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Abstract. We formulate a pair of symmetric dual nondifferentiable multiobjective pro-
gramming and establish appropriate duality theorems. We also show that differentiable
and nondifferentiable analogues of several pairs of symmetric dual problems can be ob-
tained as special cases of our general symmetric programs.
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1. Introduction. The concept of symmetric dual programs, in which the dual of
the dual equals the primal, was introduced and developed in, e.g., [2, 4, 5]. Recently,
Chandra, Craven, and Mond [1] formulated a pair of symmetric dual programs with
a square root term. Weir and Mond [7] discussed symmetric duality in multiobjective
programming. Mond, Husain, and Prasad gave symmetric duality result for nondif-
ferentiable multiobjective programs in [6]. In this paper, a pair of symmetric dual
nondifferentiable multiobjective programming problems is formulated and appropri-
ate duality theorems are established under suitable generalized invexity assumptions.
These results include duality results for multiobjective programs given in [6, 7] as spe-
cial cases.

2. Notation and preliminaries. The following conventions for vectors in Rn will
be used:
x >y if and only if xi > yi, i= 1,2,3, . . . ,n;
x �y if and only if xi ≥yi, i= 1,2,3, . . . ,n;
x ≥y if and only if xi ≥yi, i= 1,2,3, . . . ,n, but x ≠y ;
x �≥y is the negation of x ≥y .
If F is a twice differentiable function from Rn×Rm to R, then ∇xF and ∇yF denote

gradient (column) vectors of F with respect to x and y , respectively, and ∇yyF and
∇yxF denote the (m×m) and (m×n) matrices of second-order partial derivatives,
respectively.
If F is a twice differentiable function from Rn×Rm to Rk, then∇xF and∇yF denote,

respectively, the (n×k) and (m×k) matrices of first-order partial derivatives.
Let C be a compact convex set in Rn. The support function of C is defined by

s(x | C)=max{xTy, y ∈ C}. (2.1)
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A support function, being convex and everywhere finite, has a subdifferential in the
sense of convex analysis, that is, there exists z such that s(y | C)≥ s(x | C)+zT (y−x)
for all x. The subdifferential of s(x | C) is given by

∂s(x | C)= {z ∈ C : zTx = s(x | C)}. (2.2)

We also require the concept of a normal cone. For any set S the normal cone to S at
a point x ∈ S is defined by

NS(x)=
{
y :yT(z−x)≤ 0 ∀z ∈ S}. (2.3)

There is a relationship between normal cones and support functions of a compact
convex set C , namely, y is in NC(x) if and only if s(y | C) = xTy or equivalently, x
is in the subdifferential of s at y .
Consider the multiple objective programming problem:

minf(x) subject to x ∈X, (2.4)

where f : Rn→ Rk and X ⊂ Rn.
A feasible point x0 is said to be an efficient solution of (2.4) if for any feasible x,

fi
(
x0
)≥ fi(x) ∀i= 1,2, . . . ,k (2.5)

implies

fi
(
x0
)= fi(x) ∀i= 1,2, . . . ,k. (2.6)

A feasible point x is said to be properly efficient (see [6]) if it is efficient for (2.4) and
if there exists a scalar M > 0 such that, for each i, fi(x0)−fi(x)≤M(fj(x)−fj(x0))
for some j such that fj(x) > fj(x0)wheneverx is feasible for (2.4) and fi(x) < fi(x0).
A feasible point x0 is said to be a weak efficient solution of (2.4) if there exists no

other feasible point x for which f(x0) > f(x). If a feasible point x0 is efficient, then
it is clear that it is also a weak efficient.

