SMALL BOUND ISOMORPHISMS OF THE DOMAIN OF A CLOSED *-DERIVATION

TOSHIKO MATSUMOTO and SEIJI WATANABE

(Received 31 December 1998)

ABSTRACT. The domain $\mathfrak{D}(\delta)$ of a closed *-derivation δ in C(K) (K : a compact Hausdorff space) is a generalization of the space $C^{(1)}[0,1]$ of differentiable functions on [0,1]. In this paper, a problem proposed by Jarosz (1985) is studied in the context of derivations instead of $C^{(1)}[0,1]$.

Keywords and phrases. Closed *-derivation, linear isomorphism.

2000 Mathematics Subject Classification. Primary 46E15, 46J10, 46J15, 47B38.

Let K_1 and K_2 be two compact Hausdorff spaces. $C(K_i)$ denotes a space of all complex valued continuous functions on K_i (i = 1, 2). Let T be a surjective linear isometry from $C(K_1)$ to $C(K_2)$. Then the Banach-Stone theorem states that there exist a homeomorphism τ from K_2 to K_1 and a function w in $C(K_2)$ with |w(y)| = 1 ($y \in K_2$) such that

$$Tf(y) = w(y)f(\tau(y)) \quad \text{for } f \in C(K_1), \ y \in K_2.$$
(1)

That is, the existence of a surjective linear isometry between $C(K_1)$ and $C(K_2)$ implies that K_1 and K_2 are homeomorphic. Amir [1] and Cambern [2] extended this theorem from this viewpoint as follows.

THEOREM 1 (see [1, 2]). If there is a surjective linear isomorphism $T : C(K_1) \rightarrow C(K_2)$ such that $||T|| ||T^{-1}|| < 2$, then K_1 and K_2 are homeomorphic.

Let X be a compact subset of the real line \mathbb{R} and $C^{(1)}(X)$ be the space of continuously differentiable functions on X with the Σ -norm defined by $||f||_{\Sigma} = \sup_{x \in X} |f(x)| + \sup_{x \in X} |f'(x)|$.

In [4], Jarosz proposed the following question: "Is there a positive ε such that for any compact subsets X, Y of the real line \mathbb{R} and any linear isomorphism $T : C^{(1)}(X) \to C^{(1)}(Y)$, $||T|| ||T^{-1}|| < \varepsilon$ implies that X and Y are homeomorphic?"

In [5], Jun and Lee obtained some partial answers for this question.

THEOREM 2 (see [5]). Let X and Y be compact subset of \mathbb{R} and $X \subset [a,b]$ and $Y \subset [c,d]$. If T is a linear isomorphism between $C^1(X)$ and $C^1(Y)$ which satisfies

(i) *if* $f'(t) \equiv 0$, *then* $(Tf)' \equiv 0$,

(ii) $||fg|| \le ||TfTg|| \le (1+\varepsilon)^2 ||fg||$,

(iii) $||f|| \le ||Tf|| \le (1+\varepsilon)||f||$,

(iv) $\varepsilon < \min\{1/49, 1/2(b-a+1), 1/2(c-d+1)\},$

then X and Y are homeomorphic.

THEOREM 3 [5]. Let X and Y be compact subsets of \mathbb{R} and $X \subset \bigcup_{i=1}^{n} [a_i, b_i]$ $(a_i < b_i < a_{i+1})$ and $\max_i \{|b_i - a_i|\} < k$ and $Y \subset \bigcup_{j=1}^{m} [c_j, d_j]$ $(c_j < d_j < c_{j+1})$ and $\max_i \{|d_j - c_j|\} < k$. If T is a linear map from $C^1(X)$ onto $C^1(Y)$ which satisfies

(i) $f'(t) \equiv 0$ if and only if $(Tf)' \equiv 0$,

(ii) $||f|| \le ||Tf|| \le (1+\varepsilon)||f||$,

(iii) $k < (4 - \sqrt{10})/6$ and $\varepsilon < 6k^2 - 8k + 1$,

then X and Y are homeomorphic.

In this paper, we consider this problem from another viewpoint. To the end, we recall a closed *-derivation.

