(s) that are on li, say Mi(r), i = 1,2, . . . ,J. If Zi

1(r)
and Zi

2(r) are the points of intersections of li with the circles |s| = r −1 and |s| = r ,
respectively, then (

Mi(r)−1
)
yi ≤
∣∣Zi

1(r)−Zi
2(r)
∣∣. (2.8)

Now

Zi
1(r)= zi+r1eiθi , Zi

2(r)= zi+r2eiθi , (2.9)

for some r1 and r2, and since

r −1−∣∣zi∣∣= ∣∣Zi
1(r)
∣∣−∣∣zi∣∣≤ r1, r2 ≤

∣∣Zi
2(r)
∣∣+∣∣zi∣∣= r +∣∣zi∣∣, (2.10)



H-FUNCTION WITH COMPLEX PARAMETERS II: EVALUATION 731

it follows that

∣∣Zi
1(r)−Zi

2(r)
∣∣= r2−r1 ≤ r +∣∣zi∣∣−(r −1−∣∣zi∣∣)= 1+2∣∣zi∣∣. (2.11)

Therefore,

J∑
i=1

Mi(r)≤
J∑
i=1

(
1+ 1

yi

∣∣Zi
1(r)−Zi

2(r)
∣∣)≤ J+

J∑
i=1

1
yi

(
1+2∣∣zi∣∣)= v, (2.12)

which means that the total number of poles in the annulus r −1≤ |s| ≤ r is bounded

by the constant v which is independent of r .
Let s1,s2, . . . ,sJr be the poles of k(s) on or within the annulus r −1 ≤ |s| ≤ r . Then

Jr ≤ v . Assume further that r − 1 = s0 ≤ |s1| ≤ |s2| ≤ ··· ≤ |sJr | ≤ sJr+1 = r , and
si0 ∈ {s0, s1, . . . ,sJr } such that

∣∣si0+1∣∣−∣∣si0∣∣= max
0≤i≤Jr

{∣∣si+1∣∣−∣∣si∣∣}. (2.13)

Clearly, ∣∣si0+1∣∣−∣∣si0∣∣≥ 1
v+1 . (2.14)

Let Rr = (1/2)(|si0+1|+|si0 |). If s is such that |s| = Rr , then

|w−s| ≥ ∣∣Rr −|w|
∣∣≥ 1

2

(∣∣si0+1∣∣−∣∣si0∣∣)≥ 1
2(v+1) ∀w ∈ PO, (2.15)

and hence, the promised family of circles may be taken as all circles centered at the

origin and whose radii are Rr , r ≥ 1.

Let

ICr =
1

2πi

∫
Cr
k(s)z−sds. (2.16)

The integral is taken in a clockwise direction around the contour Cr , consisting of

the contours C1
r and C2

r , where C1
r is a large circular arc, with center at the origin

and radius Rr , lying to the right of Ω0 and originating from and ending on Ω0; and

C2
r = {s ∈ Ω0 : |s| ≤ Rr}. It is clear from the definition of Rr that Cr does not pass

through any pole of k(s). Now we split ICr up into a sum of two integrals

ICr = IC1r +IC2r . (2.17)

The integral ICr is equal to the negative of the sum of all the residues of k(s)z−s at its
poles within the contour Cr (due to the negative orientation of the contour Cr ), that
will cover (PO)r as r →∞, and since

1
2πi

∫
Ω0
k(s)z−sds = lim

r→∞IC2r , (2.18)

Theorem 2.2(a) would be proved if we show that limr→∞ IC1r = 0. Since

∣∣IC1r ∣∣≤ 1
2
max
s∈C1r

∣∣sk(s)z−s∣∣ (for large r), d
(
PO,C1

r
)≥ 1

2(1+v) , (2.19)
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it follows that limr→∞ IC1r = 0, if we can show that lim|s|→∞ |sk(s)z−s| = 0, for Re(s)≥ 0,

d(s,PO)≥ 1/(2(1+v)). Here d(A,B) denotes the distance between the two sets A and

B. For this purpose we use the asymptotic expansion of |k(s)| given in Lemma 1.1.

We deduce that

f(s) :=
∏Q

j=1
∣∣(1/2)(1+S(βj,s))+(1−S(βj,s))sinπ(qj+βjs)∣∣∏P

j=1
∣∣(1/2)(1+S(αj,s

))+(1−S(αj,s
))
sinπ
(
pj+αjs

)∣∣
=
∏

Reβj<0
∣∣2sinπ(qj+βjs)∣∣∏

Reαj<0
∣∣2sinπ(pj+αjs

)∣∣
×
[
1
2
(1+signIms)

