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A SUBORDINATION THEOREM FOR SPIRALLIKE FUNCTIONS
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Abstract. We prove a subordination relation for a subclass of the class of λ-spirallike
functions.
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1. Introduction. Let K denote the usual class of convex functions. Denote by Sp(λ),
−π/2 < λ < π/2, the class of functions f(z) = z+a2z2+··· which are analytic in E
and satisfy therein the condition

Re

[
eiλ
zf ′(z)
f(z)

]
> 0. (1.1)

Spacek [3] proved that members of Sp(λ), known as λ spirallike functions, are univa-
lent in E. In 1989, Silverman [2] proved that if

∞∑
n=2

[
1+(n−1)secλ]∣∣an∣∣≤ 1

(
|λ|< π

2

)
, (1.2)

then the function f(z)= z+∑∞
n=2anzn belongs to Sp(λ). Let us denote by G(λ), the

class of function f(z) = z+∑∞
n=2anzn whose coefficients satisfy the condition (1.2).

Note that G(0) is a subclass of the class of starlike functions (with respect to the
origin) (see Silverman [1]).
In this paper, we prove a subordination theorem for the class G(λ). To state and

prove our main result we need the following definitions and lemma.

Definition 1.1. If f(z)=∑∞
n=0anzn and g(z)=

∑∞
n=0bnzn are analytic in |z|< r ,

then their Hadamard product/convolution, f ∗g is the function defined by the power
series

(f ∗g)(z)=
∞∑
n=0

anbnzn. (1.3)

The function f ∗g is also analytic in |z|< r .
Definition 1.2. Let f be analytic in E, g analytic and univalent in E and f(0) =

g(0). Then by the symbol f(z) ≺ g(z) (f subordinate to g) in E, we shall mean that
f(E)⊂ g(E).
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Definition 1.3. A sequence {bn}∞1 of complex numbers is said to be a subordi-
nating factor sequence if whenever f(z)=∑∞

k=1akzk, a1 = 1 is regular, univalent and
convex in E, we have

∞∑
k=1
bkakzk ≺ f(z) in E. (1.4)

Lemma 1.4. The sequence {bn}∞1 is a subordinating factor sequence if and only if

Re

[
1+2

∞∑
n=1

bnzn
]
> 0, (z ∈ E). (1.5)

This lemma which gives a beautiful characterisation of a subordinating factor se-
quence is due to Wilf [4].

2. Main theorem

Theorem 2.1. Let f ∈G(λ). Then
1+secλ
2(2+secλ)(f ∗g)(z)≺ g(z), (z ∈ E) (2.1)

for every function g in the class K.
In particular

Ref(z) >− 2+secλ
(1+secλ) , (z ∈ E). (2.2)

The constant (1+secλ)/2(2+secλ) cannot be replaced by any larger one.

Taking λ= 0, we obtain the following corollary.
Corollary 2.2. If f(z) = z+a2z2+··· is regular in E and satisfies therein the

condition
∞∑
n=2

n
∣∣an∣∣≤ 1, (2.3)

then for every function g in K, we have

1
3
(f ∗g)(z)≺ g(z), (|z|< 1). (2.4)

In particular, Ref(z) >−3/2, z ∈ E. The constant 1/3 is best possible.

Proof of Theorem 2.1. Let f(z) = z+∑∞
n=2anzn be any member of the class

G(λ) and let g(z)= z+∑∞
n=2 cnzn be any function in the class K. Then

1+secλ
2(2+secλ)(f ∗g)(z)=

1+secλ
2(2+secλ)

(
z+

∞∑
n=2

ancnzn
)
. (2.5)

Thus, by Definition 1.3, the assertion of our theorem will hold if the sequence(
(1+secλ)an
2(2+secλ)

)∞
n=1

(2.6)

is a subordinating factor sequence, with a1 = 1. In view of the lemma, this will be the
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case if and only if

Re

[
1+2

∞∑
n=1

1+secλ
2(2+secλ)anz

n

]
> 0, (z ∈ E). (2.7)

Now

Re

[
1+1+secλ

2+secλ
∞∑
n=1

anzn
]

= Re
[
1+ 1+secλ

2+secλz+
1

2+secλ
∞∑
n=2
(1+secλ)anzn

]

>
[
1− 1+secλ

2+secλr −
1

2+secλ
∞∑
n=2

(
1+(n−1)secλ)∣∣an∣∣rn

]

(because 1+secλ≤ 1+(n−1)secλ for all n≥ 2, |λ|<π/2)

>
[
1− 1+secλ

2+secλr −
1

2+secλr
]

(|z| = r)

> 0.

(2.8)

Thus (2.7) holds true in E. This proves the first assertion. That Ref(z) > −(2 +
secλ)/(1+secλ) for f ∈G(λ) follows by taking g(z)= z/(1−z) in (2.1). To prove the
sharpness of the constant (1+secλ)/2(2+secλ), we consider the function f0 defined
by f0(z)= z−(1/(1+secλ))z2(|λ|<π/2), which is a member of the class G(λ). Thus
from the relation (2.1) we obtain

1+secλ
2(2+secλ)f0(z)≺

z
1−z . (2.9)

It can be easily verified that

min
|z|≤1

Re

[
1+secλ
2(2+secλ)f0(z)

]
=−1

2
. (2.10)

This shows that the constant (1+secλ)/2(2+secλ) is best possible.
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