Let *K* be a compact Hausdorff space and *C*(*K*) denotes the space of all complex valued continuous functions on *K* with the supremum norm $\|\cdot\|_{\infty}$. A closed *-derivation δ in *C*(*K*) is a linear mapping in *C*(*K*) satisfying the following conditions:

(1) The domain $\mathfrak{D}(\delta)$ of δ is a norm dense subalgebra of C(K).

(2) $\delta(fg) = \delta(f)g + f\delta(g)(f,g \in \mathfrak{D}(\delta)).$

(3) If $f_n \in \mathfrak{D}(\delta)$, $f_n \to f$, and $\delta(f_n) \to g$ implies $f \in \mathfrak{D}(\delta)$ and $\delta(f) = g$ (i.e., δ is closed as a linear operator).

(4) $f \in \mathfrak{D}(\delta)$ implies $f^* \in \mathfrak{D}(\delta)$ and $\delta(f^*) = \delta(f)^*$, where f^* means the complex conjugate of f.

The differentiation d/dt on the space $C^{(1)}([0,1])$ of continuously differentiable functions on [0,1] is a typical example of closed *-derivations. For any closed *-derivation δ in C(K), we may regard the domain $\mathfrak{D}(\delta)$ of δ as a generalization of the Banach space $C^{(1)}([0,1])$. Moreover, if $\mathfrak{D}(\delta) = C(K)$, δ is bounded and hence $\delta \equiv 0$.

Properties of the domains of closed *-derivations have been studied by many authors.

We summarize useful properties of closed *-derivations which is used later frequently without references.

PROPERTY 4 [7]. For $f(=f^*) \in \mathfrak{D}(\delta)$ and $h \in C^{(1)}([-\|f\|_{\infty}, \|f\|_{\infty}])$, $h(f)(=h \circ f) \in \mathfrak{D}(\delta)$ and $\delta(h(f)) = h'(f)\delta(f)$, where h' means the derivative of h.

PROPERTY 5 [7]. If $f \in \mathfrak{D}(\delta)$ is a constant in a neighborhood of $x \in K$, then $\delta(f)(x) = 0$.

PROPERTY 6 [7]. Let J_1 and J_2 be disjoint closed subsets of *K*. Then there is a function $f \in \mathfrak{D}(\delta)$ such that

$$f = 0 \text{ on } J_1, \quad f = 1 \text{ on } J_2, \quad (0 \le f \le 1).$$
 (2)

Now, for any fixed point $x \in K$, we define a linear functional $\eta_x \circ \delta$ on $\mathfrak{D}(\delta)$ by

$$\eta_{x} \circ \delta(f) := \delta(f)(x) \quad (f \in \mathfrak{D}(\delta)). \tag{3}$$

Let $K(\delta)$ be the set of $x \in K$ such that $\eta_x \circ \delta \neq 0$, i.e.,

$$K(\delta) = \{ x \in K : \eta_x \circ \delta \neq 0 \} = \{ x \in K : \exists f \in \mathfrak{D}(\delta) \text{ such that } \delta(f)(x) \neq 0 \}.$$
(4)

Then $K(\delta)$ is an open subset of *K*.

Throughout this paper, the norm || || in $\mathfrak{D}(\delta)$ is given by

$$\|f\| := \|f\|_{\infty} + \|\delta(f)\|_{\infty} \quad (f \in \mathfrak{D}(\delta)).$$

$$\tag{5}$$

Then we note that for $x_0 \in K(\delta)$, the norm of a linear functional $\eta_{x_0} \circ \delta$ is 1 (see [6]). In [6], we obtained the following result.

THEOREM 7. Let K_i be a compact Hausdorff space and let δ_i be a closed *-derivation in $C(K_i)$ (i = 1, 2). Let T be a surjective linear isometry between $\mathfrak{D}(\delta_1)$ and $\mathfrak{D}(\delta_2)$. Then, there exist a homeomorphism τ from K_2 to K_1 , $w_1 \in \ker(\delta_2)$ and a continuous function w_2 on $K_2(\delta_2)$ such that $\tau(K_2(\delta_2)) = K_1(\delta_1)$, $|w_1(y)| = 1$ for all $y \in K_2$, $|w_2(y)| = 1$ for all $y \in K_2(\delta_2)$,

$$(Tf)(y) = w_1(y)f(\tau(y)) \quad \text{for } f \in \mathfrak{D}(\delta_1), \ y \in K_2,$$

$$\delta_2(Tf)(y) = w_2(y)\delta_1(f)(\tau(y)) \quad \text{for } f \in \mathfrak{D}(\delta_1), \ y \in K_2(\delta_2).$$
 (6)

In this paper, we consider Jarosz's problem in the same context as this theorem.

