# SUBORDINATION BY CONVEX FUNCTIONS 

RAM SINGH and SUKHJIT SINGH

(Received 18 January 1990)


#### Abstract

Let $K(\alpha), 0 \leq \alpha<1$, denote the class of functions $g(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are regular and univalently convex of order $\alpha$ in the unit disc $U$. Pursuing the problem initiated by Robinson in the present paper, among other things, we prove that if $f$ is regular in $U, f(0)=0$, and $f(z)+z f^{\prime}(z)<g(z)+z g^{\prime}(z)$ in $U$, then (i) $f(z)<g(z)$ at least in $|z|<r_{0}, r_{0}=\sqrt{5} / 3=0.745 \ldots$ if $f \in K$; and (ii) $f(z)<g(z)$ at least in $|z|<r_{1}$, $r_{1}((51-24 \sqrt{2}) / 23)^{1 / 2}=0.8612 \ldots$ if $g \in K(1 / 2)$.


Keywords and phrases. Subordination, convex function, convex function of order 1/2.
2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction. Let $S$ denote the class of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ that are regular and univalent in the unit disc $U=\{z /|z|<1\}$. For a given $\alpha, 0 \leq \alpha<1$, denote by $K(\alpha)$ the subclass of $S$ consisting of functions $f$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in U \tag{1.1}
\end{equation*}
$$

$K(\alpha)$ is called the class of convex functions of order $\alpha$ and $K=K(0)$ is the class of convex functions.
Suppose that $f$ and $g$ are regular in $|z|<\rho$ and $f(0)=g(0)$. In addition, suppose that $g$ is also univalent in $|z|<\rho$. We say that $f$ is subordinate to $g$ in $|z|<\rho$ (in symbols, $f(z) \prec g(z)$ in $|z|<\rho)$ if $f(|z|<\rho) \subset g(|z|<\rho)$.
In 1947, Robinson [2] proved that if $g(z)+z g^{\prime}(z)$ is in $S$ and $f(z)+z f^{\prime}(z) \prec g(z)+$ $z g^{\prime}(z)$ in $|z|<1$, then $f(z)<g(z)$ at least in $|z|<r_{0}=1 / 5$. Subsequently, Singh and Singh [4] increased the constant $r_{0}$ to $2-\sqrt{3}=0.268 \ldots$. Miller, Mocanu, and Read [1] further increased the constant to $4-\sqrt{13}=0.3944 \ldots$.
Here, we consider the problem of Robinson when $g \in K$ and $K(1 / 2)$, respectively. (It is easy to see that $g(z)+z g^{\prime}(z)$ is close-to-convex and hence univalent in $|z|<1$ when $g \in K$.) We remark that our method works even when $g \in K(\alpha)$. However, calculations in this general case become so cumbersome that the result obtained does not commensurate with the input labour. We, therefore, confine ourselves to the particular cases $\alpha=0$ and $\alpha=1 / 2$.
2. Preliminaries. We need the following results.

Lemma 2.1. Suppose that $f$ and $g$ are regular in $U, f(0)=g(0)$, and $g^{\prime}(0) \neq 0$. Suppose further that

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)>-\frac{1}{2}, \quad z \in U . \tag{2.1}
\end{equation*}
$$

Then if $f(z) \prec g(z)$ in $U$, we have

$$
\begin{equation*}
\frac{1}{z} \int_{0}^{z} f(t) d t \prec \frac{1}{z} \int_{0}^{z} g(t) d t, \quad z \in U . \tag{2.2}
\end{equation*}
$$

We observe that (2.1) implies that $g$ is close-to-convex and hence univalent in $U$ and that the right-hand side function in (2.2) is convex in $U$ [3]. Lemma 2.1 is due to Miller, Mocanu, and Reade [1].
The underlying idea of the following result is essentially due to Zomorvič [6] (also, see [5]).

