ON QUASI h-PURE SUBMODULES OF QTAG-MODULES

MOHD, Z. KHAN and A. ZUBAIR

(Received 19 February 1999)

ABSTRACT. Different concepts and decomposition theorems have been done for QTAG-modules by number of authors. We introduce quasi h-pure submodules for QTAG-modules and we obtain several characterizations for quasi h-pure submodules and as a consequence we deduce a result done by Fuchs 1973.

Keywords and phrases. QTAG-module, h-neat submodules, h-pure submodules, h-dense submodules, quasi h-pure submodules and h-divisible modules.

2000 Mathematics Subject Classification. Primary 16D70, 20K10.

- **1. Introduction.** Following [4] a module M_R is called QTAG-module if it satisfies the following condition:
- (I) Any finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules.

The structure theory of such modules has been developed by various authors. Recently Singh and Khan [5] have characterized the modules in which h-neat submodules are h-pure. The main purpose of this paper is to introduce the concept of quasi h-pure submodules, a weaker version of h-pure submodules. In Section 3, some characterization of h-pure submodules are obtained (Theorems 3.2 and 3.4) for the subsequent use. In general it is known that $soc(A + B) \neq soc(A) + soc(B)$. The equality for some submodules motivated to define the concept of quasi h-pure submodules. Several characterizations of quasi h-pure submodules are obtained (Theorems 4.6 and 4.7) and as a consequence we deduce [1, Theorem 66.3] as Corollary 4.9.

- **2. Preliminaries.** Rings considered in this paper are with $1 \neq 0$ and modules are unital QTAG-module. A module in which the lattice of its submodule is totally ordered is called a serial module; in addition if it has finite composition length it is called a uniserial module. An $x \in M$ is called a uniform element if xR is a nonzero uniform (hence uniserial) submodule of M. For any module A_R with a composition series, d(A) denotes its length. If $x \in M$ is uniform, then e(x) = d(xR), $H_M(x) = \sup\{d(yR/xR) \mid y \in M \text{ and } y \text{ is uniform with } x \in yR\}$ are called exponent of x and height of x, respectively. For any $n \geq 0$, $H_n(M) = \{x \in M \mid H(x) \geq n\}$. A submodule N of M is called h-pure in M if $N \cap H_k(M) = H_k(N)$ for every $k \geq 0$ and N is called h-neat if $N \cap H_1(M) = H_1(N)$. The module M is called h-divisible if $H_1(M) = M$. For any module K, soc(K) denotes the socle of K. For other basic concepts of QTAG-module one may refer to [2, 3, 4, 5].
- **3.** *h***-pure submodules.** In this section, we have obtained some characterizations of *h*-neat and *h*-pure submodules which are used in Section 4.

First, we prove the following proposition.

PROPOSITION 3.1. A submodule N of a QTAG-module M is h-neat if and only if soc(M/N) = (soc(M) + N)/N.

PROOF. Suppose N is h-neat in M. Let \bar{y} be a uniform element in $\operatorname{soc}(M/N)$, where y may be chosen to be uniform in M. Then $\bar{y}R = (yR + N)/N \cong yR/(yR \cap N)$. Hence $d(yR/(yR \cap N)) = 1$. Put $yR \cap N = zR$, then due to h-neatness of N there exist a uniform element $w \in N$ such that $y \in wR$ and d(wR/zR) = 1. Appealing to [4, Lemma 2.3] we get $e(y-z) \leq 1$, so $y-z \in \operatorname{soc}(M)$ and we get $\bar{y} \in (\operatorname{soc}(M) + N)/N$. Thus $\operatorname{soc}(M/N) = (\operatorname{soc}(M) + N)/N$. Conversely, let x be a uniform element in $N \cap H_1(M)$, then we can find a uniform element $y \in M$ such that d(yR/xR) = 1. Hence $e(\bar{y}) = 1$ and so $\bar{y} \in \operatorname{soc}(M/N)$. Therefore, $\bar{y} = \bar{z}$, where $z \in \operatorname{soc}(M)$. Now $xR = H_1(yR) = H_1((y-z)R) \subseteq H_1(N)$. Hence N is h-neat submodule of M.

It is well known that $H_n(M/N) = (H_n(M) + N)/N$ for all nonnegative integer n.

Similar to Proposition 3.1, we have the following.