Definition 2.1. A differentiable numerical function ψ defined on a set C ⊂ Rn

is said to be η-convex at x̄ ∈ C if there exists a function η(x,x̄) defined on C ×C
such that

ψ(x)−ψ(x̄)≥ η(x,x̄)T∇ψ(x̄) ∀x ∈ C. (2.7)

If −ψ is η-convex at x̄ ∈ C , then ψ is said to be η-concave at x̄ ∈ C .
Definition 2.2. A differentiable numerical function ψ defined on a set C ⊂ Rn is

said to be η-pseudoconvex at x̄ ∈ C if there exists a function η(x,x̄) defined on C×C
such that

η(x,x̄)T∇ψ(x̄)≥ 0 �→ψ(x)≥ψ(x̄) ∀x ∈ C. (2.8)

If −ψ is η-pseudoconvex at x̄ ∈ C , then ψ is said to be η-pseudoconcave at x̄ ∈ C .
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3. Symmetric duality. Consider the following pair of symmetric dual nondifferen-
tiable multiobjective programs.

Primal (VP),

minimize
(
f1(x,y)+s

(
x | C1

)−yTz1, . . . ,fk(x,y)+s
(
x | Ck

)−yTzk
)

(3.1)

subject to
(1)

∑k
i=1λi

(∇yfi(x,y)−zi
)≤ 0,

(2) yT∑k
i=1λi

(∇yfi(x,y)−zi
)≥ 0,

(3) zi ∈Di, 1≤ i≤ k,
(4) λ > 0, λT e= 1, x ≥ 0.
Dual (VD),

maximize
(
f1(u,v)−s

(
v |D1

)+uTw1, . . . ,fk(u,v)−s
(
v |Dk

)+uTwk
)

(3.2)

subject to
(5)

∑k
i=1λi

(∇ufi(u,v)+wi
)≥ 0,

(6) uT∑k
i=1λi

(∇ufi(u,v)+wi
)≤ 0,

(7) wi ∈ Ci, 1≤ i≤ k.
(8) λ > 0, λT e= 1, v ≥ 0.
Here e(1,1, . . . ,1)T ∈ Rk; fi, i = 1,2, . . . ,k, are twice differentiable functions from

Rn×Rm into R. Ci, i= 1,2, . . . ,k, are compact convex sets in Rn, and Di, i= 1,2, . . . ,k,
are compact convex sets in Rm.
Now we establish weak and strong duality theorems between (VP) and (VD).

Theorem 3.1 (weak duality). Let (x,y,λ,z1,z2, . . . ,zk) be feasible for (VP) and let
(u,v,λ,w1,w2, . . . ,wk) be feasible for (VD). Let

k∑
i=1

λi
(
fi(·,v)+(·)Twi

)
be η1-pseudoconvex at u (3.3)

and let
k∑
i=1

λi
(
fi(x,·)−(·)Tzi

)
be η2-pseudoconcave at y. (3.4)

Assume that η1(x,u)+u≥ 0, η2(v,y)+y ≥ 0. Then the following cannot hold:
fi(x,y)+s

(
x | Ci

)−yTzi ≤ fi(u,v)−s
(
v |Di

)+uTwi ∀i∈ {1,2, . . . ,k}, (3.5)

fj(x,y)+s
(
x | Cj

)−yTzj < fj(u,v)−s
(
v |Dj

)+uTwj for some j. (3.6)

Proof. From η1(x,u)+u≥ 0, (5), and (6) we have

η1(x,u)T
k∑
i=1

λi
(∇ufi(u,v)+wi

)≥ 0. (3.7)

Since
∑k
i=1λi(fi(·,v)+(·)Twi) is η1-pseudoconvex at u it follows that

k∑
i=1

λi
(
fi(x,v)+xTwi

)≥ k∑
i=1

λi
(
fi(u,v)+uTwi

)
. (3.8)
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Since xTwi ≤ s(x | Ci), 1≤ i≤ k, and (7), then

k∑
i=1

λifi(x,v)≥
k∑
i=1

λifi(u,v)+uTwi−s(x | Ci). (3.9)

From η2(v,y)+y ≥ 0, (1), and (2) we have

η2(v,y)T
k∑
i=1

λi
(∇yfi(x,y)−zi

)≤ 0. (3.10)

The η2-pseudoconcavity assumption of
∑k
i=1λi(fi(x,·)−(·)Tzi) implies

k∑
i=1

λi
(
fi(x,v)−vTzi

)≤ k∑
i=1

λi
(
fi(x,y)−yTzi

)
. (3.11)

Since vTzi ≤ s(v |Di), 1≤ i≤ k, and (4), then

k∑
i=1

λi
[
fi(x,v)

]≤ k∑
i=1

λi
[
fi(x,y)+s

(
v |Di

)−yTzi
]
. (3.12)

Combining (8), (3.9), and (3.12) yields the conclusion that (3.5) and (3.6) do not hold.