Lemma 2.2. Let $P$ be regular in $U, P(0)=1$, and $\operatorname{Re} P(z)>0$ in $U$. Let $\mu$ and $\lambda$ be fixed real numbers, $-\infty<\mu<\infty, \lambda \geq 0$, and $|z|=r<1$. Then

$$
\operatorname{Re}\left[\mu P(z)+\frac{z P^{\prime}(z)}{P(z)+\lambda}\right] \geq\left\{\begin{align*}
&-(\sqrt{\lambda(\mu+1)}-\sqrt{(a+\lambda)})^{2}, \text { if } \frac{\lambda(a+\lambda)}{(a-\rho+\lambda)^{2}} \geq \mu+1  \tag{2.3}\\
& \geq \frac{\lambda(a+\lambda)}{(a+\rho+\lambda)^{2}}, \\
&(a-\rho)\left(\mu-\frac{\rho}{a-\rho+\lambda}\right), \text { if } \mu+1>\frac{\lambda(a+\lambda)}{(a-\rho+\lambda)^{2}}, \\
&(a+\rho)\left(\mu+\frac{\rho}{a+\rho+\lambda}\right), \text { if } \mu+1<\frac{\lambda(a+\lambda)}{(a+\rho+\lambda)^{2}},
\end{align*}\right.
$$

where $a=\left(1+r^{2}\right) /\left(1-r^{2}\right)$ and $\rho=2 r /\left(1-r^{2}\right)$.
Proof. Making use of the inequality (2.3) (see [5])

$$
\begin{equation*}
\left|z P^{\prime}(z)-\frac{P^{2}(z)-1}{2}\right| \leq \frac{\rho^{2}-\rho_{0}^{2}}{2}, \tag{2.4}
\end{equation*}
$$

where $|P(z)-a|=\rho_{0} \leq \rho$, we get

$$
\begin{equation*}
\operatorname{Re}\left[\mu P(z)+\frac{z P^{\prime}(z)}{P(z)+\lambda}\right] \geq \operatorname{Re}\left[\mu P(z)+\frac{P(z)-\lambda}{2}+\frac{\left(\lambda^{2}-1\right)(\overline{P(z)}+\lambda)}{2|P(z)+\lambda|^{2}}\right]-\frac{\rho^{2}-\rho_{0}^{2}}{2|P(z)+\lambda|} . \tag{2.5}
\end{equation*}
$$

Taking $P(z)=a+\xi+i \eta$ and $R_{1}^{2}=(a+\xi+\lambda)^{2}+\eta^{2}$, we get

$$
\begin{align*}
\operatorname{Re}\left[\mu P(z)+\frac{z P^{\prime}(z)}{P(z)+\lambda}\right] & \geq \mu(a+\xi)+\frac{a+\xi-\lambda}{2}+\frac{\left(\lambda^{2}-1\right)(a+\xi+\lambda)}{2 R_{1}^{2}}-\frac{\rho^{2}-\xi^{2}-\eta^{2}}{2 R_{1}} \\
& =S(\xi, \eta) \tag{2.6}
\end{align*}
$$

Now it is easy to see that $\partial S(\xi, \eta) / \partial \eta=0$ and $\partial^{2} S(\xi, \eta) / \partial \eta^{2}>0$ at $\eta=0$. Therefore,

$$
\begin{align*}
\min _{\eta} S(\xi, \eta) & =S(\xi, 0) \\
& =\mu(a+\xi) \frac{a+\xi-\lambda}{2}+\frac{\lambda^{2}-1}{2(a+\xi+\lambda)}-\frac{\rho^{2}-\xi^{2}}{2(a+\xi+\lambda)}  \tag{2.7}\\
& =(\mu+1) R+\frac{\lambda(a+\lambda)}{R}-(\mu+2) \lambda-a \\
& =L(R),
\end{align*}
$$

where $R=a+\xi+\lambda$. Now, using the fact that $|R(z)-a|<\rho$, we obtain the inequality

$$
\begin{equation*}
a-\rho+\lambda \leq R \leq a+\rho+\lambda . \tag{2.8}
\end{equation*}
$$