THEOREM 3.2. A submodule N of M is h-pure in M if and only if $soc(H_n(M/N)) = (soc(H_n(M)) + N)/N$, for all nonnegative integers n.

PROOF. Suppose $\operatorname{soc}(H_n(M/N)) = (\operatorname{soc}(H_n(M)) + N)/N$ holds for all $n \geq 0$. Then by Proposition 3.1 N is h-neat in M. Now suppose $N \cap H_n(M) = H_n(N)$ and x be a uniform element in $N \cap H_{n+1}(M)$, then there exists a uniform element $t \in H_n(M)$ such that d(tR/xR) = 1, so $e(\bar{t}) = 1$. Hence by assumption $\bar{t} = \bar{z}$, where $z \in \operatorname{soc}(H_n(m))$. Trivially $t - z \in N \cap H_n(M) = H_n(N)$. Therefore, $xR = H_1(tR) = H_1((t - z)R) \subseteq H_{n+1}(N)$. Hence by induction, N is h-pure submodule of M. Conversely, suppose N is h-pure in M, then by, Proposition 3.1, $\operatorname{soc}(M/N) = (\operatorname{soc}(M) + N)/N$. Now for applying induction suppose $\operatorname{soc}(H_k(M/N)) = (\operatorname{soc}(H_k(M)) + N)/N$. Let \bar{x} be a uniform element in $\operatorname{soc}(H_{k+1}(M/N)) = \operatorname{soc}((H_{k+1}(M) + N)/N)$, then x can be chosen to be a uniform element in $H_{k+1}(M)$. Now $\bar{x}R = (xR + N)/N \cong xR/(xR \cap N) = xR/yR$. Then d(xR/yR) = 1 which yields $y \in N \cap H_{k+2}(M) = H_{k+2}(N)$. Therefore we can find a uniform element $t \in H_{k+1}(N)$ such that d(tR/yR) = 1. Hence appealing to $[4, \operatorname{Lemma}\ 2.3]$ we get $e(x - t) \leq 1$. Consequently, $x - t \in \operatorname{soc}(H_{k+1}(M))$ and $\bar{x} \in (\operatorname{soc}(H_{k+1}(M) + N)/N)$. Hence we get the equality.

NOTATION 3.3. For any nonnegative integer n, we denote by $S^n(M)$ the submodule $soc(H_n(M/N))$ and by $S_n(M)$ the submodule $(soc(H_n(M)) + N)/N$ and by $S_n(M,N) = S^n(M)/S_n(M)$.

In terms of the above notation and Theorem 3.2, we have the following.

THEOREM 3.4. A submodule N of M is h-pure if and only if $S_t(M,N) = 0$ for all $t \ge 0$.

Now we prove the following which is of independent interest.

THEOREM 3.5. If N is a submodule of M and K is a proper h-pure submodule of M containing N, then the following holds

- (i) $S^{t}(M) = S^{t}(K) + S_{t}(M)$,
- (ii) $S^{t}(K) \cap S_{t}(M) = S_{t}(K)$.
- **PROOF.** (i) Let $\bar{x} \in S^t(M)$ be a uniform element where x is uniform in $H_t(M)$. Then we can get a uniform element $y \in N$ such that d(xR/yR) = 1, then $y \in N \cap K \cap H_{t+1}(M)$. As K is h-pure, $y \in H_{t+1}(K)$. Therefore there is a uniform element $z \in H_t(K)$ such that d(zR/yR) = 1. Hence $e(x-z) \le 1$ and we get $x-z \in \text{soc}(H_t(M))$. Consequently, $\bar{x} = \bar{z} + \bar{w}$, where $w \in \text{soc}(H_t(M))$ and $\bar{x} \in S^t(K) + S_t(M)$. Hence $S^t(M) = S^t(K) + S_t(M)$.
- (ii) Let $\bar{x} \in S^t(K) \cap S_t(M)$, then $\bar{x} = \bar{y} = \bar{z}$, $\bar{y} \in S^t(K)$ and $\bar{z} \in S_t(M)$. As $y z \in N$, where $y \in H_t(K)$ and $z \in \text{soc}(H_t(M))$ we have $y z \in K \cap H_t(M) = H_t(K)$ and so $y z = w \in H_t(K)$. Consequently, $z = y w \in \text{soc}(H_t(K))$. Hence $\bar{x} = \bar{z} = y w + N \in (\text{soc}(H_t(K)) + N)/N = S_t(K)$ and we get $S^t(K) \cap S_t(M) = S_t(K)$.
- **4. Quasi** h-pure submodules. In this section, we introduce quasi h-pure submodule weakening the concept of h-pure submodules. As in Theorem 3.2, one can think of the equality of $soc(N + H_n(M))$ and $soc(N) + soc(H_n(M))$. It is well known that the equality, in general does not hold. Here we examine, the consequences of the equality of the two expressions.
- **NOTATION 4.1.** For any nonnegative integer t, we denote by $N^t(M)$ the submodule $(N + H_{t+1}(M)) \cap \operatorname{soc}(H_t(M))$ and by $N_t(M)$ the submodule $N \cap \operatorname{soc}(H_t(M)) + \operatorname{soc}(H_{t+1}(M))$ and by $Q_t(M,N) = N^t(M)/N_t(M)$.