Theorem 3.2 (weak duality). Let (x,y,λ,z1,z2, . . . ,zk) be feasible for (VP) and
(u,v,λ,w1,w2, . . . ,wk) be feasible for (VD). Let for all i∈ {1,2, . . . ,k}, fi(·,v)+(·)Twi

and −fi(x,·)+(·)Tzi are η1-convex for fixed v and η2-convex for fixed x, respectively.
Let η1(x,u)+u≥ 0, η2(v,y)+y ≥ 0. Then the following cannot hold:

fi(x,y)+s
(
x | Ci

)−yTzi ≤ fi(u,v)−s
(
v |Di

)+uTwi ∀i∈ {1,2, . . . ,k};
fj(x,y)+s

(
x | Cj

)−yTzj < fj(u,v)−s
(
v |Dj

)+uTwj for some j.
(3.13)

Proof. Since fi(·,v)+(·)Twi is η1-convex for fixed v(1≤ i≤ k), we have
[
fi(x,v)+xTwi

]−[fi(u,v)+uTwi
]≥ η1(x,u)T [∇ufi(u,v)+wi

]
, 1≤ i≤ k.

(3.14)

Since λ > 0, then

k∑
i=1

λi
[
fi(x,v)+xTwi

]− k∑
i=1

λi
[
fi(u,v)+uTwi

]≥ η1(x,u)T
{ k∑
i=1

λi
[∇ufi(u,v)+wi

]}
.

(3.15)

Since −fi(x,·)+(·)Tzi is η2-convex for fixed x(1≤ i≤ k), we have
[
fi(x,v)−vTzi

]−[fi(x,y)−yTzi
]≤ η2(v,y)T [∇yfi(x,y)−zi

]
, 1≤ i≤ k. (3.16)
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Since λ > 0 it follows that

k∑
i=1

λi
[
fi(x,v)+vTzi

]− k∑
i=1

λi
[
fi(x,y)+yTzi

]≤ η2(v,y)T
{ k∑
i=1

λi
[∇yfi(x,y)−zi

]}
.

(3.17)

Now from η1(x,u)+u≥ 0, (5), and (6), we have

η1(x,u)T
{ k∑
i=1

λi
[∇ufi(u,v)+wi

]}≥ 0. (3.18)

From (3.15), (3.18), and xTwi ≤ s(x | Ci), i= 1,2, . . . ,k; we obtain
k∑
i=1

λi
[
fi(x,v)

]≥ k∑
i=1

λi
[
fi(u,v)−s

(
x | Ci

)+uTwi
]
. (3.19)

By η2(v,y)+y ≥ 0, (2), and (3), we have

η2(v,y)T
{ k∑
i=1

[∇yfi(x,y)−zi
]}≤ 0. (3.20)

From (3.17), (3.20), and vTzi ≤ s(v |Di), i= 1,2, . . . ,k; we obtain
k∑
i=1

λi
[
fi(x,v)

]≤ k∑
i=1

λi
[
fi(x,y)−yTzi+s

(
v |Di

)]
. (3.21)

The proof now follows along similar lines as in Theorem 3.1.

Theorem 3.3 (strong duality). Let (x0,y0,λ0,z01,z
0
2, . . . ,z

0
k) be a properly efficient

solution for (VP) and fix λ= λ0 in (VD), and let suppositions of Theorem 3.1 be fulfilled.
Assume that

(i) the set

k∑
i=1

λ0i
[∇yyfi

(
x0,y0

)]
(3.22)

is positive or negative definite
(ii) and the set

{∇yfi
(
x0,y0

)−z0i , i= 1,2, . . . ,k} (3.23)

is linearly independent. Then there exist w0
i ∈ Rn, i = 1,2, . . . ,k such that (x0,y0,λ0,

w0
1 ,w

0
2 , . . . ,w

0
k) is a properly efficient solution of (VD).