It is observed that at $R=R_{0}=(\lambda(a+\lambda) /(\mu+1))^{1 / 2}, \partial L(R) / \partial R=0$ and $\partial^{2} L(R) / \partial R^{2}>$ 0 . Thus, $R=R_{0}$ gives the minimum value of $L(R)$ provided $R_{0}$ lies in the range of $R$. In view of (2.8), this is the case if the inequality

$$
\begin{equation*}
\frac{\lambda(a+\lambda)}{(a-\rho+\lambda)^{2}} \geq \mu+1 \geq \frac{\lambda(a+\lambda)}{(a+\rho+\lambda)^{2}} \tag{2.9}
\end{equation*}
$$

is satisfied. Thus, if (2.9) holds, we have

$$
\begin{equation*}
\min _{R} L(R)=L\left(R_{0}\right)=-(\sqrt{\lambda(\mu+1)}-\sqrt{\lambda+a})^{2} . \tag{2.10}
\end{equation*}
$$

Also, it is easy to check that when $\mu+1>\lambda(a+\lambda) /(a-\rho+\lambda)^{2}, L(R)$ is an increasing function of $R$. Therefore, in this case,

$$
\begin{equation*}
\min _{R} L(R)=L(a-\rho+\lambda)=(a-\rho)\left(\mu-\frac{\rho}{a-\rho+\lambda}\right) \tag{2.11}
\end{equation*}
$$

On the other hand, when $\mu+1<\lambda(a+\lambda) /(a+\rho+\lambda)^{2}, L(R)$ is a decreasing function of $R$. Therefore, in this case,

$$
\begin{equation*}
\min _{R} L(R)=L(a+\rho+\lambda)=(a+\rho)\left(\mu+\frac{\rho}{a+\rho+\lambda}\right) \tag{2.12}
\end{equation*}
$$

This completes the proof of Lemma 2.2.

## 3. Theorems and their proofs

Theorem 3.1. Let $f$ be regular in $U$ with $f(0)=0$ and let $g \in K$. Suppose that

$$
\begin{equation*}
f(z)+z f^{\prime}(z) \prec g(z)+z g^{\prime}(z) \quad \text { in } U . \tag{3.1}
\end{equation*}
$$

Then $f(z)<g(z)$ at least in $|z|<r_{0}$, where $r_{0}=\sqrt{5} / 3=0.745 \ldots$.
Proof. Let us take

$$
\begin{equation*}
h(z)=g(z)+z g^{\prime}(z) \tag{3.2}
\end{equation*}
$$

Since $g \in K$, we can put

$$
\begin{equation*}
1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=P(z) \tag{3.3}
\end{equation*}
$$

where $P(z)$ is regular in $U, P(0)=1$, and $\operatorname{Re} P(z)>0$ in $U$. Now, from (3.2) and (3.3), we get

$$
\begin{equation*}
1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=P(z)+\frac{z P^{\prime}(z)}{P(z)+1} \tag{3.4}
\end{equation*}
$$

Taking $\mu=\lambda=1$ in Lemma 2.2, we easily obtain

$$
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right) \geq \begin{cases}\frac{1-2 r}{1+r}, & \text { if } 0 \leq r<\frac{3}{5}  \tag{3.5}\\ -2\left[1-\frac{a}{\sqrt{1-r^{2}}}\right]^{2}, & \text { if } \frac{3}{5} \leq r<1,\end{cases}
$$

where $|z|=r<1$. Now, it is easy to verify that for $0 \leq r<3 / 5, \operatorname{Re}\left(1+z h^{\prime \prime}(z) / h^{\prime}(z)\right)>$ $-1 / 2$ and for $3 / 5 \leq r<1, \operatorname{Re}\left(1+z h^{\prime \prime}(z) / h^{\prime}(z)\right)>-1 / 2$ whenever $9 r^{4}+22 r^{2}-15<0$ or whenever $r<r_{0}$, where $r_{0}=\sqrt{5} / 3$ is the smallest positive root of $9 r^{4}+22 r^{2}-15=0$. The assertion of our theorem now follows from Lemma 2.1.

