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BIORTHOGONALITY CONDITION FOR CREEPING
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Abstract. The biorthogonality condition for Stokes flow in annular trenches bounded by
horizontal parallel planes and concentric vertical cylinders is derived. This condition, is
needed to compute the coefficients of the eigenfunction expansion solution of the corre-
sponding Stokes flow problem.
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1. Introduction. Recently, the eigenfunction expansion method has been used ex-
tensively for solving problems of Stokes flow; (cf. [1, 2, 7, 8]). Most recently, biorthog-
onality conditions were used by Khuri to solve Stokes flow in a sectorial cavity [3] and
by Khuri and Wang for solving Stokes flow around a bend [6]. The method leads to
the development of a set of eigenfunctions, adjoint eigenfunctions, biorthogonality
conditions and an algorithm for the computation of the eigenfunction expansions.
In the present paper, we derive the biorthogonality condition for Stokes flow in annu-

lar trenches bounded by horizontal parallel planes and concentric vertical cylinders.
For biorthogonality conditions in other flow geometries, derived in a similar fashion,
see [4, 5].

2. Biorthogonality condition. In this section, we state Theorem 2.1 which gives the
biorthogonality condition satisfied by the eigenfunctions and adjoint eigenfunctions
of the following fourth-order boundary value problem:(

P0(r)y ′′(r)
)′′ +(P1(r ;α)y ′(r))′ +P2(r ;α)y(r)= 0, r ∈ [r1,r2]. (2.1)

The boundary conditions are given by

y
(
r1
)=y(r2)=y ′(r1)=y ′(r2)= 0. (2.2)

This biorthogonality condition was proved by Khuri [3].

Theorem 2.1 (biorthogonality condition). Consider the boundary value problem
given in (2.1) and (2.2) where P0(r), P ′′1 (r ;α), P2(r ;α) are continuous and P0(r) �= 0
on r1 ≤ r ≤ r2. Pi in (2.1) is a polynomial of degree at most i in the parameter α, where
i= 0,1,2, in particular, let P1(r ;α)= p11(r)α+p12(r), and we require

P21 (r ;α)−4P0(r)P2(r ;α)= p31(r)α+p32(r), p211(r)+p231(r) �≡ 0. (2.3)
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Then with P∗n defined by

P∗n =
∫ r2
r1

[
φ(n)2 (r),φ(n)1 (r)

]
B(r)

[
φ(n)1 (r)
φ(n)2 (r)

]
dr, (2.4)

we have the following biorthogonality condition:

∫ r2
r1

[
φ(m)2 (r),φ(m)1 (r)

]
B(r)

[
φ(n)1 (r)
φ(n)2 (r)

]
dr = P∗n δmn, (2.5)

where δmn is the Kronecker’s delta,

B(r)=




−1
2
p11(r)
P0(r)

0

1
2
p′′11(r)+

1
4
p31(r)
P0(r)

−1
2
p11(r)
P0(r)


 (2.6)

with

φ(n)1 (r)=yn(r),

φ(n)2 (r)= P0(r)y ′′n (r)+
1
2
P1
(
r ;αn

)
yn(r).

(2.7)

Here yi is an eigenfunction of (2.1) corresponding to the eigenvalue αi. Assume the
eigenvalues αi are simple.

3. Stokes flow in annular trenches. Next, we derive the biorthogonality condition
for Stokes flow in annular trenches bounded by horizontal parallel planes and concen-
tric vertical cylinders which was studied by Yoo and Joseph [8]. The region is given by

ν = {r ,z : 0< r1 ≤ r ≤ r2, −z1 ≤ z ≤ z1}. (3.1)

The Stokes flow equation in ν for axisymmetric flow in cylindrical coordinates is

E4Ψ(r ,z)=
(
∂2

∂r 2
− 1
r
∂
∂r
+ ∂2

∂z2

)2
Ψ(r ,z)= 0. (3.2)

We require the velocity to vanish on the rigid boundaries of the two concentric cylin-
ders where r = r1,r2 so we need

Ψ
(
r1,z

)= Ψ(r2,z)= ∂Ψ∂r
(
r1,z

)= ∂Ψ
∂r
(
r2,z

)= 0. (3.3)

Other edge data are prescribed on z =±z1 as in [8].
Separable solutions of (3.2) and (3.3) in the form

Ψ(r ,z)∼ e±pzT(r) (3.4)

exist [8], when T(r) satisfies the following equation:

T(4)− 2
r
T (3)+

(
2p2+ 3

r 2

)
T(2)−

(
2p2

r
+ 3
r 3

)
T(1)+p4T = 0 (3.5)
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and the boundary conditions

T
(
r1
)= T(r2)= T ′(r1)= T ′(r2)= 0. (3.6)

Clearly (3.5) can be rewritten in the following form:
(
1
r
T ′′
)′′
+
([
2p2

r
+ 1
r 3

]
T ′
)′
+ p

4

r
T = 0. (3.7)

Comparing with Theorem 2.1, we require αn �=αm and we have

P0(r)= 1
r
, P1(r ;α)= 2αr + 1

r 3
, P2(r ;α)= α

2

r
, (3.8)

where

α= p2. (3.9)

Since

P21 (r ;α)−4P0(r)P2(r ;α)=
4α
r 4
+ 1
r 6

(3.10)

thus

p31(r)= 4
r 4
, p32(r)= 1

r 6
. (3.11)

Clearly,

p11(r)= 2
r
; p12(r)= 1

r 3
. (3.12)

By applying Theorem 2.1, the biorthogonality condition is given by

∫ r2
r1

[
φ(m)1 (r),φ(m)2 (r)

]
B(r)

[
φ(n)1 (r)
φ(n)2 (r)

]
dr = P∗n δmn,

(
p2n ≠ p2m

)
, (3.13)

where

B(r)=

−1 0

3
r 3

−1


 . (3.14)

The eigenfunctions satisfy

φ(n)1 (r)= Tn(r),

φ(n)2 (r)= 1
r
T ′′n (r)+

(
1
r
αn+ 1

2r 3

)
Tn(r)

(3.15)

and the adjoint eigenfunctions satisfy

ψ(m)1 (r)= 1
r
T ′′m(r)+

(
1
r
αm+ 2

r 3

)
Tm(r),

ψ(m)2 (r)= Tm(r),
(3.16)

where

αn = p2n. (3.17)
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A similar biorthogonality condition was derived by Yoo and Joseph [8], whereφ(n) and
ψ(n) were defined through a two-dimensional eigenvalue problem. The eigenfunctions
and adjoint eigenfunctions that we have derived are, however, given explicitly in terms
of Tn.
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