THEOREM 4.2. If N and K are submodules of QTAG-module M such that $N \subseteq K$ and K is h-pure in M, then the module $Q_n(M,N)$ and $Q_n(K,N)$ are isomorphic.

PROOF. Define a map $\sigma: N^n(K)/N_n(K) \to N^n(M)/N_n(M)$ such that $\sigma(x+N_n(K)) =$ $x + N_n(M)$. Obviously σ is an R-homomorphism. Now if for some $x \in N^n(K)$, $x \in M$ $N_n(M)$, then x = y + z, $y \in N \cap \operatorname{soc}(H_n(M))$ and $z \in \operatorname{soc}(H_{n+1(M)})$, then $y \in K \cap$ $soc(H_n(M)) \subseteq H_n(K)$ gives $y \in N \cap soc(H_n(K))$. Also $z = x - y \in K \cap soc(H_{n+1}(M))$ yields $z \in \text{soc}(H_{n+1}(K))$. Hence $x \in N_n(K)$ and we get σ , a monomorphism. We now prove that σ is an epimorphism. Consider $s \in N^n(M)$ such that s is uniform and $s \notin N_n(M)$ then s = a + b, where $a \in N$, $b \in H_{n+1}(M)$. If $s \in N$ or $s \in H_{n+1}(M)$ we get $s \in N_n(M)$. Hence $aR \cap sR = 0 = bR \cap sR$. Consequently, $aR \subseteq bR \oplus sR$ with $a = bR \oplus sR$ -b+s gives $aR \cong bR$ under the correspondence $ar \leftrightarrow -br$. Then $H_1(aR) = H_1(bR)$ and the above correspondence is identity on $H_1(aR)$. Now $a = s - b \in K \cap H_n(M) =$ $H_n(K)$, so that $H_1(aR) = H_1(bR) \subseteq H_{n+2}(M) \cap K = H_{n+2}(K)$ and we get $y \in H_{n+1}(K)$ such that $H_1(aR) = H_1(yR)$ and $\lambda : aR \to yR$ given by $\lambda(ar) = yr$ is identity on $H_1(aR)$. Consequently, $e(a-y) \le 1$. So that $a-y \in soc(H_n(K))$. Then the mapping $\mu: bR \to \gamma R$ such that $\mu(br) = -\gamma r$ is also identity on $H_1(bR)$ and hence $b + \gamma \in$ $\operatorname{soc}(H_{n+1}(M))$. Therefore, $b + y \in N_n(M)$. Also $a - y \in (N + H_{n+1}(K)) \cap \operatorname{soc}(H_n(K))$. Hence

$$\sigma(a - \gamma + N_n(K)) = a - \gamma + N_n(M) = s - (b + \gamma) + N_n(M) = s + N_n(M). \tag{4.1}$$

This proves that σ is an epimorphism. Hence the result follows.

THEOREM 4.3. If N is h-neat submodule of M, then N is h-pure in M if and only if $Q_n(M,N) = 0$ for every $n \ge 0$.