∏
Reβj=0, Imβj>0

∣∣2sinπ(qj+βjs)∣∣∏
Reαj=0, Imαj>0

∣∣2sinπ(pj+αjs
)∣∣

+ 1
2

(
1−signIms

) ∏Reβj=0, Imβj<0
∣∣2sinπ(qj+βjs)∣∣∏

Reαj=0, Imαj<0
∣∣2sinπ(pj+αjs

)∣∣
]
.

(2.20)

Our first objective is to obtain an upper estimate of f(s) for all s such that Res ≥ 0,

and d(s,PO)≥ 1/(2(1+v)). Then sinπ(pj+αjs)≠ 0, and according to (2.1)

e−π| Im(pj+αjs)|∣∣sinπ(pj+αjs
)∣∣≥min

{∣∣αj
∣∣d(s,PO), 1

4

}

≥min
{
minj=1,2,...,P

{∣∣αj
∣∣}

2(1+v) ,
1
4

}
.

(2.21)

Since ∣∣Im(βjs)∣∣−∣∣Im(αjs
)∣∣

≤ (Res)
∣∣ Imβj

∣∣+| Ims|∣∣Reβj∣∣−(| Ims|∣∣Reαj
∣∣−(Res)∣∣ Imαj

∣∣)
= (∣∣ Imβj

∣∣+∣∣ Imαj
∣∣)Res+(∣∣Reβj∣∣−∣∣Reαj

∣∣)| Ims|,
(2.22)

we see that, through the use of (2.21) and the fact that |sinz| ≤ e| Imz|, for all complex z,

∏
Reβj<0

∣∣2sinπ(qj+βjs)∣∣∏
Reαj<0

∣∣2sinπ(pj+αjs
)∣∣ ≤ C exp

(
π(Res)

[ ∑
Reβj<0

∣∣ Imβj
∣∣+ ∑

Reαj<0

∣∣ Imαj
∣∣]

+π| Ims|
[ ∑
Reβj<0

∣∣Reβj∣∣− ∑
Reαj<0

∣∣Reαj
∣∣]).
(2.23)

Here and throughout the proof, C denotes a universal positive constant, that may be

distinct in different instances. Since Im(qj+βjs)= Imqj+(Imβj)Res, if Reβj = 0, we

see that∏
Reβj=0, Imβj>0

∣∣2sinπ(qj+βjs)∣∣∏
Reαj=0, Imαj>0

∣∣2sinπ(pj+αjs
)∣∣

≤ C
(
expπ(Res)

[ ∑
Reβj=0, Imβj>0

| Imβj|−
∑

Reαj=0, Imαj>0

∣∣ Imαj
∣∣]), (2.24)
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∏
Reβj=0, Imβj<0

∣∣2sinπ(qj+βjs)∣∣∏
Reαj=0, Imαj<0

∣∣2sinπ(pj+αjs
)∣∣

≤ C exp
(
π(Res)

[ ∑
Reβj=0, Imβj<0

∣∣ Imβj
∣∣− ∑

Reαj=0, Imαj<0

∣∣ Imαj
∣∣]). (2.25)

Combining (2.24) and (2.25) gives

1
2
(1+signIms)

∏
Reβj=0, Imβj>0

∣∣2sinπ(qj+βjs)∣∣∏
Reαj=0, Imαj>0

∣∣2sinπ(pj+αjs
)∣∣

+ 1
2
(1−signIms)

∏
Reβj=0, Imβj<0

∣∣2sinπ(qj+βjs)∣∣∏
Reαj=0, Imαj<0

∣∣2sinπ(pj+αjs
)∣∣

≤ C exp
(
(Res)

[
− π
2

( ∑
Reαj=0

∣∣ Imαj
∣∣− ∑

Reβj=0

∣∣ Imβj
∣∣)

− π
2
(signIms)

( ∑
Reαj=0

Imαj−
∑

Reβj=0
Imβj

)])
.