Theorem 3.2. Let $f$ be regular in $U$ with $f(0)=0$ and let $g \in K(1 / 2)$. Suppose that

$$
\begin{equation*}
f(z)+z f^{\prime}(z)<g(z)+z g^{\prime}(z) \quad \text { in } U . \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(z) \prec g(z) \tag{3.7}
\end{equation*}
$$

at least in $|z|<r_{1}$, where $r_{1}=((51-24 \sqrt{2}) / 23)^{1 / 2}=0.8612 \ldots$.
Proof. Let us put

$$
\begin{equation*}
h(z)=g(z)+z g^{\prime}(z) . \tag{3.8}
\end{equation*}
$$

Since $g \in K(1 / 2)$, we can write

$$
\begin{equation*}
1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\frac{P(z)+1}{2}, \tag{3.9}
\end{equation*}
$$

where $P(z)$ is regular in $U, P(0)=1$, and $\operatorname{Re} P(z)>0$ in $U$. From (3.8) and (3.9), we obtain

$$
\begin{equation*}
1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\frac{1}{2}+\frac{P(z)}{2}+\frac{z P^{\prime}(z)}{P(z)+3} . \tag{3.10}
\end{equation*}
$$

Using Lemma 2.2 (with $\mu=1 / 2$ and $\lambda=3$ ), we obtain, after some calculations,

$$
\operatorname{Re}\left[1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right] \geq \begin{cases}\frac{2}{(1+r)(2+r)}, & \text { if } 0 \leq r<\frac{-1+\sqrt{5}}{2}  \tag{3.11}\\ 6\left[\frac{2-r^{2}}{1-r^{2}}\right]^{1 / 2}-2\left(\frac{4-3 r^{2}}{1-r^{2}}\right), & \text { if } \frac{-1+\sqrt{5}}{2} \leq r<1\end{cases}
$$

where $|z|=r<1$.
Now, we can easily check that for $0 \leq r<(-1+\sqrt{5}) / 2, \operatorname{Re}\left(1+z h^{\prime \prime}(z) / h^{\prime}(z)\right)>-1 / 2$ and for $(-1+\sqrt{5}) / 2 \leq r<1, \operatorname{Re}\left(1+z h^{\prime}(z) / h^{\prime}(z)\right)>-1 / 2$ whenever $23 r^{4}-102 r^{2}+$ $63>0$ or whenever $r<r_{1}$, where $r_{1}=((51-24 \sqrt{2}) / 23)^{1 / 2}$ is the smallest positive root of $23 r^{4}-102 r^{2}+63=0$. The desired result now follows from Lemma 2.1.

In the following theorem, we take for $g$ some distinguished members of $K$.
Theorem 3.3. Let $f$ be regular in $U$ with $f(0)=0$ and let $f(z)+z f^{\prime}(z) \prec g(z)+$ $z g^{\prime}(z)$ in $U$. Then
(a) $f(z)<g(z)$ in $U$ if $g(z)=z /(1-z)$;
(b) $f(z) \prec g(z)$ at least in $|z|<\rho_{1}=((28-8 \sqrt{7}) / 7)^{1 / 2}=0.98 \ldots$ if $g(z)=-\log (1-z)$;
(c) $f(z)<g(z)$ in $U$ if $g(z)=z+\lambda z^{2},|\lambda| \leq 1 / 5$;
(d) $f(z) \prec g(z)$ at least in $|z|<\rho_{2}=(9-\sqrt{33}) / 4=0.8138 \ldots$ if $g(z)=e^{z}-1$.

We observe that the functions $g$ defined in (a), (b), (c), and (d) belong to $K, K(1 / 2)$, $K(1 / 3)$, and $K$, respectively.