PROOF. Let N be h-pure in M then by, Theorem 4.2, $N^t(N)/N_t(N) \equiv N^t(M)/N_t(M)$ for all t > 0, but $N^t(N) = N_t(N)$. Therefore, $N^t(M) = N_t(M)$ and we get $Q_t(M,N) = 0$. Conversely, suppose $N \cap H_n(M) = H_n(N)$. Let x be a uniform element in $N \cap H_{n+1}(M)$ then there is a uniform element $y \in H_n(M)$ such that d(yR/xR) = 1 and also as $x \in N \cap H_{n+1}(M) \subseteq N \cap H_n(M) = H_n(N)$ we can find a uniform element $x \in H_{n-1}(N)$ such that d(zR/xR) = 1. Hence $e(y-z) \le 1$ and so $y-z \in \operatorname{soc}(M)$ but $y-z \in N \cap H_n(M)$ and $y-z \in \operatorname{soc}(H_{n-1}(M))$. Therefore, $y-z \in (N+H_n(M)) \cap \operatorname{soc}(H_{n-1}(M))$ but $N^{t-1}(M) = N_{t-1}(M)$, we get $y-z \in N \cap \operatorname{soc}(H_{n-1}(M)) + \operatorname{soc}(H_n(M))$. So y-z = a+b, $a \in N \cap \operatorname{soc}(H_{n-1}(M))$, $b \in \operatorname{soc}(H_n(M))$, which gives $y-b=a+z \in N \cap H_n(M) = H_n(N)$. Hence $xR = H_1(yR) = H_1((y-b)R) \subseteq H_{n+1}(N)$. Therefore, N is h-pure in M.

The question: what are the submodules for which $Q_n(M,N) = 0$ for all $n \ge 0$? Gave the motivation to define the following.

DEFINITION 4.4. A submodule N of a QTAG-module M is quasi h-pure in M if $Q_n(M,N)=0$ for all $n \ge 0$.

PROPOSITION 4.5. If N is h-pure submodule of M or if N is a subsocle of M, then N is quasi h-pure.

PROOF. If N is h-pure, then appealing to Theorem 4.3, we get N to be quasi h-pure. Now if $N \subseteq \operatorname{soc}(M)$, then trivially $N^t(M) = N_t(M)$ for all $t \ge 0$. Hence N is quasi h-pure submodule of M.

Now we give the following nice characterization of quasi h-pure submodule.

THEOREM 4.6. If N is a submodule of a QTAG-module M, then the following are equivalent:

- (a) N is quasi h-pure in M.
- (b) $soc(N + H_n(M)) = soc(N) + soc(H_n(M))$ for all $n \ge 1$.
- (c) $H_1(N \cap H_n(M)) = H_1(N) \cap H_{n+1}(M)$ for all $n \ge 1$.

PROOF. (a) \Leftrightarrow (b). Suppose N is quasi h-pure in M then $Q_n(M,N)=0$ for all $n\geq 0$. Therefore, $N^t(M)=N_t(M)$ gives $\operatorname{soc}(N+H_1(M))=\operatorname{soc}(N)+\operatorname{soc}(H_1(M))$ for t=0. Now suppose (b) holds for all $t\leq m$, then $\operatorname{soc}(N+H_{m+1}(M))\subseteq\operatorname{soc}(N+H_m(M))=\operatorname{soc}(N)+\operatorname{soc}(H_m(M))$. Consequently,

$$\operatorname{soc}(N + H_{m+1}(M)) = (N + H_{m+1}(M)) \cap [\operatorname{soc}(N) + \operatorname{soc}(H_m(M))]$$

$$= \operatorname{soc}(N) + (N + H_{m+1}(M)) \cap \operatorname{soc}(H_m(M))$$

$$= \operatorname{soc}(N) + N \cap \operatorname{soc}(H_m(M)) + \operatorname{soc}(H_{m+1}(M))$$

$$= \operatorname{soc}(N) + \operatorname{soc}(H_{m+1}(M)).$$

$$(4.2)$$

Hence (b) holds for all $n \ge 1$. Now suppose (b) holds then trivially

$$(N+H_{n+1}(M)) \cap \operatorname{soc}(H_n(M)) \subseteq N \cap \operatorname{soc}(H_n(M)) + \operatorname{soc}(H_{n+1}(M)). \tag{4.3}$$

Hence $Q_n(M,N) = 0$ for all $n \ge 1$. Therefore N is quasi h-pure in M.