We use the following notation, for a Banach space B, B^* denotes the conjugate space of B. B_1 and B_1^* denote the closed unit balls of B and B^* , respectively. T denotes the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ in the complex plane.

We shall prove the following theorem.

THEOREM 8. Let K_i be a compact Hausdorff space satisfying the first countable axiom, and let δ_i be a closed *-derivation in $C(K_i)$ (i = 1,2). If there exist a linear isomorphism T of $\mathfrak{D}(\delta_1)$ onto $\mathfrak{D}(\delta_2)$ with $||T|| ||T^{-1}|| < 2$ and T, T^{-1} are bounded under the uniform norm, then $K_1(\delta_1)$ and $K_2(\delta_2)$ are homeomorphic. Moreover, if the range $\Re(\delta_i)$ contains 1 (i = 1,2), then K_1 and K_2 are homeomorphic.

The proof of this theorem is done along the line in [3].

Let *K* be a compact Hausdorff space satisfying the first countable axiom and let δ be a closed *-derivation in *C*(*K*).

The following two lemmas will be used in the rest of the paper.

LEMMA 9. For $x_0 \in K(\delta)$, an open neighborhood U of x_0 and ε $(0 < \varepsilon < 1)$, there exists a function $f \in \mathfrak{D}(\delta)$ such that

$$||f|| \le 1, \qquad ||f||_{\infty} \le \varepsilon, \qquad f(x_0) = 0,$$

$$f = \delta(f) = 0 \quad on \ K \setminus U, \quad 1 > |\delta(f)(x_0)| > 1 - \varepsilon.$$
(7)

PROOF. We take an open neighborhood *V* of x_0 such that $\overline{V} \subset U$ and take a function $g \in \mathfrak{D}(\delta)$ such that

$$0 \le g \le 1, \quad g(x_0) = 1, \quad g = 0 \quad \text{on } K \setminus V.$$
 (8)

Then, $g = \delta(g) = 0$ on $K \setminus U$. Since $x_0 \in K(\delta)$, there is a function $g_{\varepsilon}(=g_{\varepsilon}^*) \in \mathfrak{D}(\delta)$ such that

$$||g_{\varepsilon}|| < 1, \quad 1 - \varepsilon = ||\eta_{x_0} \circ \delta|| - \varepsilon < |\delta(g_{\varepsilon})(x_0)|.$$
(9)

For $c_{\varepsilon} := \min\{(1 - \|\delta(g_{\varepsilon})\|_{\infty})/(1 + \|\delta(g)\|_{\infty}), \varepsilon\}$, there is a function $h \in C^{1}(0[-\|g_{\varepsilon}\|_{\infty}, \|g_{\varepsilon}\|_{\infty}])$ such that

$$\|h\|_{\infty} \le c_{\varepsilon}, \qquad h(g_{\varepsilon}(x_0)) = 0, \qquad h'(g_{\varepsilon}(x_0)) = 1, \qquad \|h'\|_{\infty} = 1.$$
 (10)

Then $f := h(g_{\varepsilon})g \in \mathfrak{D}(\delta)$ has all required properties in Lemma 9.

LEMMA 10. For $x_0 \in K(\delta)$ and ε $(0 < \varepsilon < 1)$, there exists a sequence $\{f_n\} \subset \mathfrak{D}(\delta)$ such that

$$||f_n|| \le 1, \qquad ||f_n||_{\infty} \le \frac{1}{n}, \qquad f_n(x_0) = 0,$$

$$\lim_{n \to \infty} \delta(f_n)(x) = 0 \quad (x \ne x_0), \ 1 > |\delta(f_n)(x_0)| > 1 - \varepsilon,$$

(11)

and $d_{x_0} := \delta(f_n)(x_0)$ is independent of n.