Proof. We omit the proofs of parts (a), (c), and (d) and proceed to prove part (b). Let $h(z)=g(z)+z g^{\prime}(z)$, where $g(z)=-\log (1-z)$. Then $h(0)=0$ and $h^{\prime}(0) \neq 0$. A simple computation shows that the condition

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>-\frac{1}{2} \tag{3.12}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\operatorname{Re}\left[\frac{2}{(1-z)(2-z)}+\frac{1}{2}\right]>0 . \tag{3.13}
\end{equation*}
$$

If we let $z=r e^{i \theta}, 0 \leq r<1$ and $0 \leq \theta \leq 2 \pi$, then condition (3.13) takes the form

$$
\begin{equation*}
\varphi(x)=16 r^{2} x^{2}-6 r\left(4+r^{2}\right) x+r^{4}+r^{2}+12>0, \tag{3.14}
\end{equation*}
$$

where $x=\cos \theta, 0 \leq \theta \leq 2 \pi$. For $r=0$, (3.14) is obviously satisfied. We, therefore, let $r \neq 0$. Now, it can be readily verified that at $x=x_{0}=\left(12+3 r^{2}\right) / 16 r$, we have $\varphi^{\prime}(x)=0$ and $\varphi^{\prime \prime}(x)>0$.
Thus, $x=x_{0}$ gives the minimum value of $\varphi(x)$ provided $-1 \leq x_{0} \leq 1$. This is true if $r \geq \rho_{0}=(8-\sqrt{28}) / 3=0.9028 \ldots$. Therefore, for $r \in\left[\rho_{0}, 1\right]$,

$$
\begin{equation*}
\min _{x \in[-1,1]} \varphi(x)=\varphi\left(x_{0}\right)=\frac{7 r^{4}-56 r^{2}+48}{16} . \tag{3.15}
\end{equation*}
$$

Hence, in this case, (3.14) is satisfied if $7 r^{4}-56 r^{2}+48>0$, i.e., if $r<\rho_{1}=((28-$ $8 \sqrt{7}) / 7)^{1 / 2}=0.98 \ldots$ Also, for $r \in\left[0, \rho_{0}\right)$, we can easily verify that $\varphi(x)$ is a decreasing function of $x$. Hence, in this case,

$$
\begin{align*}
\min _{x \in[-1,1]} \varphi(x) & =\varphi(1)=^{4}-6^{3}+17^{2}-24+12  \tag{3.16}\\
& =(1-r)(2-r)\left(r^{2}-3 r+6\right)>0 .
\end{align*}
$$

Therefore, we conclude that for $0 \leq r<\rho_{1}$,

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>-\frac{1}{2} . \tag{3.17}
\end{equation*}
$$

Conclusion (b) now follows in view of Lemma 2.1.

## References

[1] S. S. Miller, P. T. Mocanu, and M. O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc. 283 (1984), no. 2, 605-615. MR 85i:30052. Zbl 529.30023.
[2] R. M. Robinson, Univalent majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35. MR 8,370e. Zbl 032.15603.
[3] R. Singh and S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979), no. 3, 336-340. MR 81e:30025. Zbl 423.30007.
[4] S. Singh and R. Singh, Subordination by univalent functions, Proc. Amer. Math. Soc. 82 (1981), no. 1, 39-47. MR 82f:30019. Zbl 458.30011.
[5] V. Singh and R. S. Gupta, An extremal problem for functions with positive real part, Indian J. Pure Appl. Math. 8 (1977), no. 11, 1279-1297. MR 81d:30054. Zbl 419.30019.
[6] V. A. Zmorovič, Ueber Sternigkeits-und Schlichtheitsschranken gewisser Klassen von im Einheitskreis regulaeren Funktionen [On the boundaries of starlikeness and boundaries of univalence of certain classes of functions regular in the disc $|z|<1$ ], Ukrain. Mat. Zh. 18 (1966), no. 3, 28-39 (Russian). MR 33\#7525. Zbl 178.07901.

Ram Singh and Sukhjit Singh: Department of Mathematics, Punjabi University, Patiala-147002 (PunJab), IndiA