(b) ⇔(c). Suppose (b) holds. Trivially $H_1(N \cap H_n(M)) \subseteq H_1(N) \cap H_{n+1}(M)$. Let x be a uniform element in $H_1(N) \cap H_{n+1}(M)$, then we get uniform elements $y \in N$ and $z \in H_n(M)$ such that d(yR/xR) = 1 and d(zR/xR) = 1. Hence appealing to [4, Lemma 2.3] we get $e(y-z) \le 1$, so $y-z \in \operatorname{soc}(N+H_n(M)) = \operatorname{soc}(N) + \operatorname{soc}(H_n(M))$. Hence y-z = u+v, $u \in \operatorname{soc}(N)$ and $v \in \operatorname{soc}(H_n(M))$. Thus $y-u=v+z \in N \cap H_n(M)$, consequently $xR = H_1((y-u)R) = H_1((v+z)R) \subseteq H_1(N \cap H_n(M))$. Hence (c) follows. Now suppose (c) holds. Let x be a uniform element in $\operatorname{soc}(N+H_n(M))$ then x=w+t, where $w \in N$ and $t \in H_n(M)$. Now $H_1(wR) = H_1((w-x)R) = H_1(-tR) \subseteq H_1(N) \cap H_{n+1}(M) = H_1(N \cap H_n(M))$. Hence, as done in the proof of Theorem 4.2, we get an element $s \in N \cap H_n(M)$ such that $H_1(wR) = H_1(-tR) = H_1(sR)$ and $e(w-s) \le 1$ and $e(s+t) \le 1$. Thus $x = w - s + s + t \in \operatorname{soc}(N) + \operatorname{soc}(H_n(M))$ and we get (b). □

Although the following result follows from Theorem 4.3, but using the above characterization we get a new proof.

THEOREM 4.7. If N is a submodule of M, then N is h-pure in M if and only if N is h-neat and quasi h-pure in M.

PROOF. If N is h-pure in M, then Theorem 4.3 implies that N is quasi h-pure in M. Now suppose N is h-neat and quasi h-pure in M and $N \cap H_n(M) = H_n(N)$, then $H_{n+1}(N) = H_1(N \cap H_n(M)) = H_1(N) \cap H_{n+1}(M)$ by above Theorem 4.6. But $H_1(N) \cap H_{n+1}(M) = (N \cap H_1(M)) \cap H_{n+1}(M) = N \cap H_{n+1}(M)$. Hence by induction N is h-pure in M

Now as an application of Theorem 4.6(b), we have the following.

THEOREM 4.8. If N is a submodeule of M, then the following hold:

- (i) If soc(N) is h-dense in soc M, then N is quasi h-pure in M.
- (ii) If N is quasi h-pure in M, then every essential submodule of N is quasi h-pure in M.

PROOF. (i) Since $soc(M) = soc(N) + soc(H_n(M))$ for all $n \ge 0$, so $soc(N + H_n(M)) = soc(N) + soc(H_n(M))$ for all $n \ge 0$. Therefore N is quasi h-pure in M.

(ii) Let K be an essential submodule of N, then $soc(K+H_n(M)) \subseteq soc(N+H_n(M)) = soc(N) + soc(H_n(M))$. Hence $soc(K+H_n(M)) = soc(K) + soc(H_n(M))$, consequently K is quasi h-pure in M.

COROLLARY 4.9 (see [1, Theorem 66.3]). If S is a h-dense subsocle of M, then any submodule N with $soc(N) \subseteq S$ can be extended to an h-pure submodule K of M such that soc(K) = S.

PROOF. Let K be an h-neat submodule such that $N \subseteq K$ and $S = \operatorname{soc}(K)$. Then by Theorem 4.8, K is quasi h-pure in M. Hence by Theorem 4.7, K is h-pure submodule of M.

PROPOSITION 4.10. *If* N *is a submodule of* M, *then the following hold:*

- (i) $Q_{m+n}(M,N) = Q_m(H_n(M), N \cap H_n(M))$ for all $n, m \ge 0$.
- (ii) $Q_j(M, N) = 0$ for j = 0, 1, ..., n if and only if $soc(N + H_t(M)) = soc(N) + soc(H_t(M))$ for t = 1, ..., n + 1.

(iii) If N is quasi h-pure in M, then $N \cap H_n(M)$ is quasi h-pure in $H_n(M)$ for all n. Also if for some $n \ge 1$, $N \cap H_n(M)$ is quasi h-pure in $H_n(M)$ and $soc(N + H_t(M)) = soc(N) + soc(H_t(M))$ for t = 1, 2, ..., n, then N is quasi h-pure in M.