(2.26)

Using this estimate in the definition of f(s), and observing that

−X+2π
∑

Reαj<0

∣∣ Imαj
∣∣

=π
( ∑
Reαj<0

∣∣ Imαj
∣∣+ ∑

Reβj<0

∣∣ Imβj
∣∣)− π

2

( ∑
Reαj=0

∣∣ Imαj
∣∣− ∑

Reβj=0

∣∣ Imβj
∣∣),

N = T −2
∑

Reβj<0

∣∣Reβj∣∣− ∑
Reαj<0

∣∣Reαj
∣∣,

(2.27)

we obtain

f(s)≤ C exp
(
π
2
(T −N)| Ims|+(Res)

[
− π
2
(signIms)

( ∑
Reαj=0

Imαj−
∑

Reβj=0
Imβj

)

−X+2π
∑

Reαj<0

∣∣ Imαj
∣∣]).

(2.28)

Since if z ≠ 0, |z−s| = e−(Res) ln|z|+(Ims)argz, and |Y(s)| ≤ C , then (2.28) and Lemma 1.1

yield

∣∣sk(s)z−s∣∣≤ C|s|∆0+1×exp
(
(Ims)(argz−M−T Args)+ π

2
(T −N)| Ims|

)

×exp
(
(Res)

[
−L−T +T ln|s|− ln|z|+2π

∑
Reαj<0

∣∣ Imαj
∣∣]), (2.29)

for Res ≥ 0, and d(s,PO)≥ 1/(2(1+v)).
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Let

w(s)=−T
(
π
2
−|Args|

)
, Θ(s)= π

2
N−(signIms)(argz−M),

V =−L−T − ln|z|+2π
∑

Reαj<0

∣∣ Imαj
∣∣, (2.30)

and note that

Θ(s)≥ b =min
{
π
2
N±(argz−M)

}
≥ 0, (2.31)

since by assumption, the conditions of Theorem 1.2 are satisfied. Moreover,

(Ims)(argz−M−T Args)+ π
2
(T −N)| Ims| = −| Ims|[w(s)+Θ(s)], (2.32)

and (2.29) can be rewritten in the form

∣∣sk(s)z−s∣∣≤ C|s|∆0+1 e−| Ims|[w(s)+Θ(s)] e(Res)[V+T ln|s|]. (2.33)

Armed with (2.33), we now proceed to establish part (a) of the theorem. Let

R1 =
{
s : d(s,PO)≥ 1

2(1+v) ,
π
4
≤ |Args| ≤ π

2

}
,

R2 =
{
s : d(s,PO)≥ 1

2(1+v) , |Args|<
π
4

}
,

(2.34)

and notice that,

| Ims| ≥ |s|√
2
, s ∈ R1, (2.35)

Res >
|s|√
2
, s ∈ R2. (2.36)

(a1) Assume that T < 0.

We consider two subcases:

(i) |argz−M|< (π/2)N .
In this case b > 0. Since T < 0, (V + T ln|s|) → −∞, as |s| → ∞, and hence, the

function e(Res)[V+T ln|s|] is bounded for Res ≥ 0. On the other hand, w(s)= |T |(π/2−
|Args|)≥ 0, Θ(s)≥ b > 0, and for all s in R1, | Ims| ≥ (1/

√
2)|s|. Thus,

∣∣sk(s)z−s∣∣≤ C|s|∆0+1e−(b/
√
2)|s|, s ∈ R1. (2.37)

The assumption T < 0 implies lim|s|→∞[V + T ln|s|] = −∞, and consequently, V +
T ln|s|<−1 as |s| →∞. Since Res > (|s|/√2), s ∈ R2, it follows that