PROOF. Since *K* satisfies the first countable axiom, there is a family $\{U_n\}$ of open neighborhood of x_0 such that $U_{i+1} \subset U_i$ and $\bigcap_1^{\infty} U_n = \{x_0\}$. Then there exists a family $\{V_n\}$ of open neighborhood of x_0 such that $\overline{V}_n \subset U_n$, and there is $g_n \in \mathfrak{D}(\delta)$ such that

$$g_n(x_0) = 1, \quad 0 \le g_n \le 1, \quad g_n = 0 \quad \text{on } K \setminus V_n.$$
 (12)

Then $g_n = \delta(g_n) = 0$ on $K \setminus U_n$. Since x_0 is in $K(\delta)$, there is a function $g_{\varepsilon}(=g_{\varepsilon}^*) \in \mathfrak{D}(\delta)$ such that

$$||g_{\varepsilon}|| < 1, \quad 1 - \varepsilon = ||\eta_{x_0} \circ \delta|| - \varepsilon < |\delta(g_{\varepsilon})(x_0)|.$$
(13)

For each $c_n := \min\{(1 - \|\delta(g_{\varepsilon})\|_{\infty})/(1 + \|\delta(g_n)\|_{\infty}), 1/n\}$, there is a function $h_n \in C^1([-\|g_{\varepsilon}\|_{\infty}, \|g_{\varepsilon}\|_{\infty}])$ such that

$$||h_n||_{\infty} \le c_n, \qquad h_n(g_{\varepsilon}(x_0)) = 0, \qquad h'_n(g_{\varepsilon}(x_0)) = 1, \qquad ||h'_n||_{\infty} = 1.$$
 (14)

Then every $f_n := h_n(g_{\varepsilon})g_n \in \mathfrak{D}(\delta)$ has the properties required in Lemma 10. \Box

Let *W* be the compact Hausdorff space $W = K \times K \times T$ with the product topology. For $f \in \mathfrak{D}(\delta)$, we define $\tilde{f} \in C(W)$ by

$$\tilde{f}(x,x',z) := zf(x) + \delta(f)(x'), \tag{15}$$

for $(x, x', z) \in W$. Then we have $\|\tilde{f}\|_{\infty} = \|f\|$.

PROOF OF THEOREM 7. Let $W_i := K_i \times K_i \times T$ and $S_i = \{\tilde{f} \in C(W_i); f \in \mathfrak{D}(\delta_i)\}$ (i = 1, 2).

Define a linear isomorphism \tilde{T} of S_1 onto S_2 by

$$\widetilde{T}(\widetilde{f}) := \widetilde{T(f)} \quad (\widetilde{f} \in S_1).$$
(16)

Then \tilde{T} is well defined since $f \rightarrow \tilde{f}$ is a linear isomorphism.

We may assume that $||T^{-1}|| = 1$ and 1 < ||T|| < 2. Then we have $||\tilde{T}^{-1}|| = ||T^{-1}|| = 1$ and $||\tilde{T}|| = ||T|| < 2$. For $(y_0, y'_0, z_0) \in W_2$, let Φ be a norm-preserving extension of $\tilde{T}^*L_{(y_0, y'_0, z_0)}$ to $C(W_1)$, where $L_{(y_0, y'_0, z_0)}$ denotes the linear functional defined by

 $L_{(y_0,y'_0,z_0)}(\tilde{f}) = \tilde{f}(y_0,y'_0,z_0)$ $(\tilde{f} \in S_2)$. Then, from the Riesz representation theorem, there exists a regular Borel measure μ^{y_0, y'_0, z_0} on W_1 such that $\|\mu^{y_0, y'_0, z_0}\| = \|\Phi\| = \|\tilde{T}^*L_{(y_0,y'_0,z_0)}\| \le \|T\| < 2$ and

$$\Phi(h) = \int_{W_1} h \, d\mu^{y_0, y'_0, z_0} \quad (h \in C(W_1)).$$
(17)

Hence we have

$$z_{0}(Tf)(y_{0}) + \delta_{2}(Tf)(y'_{0}) = \int_{W_{1}} \tilde{f}(x, x', z) d\mu^{y_{0}, y'_{0}, z_{0}}$$

$$= \int_{W_{1}} (zf(x) + \delta_{1}(f)(x')) d\mu^{y_{0}, y'_{0}, z_{0}}$$
(18)

for $f \in \mathcal{D}(\delta_1)$.