Proof. Since (x0,y0,λ0,w0
1 ,w

0
2 , . . . ,w

0
k) is a properly efficient solution of (VP), then

it is a weakly efficient solution. Hence there exists α ∈ Rk, β ∈ Rk, s ∈ Rk, γ ∈ Rk,
µ ∈ Rk and η ∈ R not all zero and wi ∈ Rn (1 ≤ i ≤ k) such that the following Fritz
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John optimality conditions [3] are satisfied at (x0,y0,λ0,z01,z
0
2, . . . ,z

0
k),

k∑
i=1

αi
(∇xfi+w0

i
)+(β−ηy0)T

k∑
i=1

λi
(∇yxfi

)= s, (3.24)

∀i∈ {1,2, . . . ,k}, w0
i ∈ Ci, (3.25)

∀i∈ {1,2, . . . ,k}, xT0w
0
i = s

(
x | Ci

)
, (3.26)

k∑
i=1

(
αi−ηλ0i

)[∇yfi−zi
]+(β−ηy0)T

k∑
i=1

λ0i
[∇yyfi

]= 0, (3.27)

∀i∈ {1,2, . . . ,k}, (
β−ηy0

)T [∇yfi−zi
]−µi = 0, (3.28)

∀i∈ {1,2, . . . ,k}, αiy0−
(
β−ηy0

)T λ0 ∈NDi
(
z0i
)
, (3.29)

βT
k∑
i=1

λ0i
(∇yfi−z0i

)= 0, (3.30)

ηyT
0

k∑
i=1

λ0i
(∇yfi−z0i

)= 0, (3.31)

sTx0 = 0, (3.32)

µTλ0 = 0, (3.33)

(α,β,s,µ,η)≥ 0, (3.34)

(α,β,s,µ,η)≠ 0. (3.35)

Since λ0 > 0 and µ � 0, (3.33) implies µ = 0. Consequently (3.28) yields
(
β−ηy0

)T (∇yfi−Ciwi
)= 0. (3.36)

Multiplying left-hand side of (3.27) by (β−ηy0)T and using (3.36), we have

(
β−ηy0

)T{ k∑
i=1

λ0i
[∇yyfi

]}(
β−ηy0

)= 0 (3.37)

which, in view of (i), yields

β= ηy0. (3.38)

From (3.27) and (3.38), we have

k∑
i=1

(
αi−ηλ0i

)[∇yfi−z0i
]= 0. (3.39)

According to assumption (ii), equation (3.39) implies

αi = ηλ0i , i= 1,2, . . . ,k. (3.40)

If η = 0, then αi = 0, i = 1,2, . . . ,k and from (3.38), β = 0. From (3.24), s = 0. From
(3.28), µi = 0, i = 1,2, . . . ,k. Thus, we obtain (α,β,γ,s,µ,η) = 0 which contradicts
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condition (3.35). Hence η > 0. From (3.40) and λ > 0, we have αi > 0, i= 1,2, . . . ,k. By
(3.24), (3.38), and (3.40) we get

k∑
i=1

λ0i
(∇xfi+wi

)= s
η
≥ 0. (3.41)

By (3.34), (3.38), and η > 0 we have

y0 = β
η
≥ 0. (3.42)

From (3.32) and (3.41), it follows that

xT0
k∑
i=1

λ0i
(∇xfi+wi

)= 0. (3.43)

From (3.25), (3.41), (3.42), and (3.43), we know that (x0,y0,λ0,z01,x
0
2 , . . . ,z

0
k) is feasi-

ble for (VD).
Now from (3.29) and (3.38) we obtain

yT
0 z

0
i = s

(
y0 |Di

)
, i= 1,2, . . . ,k. (3.44)

Using (3.26) and (3.44) we get

fi
(
x0,y0

)+s(x0 | Ci)−yT
0 z

0
i = f

(
x0,y0

)+xT0 z0i −s(y0 |Di
)
. (3.45)