∣∣sk(s)z−s∣∣≤ C|s|∆0+1e(Res)[V+T ln|s|] ≤ C|s|∆0+1e−(1/
√
2)|s|, s ∈ R2. (2.38)

From (2.37) and (2.38) it immediately follows that lim|s|→∞ |sk(s)z−s| = 0, for Res ≥ 0

and d(s,PO)≥ 1/(2(1+v)).
(ii) |argz−M| = (π/2)N .
In this case, necessarily∆0 <−1 because the convergence conditions of Theorem 1.2

are satisfied. Thus, |s|∆0+1 → 0, as |s| → ∞. Since the functions e−| Ims|[w(s)+Θ(s)],
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and e(Res)[V+T ln|s|] are bounded for all Res ≥ 0, it follows from (2.33) that

lim|s|→∞ |sk(s)z−s| = 0, for Res ≥ 0 and d(s,PO)≥ 1/(2(1+v)).
(a2) Assume T = 0, and z satisfies |z| > exp(−L+2π∑Reαj<0 | Imαj|), in addition

to the conditions of Theorem 1.2.

In this case w(s)= 0 for all s, and we again consider two subcases:

(i) |argz−M|< (π/2)N .
As before, Θ(s)≥ b > 0. The condition on z implies that V < 0, and thus

[V +T ln|s|]Res = V Res ≤ 0, Res ≥ 0. (2.39)

It follows from this, (2.33), (2.35), and (2.36) that

∣∣sk(s)z−s∣∣≤ C|s|∆0+1e−(b/
√
2)|s|, s ∈ R1, (2.40)∣∣sk(s)z−s∣∣≤ C|s|∆0+1e−(|V |/
√
2)|s|, s ∈ R2. (2.41)

It immediately follows from (2.40) and (2.41) that lim|s|→∞ |sk(s)z−s| = 0, for Res ≥ 0

and d(s,PO)≥ 1/(2(1+v)).
(ii) |argz−M| = (π/2)N .
In this case, necessarily∆0 <−1 because the convergence conditions of Theorem 1.2

are satisfied. Thus, |s|∆0+1 → 0, as |s| → ∞, and since the functions e−Θ(s)| Ims|, and
eV Res are bounded for all Res ≥ 0, it follows from (2.33) that |sk(s)z−s| → 0, as |s| →∞,
for Res ≥ 0 and d(s,PO)≥ 1/(2(1+v)). This completes the proof of Theorem 2.2(a).

Now we proceed to prove Theorem 2.2(b).

Let α′j =−αj , j = 1,2, . . . ,P ; β′j =−βj , j = 1,2, . . . ,Q, and define

k1(s)=
∏P

j=1 Γ
(
pj+α′js

)
∏Q

j=1 Γ
(
qj+β′js

) . (2.42)

Then under the change of variables s →−s,
∫
Ωc
k(s)z−sds =−

∫
Ω′−c

k(−s)
(
1
z

)−s
ds =
∫
−Ω′−c

k1(s)
(
1
z

)−s
ds, (2.43)

where Ω′−c is the reflection of Ωc about the origin. Observe that −Ω′−c is directed from
−c−i∞ to −c+i∞. We want to apply part (a) to k1(s) and the contour −Ω′−c . For this
purpose, let T ′, M′, L′, and N′ denote the constants associated with k1(s) that are
computed as in Lemma 1.1 and Theorem 1.2, respectively. It is easy to see that

T ′ = −T , N′ =N, M′ = −M. (2.44)

However,

L′ =
P∑
j=1

[(
Argα′j

)
Imα′j−

(
ln
∣∣α′j∣∣)Reα′j

]
−

Q∑
j=1

[(
Argβ′j

)
Imβ′j−

(
ln
∣∣β′j∣∣)Reβ′j

]

=−L+π

 P∑
j=1

∣∣ Imαj
∣∣− Q∑

j=1

∣∣ Imβj
∣∣

.