In the following, we identify Φ and $\mu^{\gamma_0, \gamma'_0, z_0}$.

 μ^{x_0,x'_0,z_0} , where $(x_0,x'_0,z_0) \in W_1$, is also defined in a similar way. Then we have $\|\mu^{x_0,x'_0,z_0}\| \le 1$.

The following lemma shows that for $x_0 \in K_1(\delta_1)$, $\mu^{y,y',z}(K_1 \times \{x_0\} \times \mathbf{T})$, where $(y, y', z) \in W_2$ depends on y' only, that is, $\mu^{y,y',z}(K_1 \times \{x_0\} \times \mathbf{T})$ is independent of y, z, and any choice of norm-preserving extension of $\tilde{T}^*L_{(y,y',z)}$.

LEMMA 11. (1) For $x_0 \in K_1(\delta_1)$ and ε ($0 < \varepsilon < 1$), let $\{f_n\} \subset \mathfrak{D}(\delta_1)$ be a sequence in Lemma 10. Then for $(y, y', z) \in W_2$,

$$\mu^{\mathcal{Y},\mathcal{Y}',\mathcal{Z}}(K_1 \times \{x_0\} \times \mathbf{T}) = \left(\frac{1}{d_{x_0}}\right) \lim_{n \to \infty} \tilde{T}(\tilde{f}_n)(\mathcal{Y},\mathcal{Y}',\mathcal{Z})$$

$$= \left(\frac{1}{d_{x_0}}\right) \lim_{n \to \infty} \delta_2(T(f_n))(\mathcal{Y}').$$
(19)

(2) For $y_0 \in K_2(\delta_2)$ and ε $(0 < \varepsilon < 1)$, let $\{g_n\} \subset \mathfrak{D}(\delta_2)$ be a sequence in Lemma 10. Then for $(x, x', z) \in W_1$,

$$\mu^{x,x',z}(K_2 \times \{y_0\} \times \mathbf{T}) = \left(\frac{1}{d_{y_0}}\right) \lim_{n \to \infty} \tilde{T}^{-1}(\tilde{g}_n)(x,x',z)$$
$$= \left(\frac{1}{d_{y_0}}\right) \lim_{n \to \infty} \delta_1(T^{-1}(g_n))(x').$$
(20)

PROOF. (1) Let $\mu^{y,y',z}$ be a norm-preserving extension of $\tilde{T}^*L_{(y,y',z)}$.

$$\lim_{n \to \infty} \tilde{T}(\tilde{f}_n)(y, y', z) = \lim_{n \to \infty} \int_{W_1} \tilde{f}_n \, d\mu^{y, y', z} = \int_{W_1} \lim_{n \to \infty} \tilde{f}_n \, d\mu^{y, y', z}$$

$$= \int_{K_1 \times \{x_0\} \times \mathbf{T}} d_{x_0} \, d\mu^{y, y', z} = d_{x_0} \mu^{y, y', z} (K_1 \times \{x_0\} \times \mathbf{T}).$$
(21)

From the uniform boundedness of T,

$$\lim_{n \to \infty} \tilde{T}(\tilde{f}_n)(y, y', z) = \lim_{n \to \infty} \left(z(Tf_n)(y) + \delta_2(Tf_n)(y') \right) = \lim_{n \to \infty} \delta_2(Tf_n)(y').$$
(22)

Thus, we have

$$d_{x_0}\mu^{\mathcal{Y},\mathcal{Y}',\mathcal{Z}}(K_1 \times \{x_0\} \times \mathbf{T}) = \lim_{n \to \infty} \delta_2(Tf_n)(\mathcal{Y}')$$
(23)

which implies that for $x_0 \in K_1(\delta_1)$, $\mu^{y,y',z}(K_1 \times \{x_0\} \times \mathbf{T})$ depends on $y' \in K_2$ only.