PROOF. (i) Is straightforward.

- (ii) If $\operatorname{soc}(N + H_t(M)) = \operatorname{soc}(N) + \operatorname{soc}(H_t(M))$ for t = 1, 2, ..., n + 1, then trivially $Q_j(M,N) = 0$ for j = 0, 1, ..., n. Conversely, as $Q_0(M,N) = 0$ we get $\operatorname{soc}(N + H_1(M)) = \operatorname{soc}(N) + \operatorname{soc}(H_1(M))$. Now suppose $\operatorname{soc}(N + H_t(M)) = \operatorname{soc}(N) + \operatorname{soc}(H_t(M))$ for t < n + 1. Then $\operatorname{soc}(N + H_{t+1}(M)) \subseteq \operatorname{soc}(N) + \operatorname{soc}(H_t(M))$. As done in Theorem 4.6 we get $\operatorname{soc}(N + H_{t+1}(M)) = \operatorname{soc}(N) + \operatorname{soc}(H_{t+1}(M))$.
- (iii) Due to (i), $N \cap H_n(M)$ is quasi h-pure in $H_n(M)$. Conversely, if $N \cap H_n(M)$ is quasi h-pure in $H_n(M)$, $Q_{m+n}(M,N) = 0$ for all $m \ge 0$. But from (ii) we have $Q_j(M,N) = 0$ for $j = 0,1,\ldots,n-1$. Hence $Q_t(M,N) = 0$ for all $t \ge 0$. So that N is quasi h-pure in M.

Now we prove the following interesting result.

PROPOSITION 4.11. If N is a submodule of M and K is h-neat submodule of N. Then any submodule T of M maximal with respect to $T \cap N = K$, is h-neat and $soc(M) \subseteq T + soc(N)$.

PROOF. Trivially T/K is complement of N/K in M/K. Hence T/K is h-neat in M/K and $\operatorname{soc}(M/K) = \operatorname{soc}(T/K) = \operatorname{soc}(N/K)$. Using Proposition 3.1 we have $\operatorname{soc}(N/K) = (\operatorname{soc}(N) + K)/K$. Hence $\operatorname{soc}(M) \subseteq T + \operatorname{soc}(N)$. Let x be a uniform element in $T \cap H_1(M)$, then there exists a uniform element $y \in M$ such that d(yR/xR = 1) if $y \in T$ we are done, otherwise h-neatness of T/K in M/K will result a uniform element $\bar{t} \in T/K$ such that $d(\bar{t}R/\bar{x}R) = 1$. Hence $e(\bar{y} - \bar{t}) \le 1$. Therefore, $\bar{y} - \bar{t} \in \operatorname{soc}(M/K)$. Hence we can find $u \in \operatorname{soc}(N)$ and $v \in T$ such that $y - t - u - v \in K$. So y = t + u + v + w, $w \in K$. Hence $xR = H_1((t + u + v + w)R) = H_1((t + v + w)R) \subseteq H_1(T)$. Therefore T is h-neat in M.

THEOREM 4.12. If K is h-pure submodule of $H_n(M)$, where $n \ge 0$. Then every submodule T of M maximal with respect to $T \cap H_n(M) = K$, is h-pure in M.

PROOF. Proposition 4.11 yields that T is h-neat in M and $soc(M) \subseteq T + soc(H_n(M))$. Hence $soc(T + H_t(M)) = soc(T) + soc(H_t(M))$ for t = 1, 2, ..., n. Trivially $T \cap H_n(M)$ is quasi h-pure in $H_n(M)$. Hence by Proposition 4.10(iii), T is quasi h-pure in M. Therefore by Theorem 4.7, T is h-pure in M.

As in [3] a submodule N of M is called h-dense if M/N is h-divisible. From the notation of $N^t(M)$ and $N_t(M)$ it is easy to see that $N^t(M) = \operatorname{soc}(N \cap H_t(M) + H_{t+1}(M))$ and $N_t(M) = \operatorname{soc}(\operatorname{soc}(N) \cap H_t(M) + H_{t+1}(M))$. Now using Theorem 4.6 we establish the following results.