(2.45)



736 F. A. AL-MUSALLAM AND V. K. TUAN

Hence, ∣∣∣∣M′ −arg
(
1
z

)∣∣∣∣= |M−arg(z)|, for any z, (2.46)

and T ≥ 0 if and only if T ′ ≤ 0. It is clear that s ∈ (PO)l if and only if −s is a pole of
k1(s), that is, to the right of −Ω′−c . Furthermore, if s0 is a pole of k1(s) of order m,

then there is a ρ > 0 such that

k1(s)= f(s)+
m∑
j=1

a−j(
s−s0

)j , for
∣∣s−s0∣∣< ρ, (2.47)

where a−m ≠ 0 and f is analytic at s0. Hence

k(s)= f(−s)+
m∑
j=1

(−1)j a−j(
s+s0

)j , for
∣∣s+s0∣∣< ρ, (2.48)

and therefore

Res
(
k(s),−s0

)=−Res(k1(s),s0). (2.49)

Thus, if T > 0, then

∫
Ωc
k(s)z−sds =

∫
−Ω′−c

k1(s)
(
1
z

)−s
ds =−2πi

∑
sj∈(PO)l

(
1
z

)−sj
Res
(
k1(s),−sj

)

= 2πi
∑

sj∈(PO)l
z−sj Res

(
k(s),sj

)
.

(2.50)

In case T = 0, then T ′ = 0, and z must also satisfy

1
|z| > exp

(
−L′ +2π

∑
Reα′j<0

∣∣ Imα′j
∣∣) (2.51)

or, equivalently,

|z|< exp

(
−L+π

( P∑
j=1

∣∣ Imαj
∣∣− Q∑

j=1

∣∣ Imβj
∣∣)−2π ∑

Reαj>0
| Imαj|

)
. (2.52)

This completes the proof of Theorem 2.2.

Remark 2.3. If µ = 0, N > 0, and T ≠ 0, then the H-function with complex param-

eters is analytic in the sector |argz−M| < (π/2)N . This is the case since the series
of the residues at the left poles, if T > 0, and the series of the residues at the right

poles, if T < 0, represent analytic functions.

Remark 2.4. If
∑

Reαj=0 | Imαj|>
∑Q

j=1 | Imβj|+
∑

Reαj≠0 | Imαj|, then

r1 = exp

(
−L+2π

∑
Reαj<0

∣∣ Imαj
∣∣)

< exp

(
−L+π

( P∑
j=1

∣∣ Imαj
∣∣− Q∑

j=1

∣∣ Imβj
∣∣)−2π ∑

Reαj>0

∣∣ Imαj
∣∣)= r2.

(2.53)
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Thus, if T = 0, then the H-function with complex parameters can be computed for

any z in the annulus r1 < |z| < r2 by the residues at the right poles as well as the

residues at the left poles. This situation has no analogy in the real case, that is, when

(α)P and (β)Q are real vectors.

3. Some special cases of the H-function. In general, if w and α ≠ 0 are complex

numbers, then

Ress=−(m+w)/α Γ(w+αs)= (−1)m
α(m!)

, m= 1,2, . . . . (3.1)

Example 3.1. Let a1,a2, . . . ,aP+1; b1,b2, . . . ,bP be complex numbers such that∑P+1
j=1 Reaj <

∑P
j=1 Rebj . Then

P+1FP
(
(a)P+1;(b)P ;(−1)Pz

)= isignIm(z)
P+1∏
j=1
Γ
(
1−aj

) P∏
j=1
Γ
(
bj
)

×H1
2P+1

(
zi,c

∣∣∣∣∣(0, i)(
1−aj,i

)
P+1,
(
bj,−i

)
P

)
,

(3.2)

|z| = 1, where c > 0 if Imz ≥ 0, c < 0 if Imz < 0, and pFq(z) is the generalized

hypergeometric function (see [2, 4, 18]).

In fact for the function

H1
2P+1

(
x,c

∣∣∣∣∣(0, i)(
1−aj,i

)
P+1,
(
bj,−i

)
P

)

= 1
2πi

∫ c+i∞
c−i∞

Γ(is)∏P+1
j=1 Γ
(
1−aj+is

)∏P
j=1 Γ
(
bj−is

)x−sds.
(3.3)

it is easy to see that N = 0, M = 0, and

∆c = P−
P+1∑
j=1

Re
(
1−aj

)− P∑
j=1

Rebj =−1+
P+1∑
j=1

Reaj−
P∑
j=1

Rebj <−1, (3.4)

so the conditions of Theorem 1.2 are satisfied.