The statement (2) is also shown by the same argument as above. Now, let M_{i} be any real number with $(1 < i) ||T|| < 2M_{i} < 2$. Let $\tilde{V}_{i} := \{c, t\}$

Now, let M_1 be any real number with $(1 <) ||T|| < 2M_1 < 2$. Let $\tilde{K}_2 := \{y \in K_2 : \exists x \in K_1 \text{ such that } |\mu^{y,y,z}(K_1 \times \{x\} \times \mathbf{T})| > M_1 \text{ for every } z \in \mathbf{T} \text{ and every norm-preserving extension } \mu^{y,y,z} \text{ of } \tilde{T}^*L_{(y,y,z)}\}$. Since $\|\mu^{y,y,z}\| = \|\tilde{T}^*L_{(y,y,z)}\| \le \|T\| < 2M_1$, for $y \in \tilde{K}_2$, there can be at most one $x \in K_1$ with the property in the definition of \tilde{K}_2 . Thus the map ρ_1 of \tilde{K}_2 to K_1 is well defined by $\rho_1(y) := x$ if x is related to y as above.

Next, we set $M_2 := 1/(2M_1)$. Let $\tilde{K}_1 := \{x \in K_1 : \exists y \in K_2 \text{ such that } |\mu^{x,x,z}(K_2 \times \{y\} \times \mathbf{T})| > M_2 \text{ for every } z \in \mathbf{T} \text{ and for every norm-preserving extension } \mu^{x,x',z} \text{ of } (\tilde{T}^{-1})^*L_{(x,x,z)}\}$. Since $\|\mu^{x,x,z}\| = \|(\tilde{T}^{-1})^*L_{(x,x,z)}\| \le \|T^{-1}\| \le 1$, for $x \in \tilde{K}_1$, there can be at most one $y \in K_2$ with the property in the definition of \tilde{K}_1 . Thus, the map ρ_2 of \tilde{K}_1 to K_2 is well defined by $\rho_2(x) := y$ if y is related to x as above. \Box

The following lemma shows that \tilde{K}_i contains sufficiently many elements (hence, is nonempty).

LEMMA 12. (1) For $x_0 \in K_1(\delta_1)$, there exists $y_0 \in \tilde{K}_2 \cap K_2(\delta_2)$ such that $\rho_1(y_0) = x_0$. (2) For $y_0 \in K_2(\delta_2)$, there exists $x_0 \in \tilde{K}_1 \cap K_1(\delta_1)$ such that $\rho_2(x_0) = y_0$.

PROOF. (1) For $x_0 \in K_1(\delta_1)$ and $0 < \varepsilon < 1 - M_1$, there exists a family $\{f_n\} \subset \mathfrak{D}(\delta_1)$ in Lemma 10 such that

$$||f_n|| \le 1, \qquad ||f_n||_{\infty} \le \frac{1}{n}, \qquad f_n(x_0) = 0,$$

$$\lim_{n \to \infty} \delta_1(f_n)(x) = 0 \quad (\forall x \ne x_0), \quad 1 - \varepsilon < |d_{x_0}| < 1,$$
(24)

where $d_{x_0} = \delta_1(f_n)(x_0)$. If $\lim_{n\to\infty} |\tilde{T}(\tilde{f}_n)(y,y',z)| \le M_1$ for every $(y,y',z) \in W_2$, then

$$1 - \varepsilon < |d_{x_{0}}| = \lim_{n \to \infty} |f_{n}(x_{0}) + \delta_{1}(f_{n})(x_{0})| = \lim_{n \to \infty} |\tilde{f}_{n}(x_{0}, x_{0}, 1)|$$

$$= \lim_{n \to \infty} |(\tilde{T}^{-1})^{*} L_{(x_{0}, x_{0}, 1)}(\tilde{T}(\tilde{f}_{n}))|$$

$$= \lim_{n \to \infty} \left| \int_{W_{2}} \tilde{T}(\tilde{f}_{n})(y, y', z) d\mu^{x_{0}, x_{0}, 1} \right|$$

$$\leq \int_{W_{2}} \lim_{n \to \infty} |\tilde{T}(\tilde{f}_{n})(y, y', z)| d| \mu^{x_{0}, x_{0}, 1}|$$

$$\leq M_{1} ||\mu^{x_{0}, x_{0}, 1}|| \leq M_{1}.$$
(25)

This contradicts with $1 - \varepsilon > M_1$.