PROPOSITION 4.13. If N is a submodule of M and K is a quasi h-pure h-dense submodule of N, then $Q_t(M,K) = Q_t(M,N)$ for all $t \ge 0$.

PROOF. Due to h-divisibility of N/K, we have $N = K + H_t(N)$ for all $t \ge 0$. Hence $N^t(M) = K^t(M)$ for all $t \ge 0$. Since K is quasi h-pure in N, so by Theorem 4.6, $\operatorname{soc}(N) = K^t(M)$

 $soc(K) = + soc(H_t(N))$ for all $t \ge 0$. Now

$$N_{t}(M) = \operatorname{soc}(\operatorname{soc}(N) \cap H_{t}(M) + H_{t+1}(M)) = (\operatorname{soc}(N))^{t}(M)$$

$$= (\operatorname{soc}(N) + H_{t+1}(M)) \cap \operatorname{soc}(H_{t}(M))$$

$$= (\operatorname{soc}(K) + \operatorname{soc}(H_{t+1}(N) + H_{t+1}(M)) \cap \operatorname{soc}(H_{t}(M)))$$

$$= (\operatorname{soc}(K) + H_{t+1}(M)) \cap \operatorname{soc}(H_{t}(M)) = (\operatorname{soc}(K))^{t}(M) = K_{t}(M).$$
(4.4)

Therefore, $Q_t(M,K) = Q_t(M,N)$.

PROPOSITION 4.14. If N is quasi h-pure in M and $soc(N) \subseteq \cap_1^{\infty} H_n(M)$, then $N \subseteq \cap_1^{\infty} H_n(M)$.

PROOF. Suppose every uniform element of N of exponent t lies inside $\cap H_n(M)$. Let x be a uniform element in N such that e(x) = t + 1. Then we can find a uniform element $y \in xR$ such that d(xR/yR) = 1. Hence $y \in \cap H_n(M)$ and we get $y \in H_n(M)$ for every n. Consequently, there is a uniform element $z_i \in H_i(M)$ such that $d(z_iR/yR) = 1$ which in turn will give $e(x-z_i) \le 1$. So $x-z_i \in \operatorname{soc}(N+H_i(M)) = \operatorname{soc}(N) + \operatorname{soc}(H_i(M))$. Let $x-z_i = u+v$, $u \in \operatorname{soc}(N)$ and $v \in \operatorname{soc}(H_i(M))$. Since $\operatorname{soc}(N) \subset \cap H_n(M)$, so $x \in \cap H_n(M)$ and we get $N \subseteq \cap_{i=1}^{\infty} H_n(M)$.

Finally appealing to Theorem 4.2 and Proposition 4.13 we have the following.

THEOREM 4.15. If N is a submodule of M, then the following hold:

- (a) If N is quasi h-pure in M and K is h-pure in M such that $N \subseteq K$, then N is quasi h-pure in K.
 - (b) If N is quasi h-pure in an h-pure submodule K of M, then N is quasi h-pure in M.
- (c) If N is quasi h-pure in M, then every quasi h-pure and h-dense submodule K of N is quasi h-pure in M.
- (d) If N has a quasi h-pure and h-dense submodule K such that K is also quasi h-pure in M, then N is quasi h-pure in M.

REFERENCES

- [1] L. Fuchs, *Infinite Abelian Groups. Vol. II*, Academic Press, New York, 1973. MR 50#2362. Zbl 257.20035.
- M. Z. Khan, On h-purity in QTAG-modules, Comm. Algebra 16 (1988), no. 12, 2649–2660.
 MR 89m:16044. Zbl 659.16017.
- [3] M. Z. Khan and R. Bano, On h-purity in QTAG-modules. II, Comm. Algebra 17 (1989), no. 6, 1387–1394. MR 90e:16038. Zbl 676.16019.
- [4] S. Singh, Abelian groups like modules, Acta Math. Hungar. 50 (1987), no. 1-2, 85-95.
 MR 88g:16023. Zbl 628.16014.
- [5] S. Singh and M. Z. Khan, *TAG-modules with complement submodules h-pure*, Internat. J. Math. Math. Sci. 21 (1998), no. 4, 801–814. MR 99i:16005. Zbl 931.16004.

MOHD. Z. KHAN: DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202 002, INDIA

A. Zubair: Department of Mathematics, Aligarh Muslim University, Aligarh-202 002, India