Since L= 0 and T = 0, we can compute the value of the function using the residues

at the poles s = im,m= 0,1,2, . . . .
If c > 0, then the poles are left poles. Hence, computing with left poles, for 0<x ≤ 1,

H1
2P+1

(
x,c

∣∣∣∣∣(0, i)(
1−aj,i

)
P+1,
(
bj,−i

)
P

)

=−i
∞∑

m=0

(−1)m
m!

x−im∏P+1
j=1 Γ
(
1−aj−m

)∏P
j=1 Γ
(
bj+m

)

=−i
∞∑

m=0

(−1)mP

m!

∏P+1
j=1
(
aj
)
m∏P+1

j=1 Γ
(
1−aj

) x−im∏P
j=1 Γ
(
bj
)∏P

j=1
(
bj
)
m

=− iP+1FP
(
(a)P+1;(b)P ;(−1)Px−i

)
∏P+1

j=1 Γ
(
1−aj

)∏P
j=1 Γ
(
bj
) .

(3.5)
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Let z = x−i, then |z| = 1, x = zi, and we obtain (3.2) for Im(z)≥ 0.

If c < 0, then the poles are right poles. Hence, computing with right poles, for x > 1,

H1
2P+1

(
x,c

∣∣∣∣∣(0, i)(
1−aj,i

)
P+1,
(
bj,−i

)
P

)
= iP+1FP

(
(a)P+1;(b)P ;(−1)Px−i

)
∏P+1

j=1 Γ
(
1−aj

)∏P
j=1 Γ
(
bj
) . (3.6)

Let z = x−i, then |z| = 1, x = zi, and we obtain (3.2) for Im(z) < 0.

Remark 3.2. It seems to the authors that (3.2) provides the first integral represen-

tation for the generalized hypergeometric geometric function P+1FP(z) on the unit

circle.

Example 3.3. If Rep ≠ 0, 1+Rep < Req, and Imp > 0, then

H1
1

(
x,0

∣∣∣∣∣(p,i)(q,i)

)
=

0, if x ≥ 1,

−ix−ip(1−x−i)q−p−1, if 0<x < 1.
(3.7)

Since N = 0 = M and ∆0 = Rep−Req < −1, the H-function exists for x > 0. Since

T = 0= L, the function can be computed by the residues at the right poles for x > 1,

and by the residues at the left poles for 0 < x < 1. The poles are at s = im+ ip,
m= 0,1,2, . . . . Since Imp > 0, all the poles are on the left, and hence

H1
1

(
x,0

∣∣∣∣∣(p,i)(q,i)

)
= 0, if x > 1, (3.8)

and for 0<x < 1,

H1
1

(
x,0

∣∣∣∣∣(p,i)(q,i)

)
=

∞∑
m=0

[
Ress=i(m+p) Γ(p+is)

] 1
Γ(q−p−m)

x−im−ip

=−i
∞∑

m=0

(−1)m
(m!)Γ(q−p−m)

x−im−ip =−ix−ip(1−x−i)q−p−1.
(3.9)

Example 3.4. If p and q are complex numbers such that Rep, Req ≠ 0, and Rep+
Req < 0, then

H2
0

(
x,0

∣∣∣∣∣(p,i),(q,−i)
)
=



0, if Im(p) Im(q) < 0,
−i(sgnImp)Γ(p+q)
x−iq
(
1+xi

)p+q , if Im(p) Im(q) > 0,
(3.10)

for all x > 0.

It is easy to check that M =N = 0, and ∆0 =−1+Rep+Req <−1. Hence,

H2
0

(
x,0

∣∣∣∣∣(p,i),(q,−i)
)
= 1
2πi

∫ i∞
−i∞

Γ(p+is)Γ(q−is)x−sds (3.11)

exists for all x > 0.