Thus, (x0,y0,λ0,w0
1 ,w

0
1 ,w

0
2 , . . . ,w

0
k) is feasible for (VD) and the objective values of

(VP) and (VD) are equal.
We claim that (x0,y0,λ0,w0

1 ,w
0
2 , . . . ,w

0
k) is an efficient solution of (VD), for if it is

not true, then there would exist (u,v,λ0,w1,w2, . . . ,wk) feasible for (VD) such that

fi(u,v)+uTwi−s
(
v |Di

)≥ fi(x0,y0)+xT0w0
i −s

(
y0 |Di

)
, ∀i= 1,2, . . . ,k;

fj(u,v)+uTwj−s
(
v |Dj

)
> fj(x0,y0)+xT0w0

j −s
(
y0 |Dj

)
,

(3.46)

for some j ∈ {1,2, . . . ,k}. Using equalities (3.26) and (3.44), a contradiction to
Theorem 3.1 is obtained.
If (x0,y0,λ0,w0

1 ,w
0
2 , . . . ,w

0
k) is improperly efficient, then, for every scalar M > 0,

there exists a feasible solution (u,v,λ0,w1,w2, . . . ,wk) in (VD) and an index i such that

fi(u,v)+uTwi−s
(
v |Di

)−fi(x0,y0)+xT0w0
i −s

(
y0 |Di

)
>M

{
fj
(
x0,y0

)+xT0w0
j −s

(
y0 |Dj

)}−fj(u,v)+uTwj−s
(
v |Dj

) (3.47)

for all j satisfying

fj
(
x0,y0

)+xT0w0
j −s

(
y0 |Dj

)
> fj(u,v)+uTwj−s

(
v |Dj

)
(3.48)
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whenever

fi(u,v)+uTwi−s
(
v |Dj

)
> fi

(
x0,y0

)+xT0w0
i −s

(
y0 |Di

)
. (3.49)

Since xT0w
0
i = s(x | Ci) and yT

0 z
0
i = s(y0 |Di), (i= 1,2, . . . ,k), it implies that

fi(u,v)+uTwi−s
(
v |Di

)−fi(x0,y0)+s(x | Ci)−yT
0 z

0
i (3.50)

can be made arbitrarily large and hence for λ0 with λ0i > 0, we have

k∑
i=1

λ0i
{
fi(u,v)+uTwi−s

(
v |Di

)}
>

k∑
i=1

λ0i
{
fi
(
x0,y0

)+s(x | Ci)−yT
0 z

0
i
}
, (3.51)

which contradicts weak duality (Theorem 3.1).
In a similar manner to that of Theorem 3.3 we can prove the following.

Theorem 3.4 (strong duality). Let (x0,y0,λ0,z01,z
0
2, . . . ,z

0
k) be a properly efficient

solution for (VP) and fix λ= λ0 in (VD); and the assumptions of Theorem 3.2 are fulfilled.
Assume that (i) and (ii) of Theorem 3.3 hold. Then there exist w0

i ∈ Rn (1≤ i≤ k) such
that (x0,y0,λ0,w0

1 ,w
0
2 , . . . ,w

0
k) is a properly efficient solution of (VD).

4. Special cases. It is readily shown that (xTAx)1/2 = s(x | C), where C = {Ay,
yTAy ≤ 1} and that this set C is compact and convex.

(i) If, for all i ∈ {1,2, . . . ,k}, Ci = 0, and Di = 0, then (VP) and (VD) reduce to pro-
grams studied by Weir and Mond [7].
(ii) If (xTBix)1/2 = s(x | Ci), where Ci = {Biy,yTBiy ≤ 1}, (xTCix)1/2 = s(x |Di),

and Di = {Ciy,yTCiy ≤ 1}, i = 1,2, . . . ,k; then programs (VP) and (VD) become a
pair of symmetric dual nondifferentiable programs considered by Mond, Husain, and
Prasad [6].
(iii) If, in (FP) and (FD), k = 1,(xTBix)1/2 = s(x | Ci), where Ci = {Biy,yTBiy ≤ 1},

(xTCix)1/2 = s(x | Di), where Di = {Ciy,yTCiy ≤ 1}, then we obtain the symmetric
dual problems of Chandra, Craven, and Mond [1].
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