Since T = 0 and L = π , the function can be computed using the residues at the

right poles of Γ(p+is)Γ(q−is)x−s for x > e−π and the residues at the left poles for
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0 < x < eπ . Thus in the interval (e−π ,eπ), the function can be computed using the

residues at the right as well as at the left poles.

The poles of Γ(p+is) are at s = im+ip, while those of Γ(q−is) are at s =−im−iq,
and

Ress=i(m+p) Γ(p+is)=−i (−1)
m

m!
, Ress=−i(m+q) Γ(q−is)= i

(−1)m
m!

. (3.12)

(i) The case Imp > 0, Imq < 0.

In this case all the poles are left poles and hence

H2
0

(
x,0

∣∣∣∣∣(p,i),(q,−i)
)
= 0, for x > e−π , (3.13)

and for 0<x < eπ ,

H2
0

(
x,0

∣∣∣∣∣(p,i),(q,−i)
)

=
∞∑

m=0

[
Ress=i(m+p) Γ(p+is)

]
Γ(p+q+m)x−im−ip

+
∞∑

m=0

[
Ress=−i(m+q) Γ(q−is)

]
Γ(p+q+m)xim+iq

=−iΓ(p+q)
∞∑

m=0

(−1)m
m!

(p+q)mx−im−ip+iΓ(p+q)
∞∑

m=0

(−1)m
m!

(p+q)mxim+iq

=−iΓ(p+q)x−ip(1+x−i)−p−q+iΓ(p+q)xiq(1+xi)−p−q = 0.
(3.14)

(ii) The case Imp < 0, Imq > 0.

In this case all the poles are right poles and hence,

H2
0

(
x,0
∣∣∣∣(p,i),(q,−i)

)
= 0, for 0<x < eπ, (3.15)

and for x > e−π , the exact computation as above shows that,

H2
0

(
x,0
∣∣∣∣(p,i),(q,−i)

)
= 0, for x > e−π . (3.16)

(iii) The case Imp < 0, Imq < 0.

In this case, the poles at s = im+ip are right poles, and the poles at s =−im−iq
are left poles. Thus, for x > e−π ,

H2
0

(
x,0
∣∣∣∣(p,i),(q,−i)

)

=−
∞∑

m=0

[
Ress=i(m+p) Γ(p+is)

]
Γ(p+q+m)x−im−ip

= iΓ(p+q)
∞∑

m=0

(−1)m
m!

(p+q)mx−im−ip

= iΓ(p+q)x−ip(1+x−i)−p−q = iΓ(p+q)
x−iq
(
1+xi

)p+q ,

(3.17)
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and for 0<x < eπ ,

H2
0

(
x,0
∣∣∣∣(p,i),(q,−i)

)

=
∞∑

m=0

[
Ress=−i(m+q) Γ(q−is)

]
Γ(p+q+m)xim+iq

= iΓ(p+q)
∞∑

m=0

(−1)m
m!

(p+q)mxim+iq = iΓ(p+q)xiq(1+xi)−p−q.
(3.18)

Therefore,

H2
0

(
x,0
∣∣∣∣(p,i),(q,−i)

)
= iΓ(p+q)xiq(1+xi)−p−q, ∀x > 0. (3.19)

(iv) The case Imp > 0, Imq > 0.

In this case, the poles at s = im+ ip are left poles, and the poles at s = −im− iq
are right poles. Thus, for 0<x < eπ ,

H2
0

(
x,0
∣∣∣∣(p,i),(q,−i)

)

=
∞∑

m=0

[
Ress=i(m+p) Γ(p+is)

]
Γ(p+q+m)x−im−ip

=−iΓ(p+q)
∞∑

m=0

(−1)m
m!

(p+q)mx−im−ip

=−iΓ(p+q)x−ip(1+x−i)−p−q =−iΓ(p+q)xiq(1+xi)−p−q,

(3.20)

and for x > e−π ,

H2
0

(
x,0

∣∣∣∣∣(p,i),(q,−i)
)

=−
∞∑

m=0

[
Ress=−i(m+q) Γ(q−is)

]
Γ(p+q+m)xim+iq

=−iΓ(p+q)
∞∑

m=0

(−1)m
m!

(p+q)mxim+iq =−iΓ(p+q)xiq(1+xi)−p−q.
(3.21)

Therefore,

H2
0

(
x,0

∣∣∣∣∣(p,i),(q,−i)
)
=−iΓ(p+q)xiq(1+xi)−p−q, ∀x > 0. (3.22)

Remark 3.5. The special case x = 1 of the previous example is evaluated in [6,

formula 6.411].

Example 3.6. If a is a complex number, then

H1
2

(
z,c

∣∣∣∣∣(0,1)(ia,−i),(1−ia,i)

)
= 1
2π
(
eπa−e

πz−e−πa−e−πz), c > 0, |argz|< π
2
. (3.23)
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It is easy to check that N = 1, M = 0, and the conditions for existence are satisfied

for |argz| < π/2. Since T = 1 > 0, we can compute the function using the left poles

at s =−m,m= 0,1,2, . . . . Thus,

H1
2

(
z,c

∣∣∣∣∣(0,1)(ia,−i),(1−ia,i)

)
= 1
2πi

∫ c+i∞
c−i∞

Γ(s)
Γ(ia−is)Γ(1−ia+is)z

−sds

=
∞∑

m=0

(−1)m
m!

· 1
Γ(ia+im)Γ(1−ia−im)

zm

= 1
π

∞∑
m=0

(−1)m sinπi(a+m)
m!

zm

= 1
π

∞∑
m=0

(−1)m sinhπ(a+m)
m!

zm

= eaπ

2π

∞∑
m=0

(−eπz)m
m!

− e−aπ

2π

∞∑
m=0

(−e−πz)m
m!

= 1
2π
(
eπa−e

πz−e−πa−e−πz).

(3.24)

Example 3.7. If c > 0 and a is a complex number, Rea> c, then

H3
0

(
z,c

∣∣∣∣∣(0,1),(ia,−i),(1−ia,i)
)
=π

∞∑
m=0

(−z)m
m!sinhπ(a+m)

, |argz|< π
2
. (3.25)

Now,N = 1,M = 0, and the conditions of convergence are satisfied for |argz|<π/2.
Since T = 1 > 0, we can compute the value of the function using the residues at the

left poles of the function Γ(ia−is)Γ(1−ia+is)Γ(s)z−s . Because Rea> c > 0, the only

left poles we have are the poles s =−m of Γ(s). Hence,

H3
0

(
z,c

∣∣∣∣∣(0,1),(ia,−i),(1−ia,i)
)
= 1
2πi

∫ c+i∞
c−i∞

Γ(ia−is)Γ(1−ia+is)Γ(s)z−sds

=
∞∑

m=0

(−1)m
m!

Γ(ia+im)Γ(1−ia−im)zm

=
∞∑

m=0

(−1)m
m!

· π
sinπi(a+m)

zm

=π
∞∑

m=0

(−z)m
m!sinhπ(a+m)

.

(3.26)

Example 3.8. Let a and b be complex numbers such that 1+ Rea < Reb, and
Ima>−1/2, then

H1
1

(
x,

1
2

∣∣∣∣∣(a,i)(b,i)

)
=


− i
Γ(b−a)x

−ia(1−x−i)b−a−1, if 0<x < 1,

0, if x > 1.
(3.27)

It is easy to see that N = 0 = M , ∆1/2 = Rea−Reb < −1, and the conditions of

Theorem 1.2 are fulfilled. Moreover, T = 0, L = 0, and the poles are at s = ia+ im,
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m= 0,1,2, . . . . Since Ima>−1/2, there are no right poles, and therefore

H1
1

(
x,

1
2

∣∣∣∣∣(a,i)(b,i)

)
= 0, for x > 1. (3.28)

For 0<x < 1,

H1
1

(
x,

1
2

∣∣∣∣∣(a,i)(b,i)

)
=−i

∞∑
m=0

(−1)m
m!Γ(b−a−m)

x−ia−im =− i
Γ(b−a)x

−ia(1−x−i)b−a−1.
(3.29)
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