Hence there exists $(y_0, y'_0, z_0) \in W_2$ such that

$$\lim_{n \to \infty} |\tilde{T}(\tilde{f}_n)(y_0, y'_0, z_0)| > M_1.$$
(26)

Then, from Lemma 11 we have for arbitrary $z \in \mathbf{T}$ and any norm-preserving extension $\mu^{y_0,y'_0,z}$ of $\tilde{T}^*L_{(y_0,y'_0,z)}$,

$$M_{1} < \lim_{n \to \infty} |\tilde{T}(\tilde{f}_{n})(y_{0}, y_{0}', z_{0})| = \lim_{n \to \infty} |\delta_{2}(Tf_{n})(y_{0}')|$$

$$= \lim_{n \to \infty} |\tilde{T}(\tilde{f}_{n})(y_{0}', y_{0}', z_{0})| = |d_{x_{0}}\mu^{y_{0}', y_{0}', z}(K_{1} \times \{x_{0}\} \times \mathbf{T})|$$

$$< |\mu^{y_{0}', y_{0}', z}(K_{1} \times \{x_{0}\} \times \mathbf{T})|.$$
(27)

Thus, $y'_0 \in \tilde{K}_2 \cap K_2(\delta_2)$ and $\rho_1(y'_0) = x_0$.

(2) For $y_0 \in K_2(\delta_2)$ and $0 < \varepsilon < 1 - M_2 ||T||$, we take a family $\{g_n\} \subset \mathfrak{D}(\delta_2)$ in Lemma 10. The remainder of the proof is completed by the same way as above. \Box

Now, we state another important lemma which holds without the first countability axiom.

LEMMA 13. If $x_0 \in \tilde{K}_1$ and $\rho_2(x_0) \in K_2(\delta_2)$, then $x_0 \in K_1(\delta_1)$.

PROOF. Let $\mu^{x_0,x_0,1}$ be a norm-preserving extension of $(\tilde{T}^{-1})^* L_{(x_0,x_0,1)}$. Since $\mu^{x_0,x_0,1}$ is regular, Since for all ε such that $0 < \varepsilon < M_2/(M_2 + 3 + ||T^{-1}||_{\infty})$ there is an open neighborhood U_{ε} of $\rho_2(x_0)$ such that

$$|\mu^{x_0,x_0,1}|(K_2 \times (U_{\varepsilon} \setminus \{\rho_2(x_0)\}) \times \mathbf{T}) < \varepsilon.$$
(28)

For ε , U_{ε} and $\rho_2(x_0)$, we take a function $f \in \mathfrak{D}(\delta_2)$ in Lemma 9, then

$$||f|| \le 1, \qquad ||f||_{\infty} \le \varepsilon, \qquad f(\rho_2(x_0)) = 0,$$

$$f = \delta_2(f) = 0 \quad \text{on } K_2 \setminus U_{\varepsilon}, \quad 1 > |\delta_2(f)(\rho_2(x_0))| > 1 - \varepsilon.$$
(29)

Since

$$\left| \int_{K_{2} \times \{\rho_{2}(x_{0})\} \times \mathbf{T}} zf(y) d\mu^{x_{0}, x_{0}, 1} \right| \leq \|f\|_{\infty} \|\mu^{x_{0}, x_{0}, 1}\| \leq \varepsilon,$$

$$\left| \int_{K_{2} \times \{\rho_{2}(x_{0})\} \times \mathbf{T}} \delta_{2}(f)(\rho_{2}(x_{0})) d\mu^{x_{0}, x_{0}, 1} \right|$$

$$= |\delta_{2}(f)(\rho_{2}(x_{0}))| \|\mu^{x_{0}, x_{0}, 1}\| (K_{2} \times \{\rho_{2}(x_{0})\} \times \mathbf{T}) |$$

$$> (1 - \varepsilon) M_{2},$$
(30)

we have

$$\left| \int_{K_{2} \times \{\rho_{2}(x_{0})\} \times \mathbf{T}} \tilde{f} d\mu^{x_{0}, x_{0}, 1} \right| \geq \left| \int_{K_{2} \times \{\rho_{2}(x_{0})\} \times \mathbf{T}} \delta_{2}(f)(\rho_{2}(x_{0})) d\mu^{x_{0}, x_{0}, 1} \right| - \left| \int_{K_{2} \times \{\rho_{2}(x_{0})\} \times \mathbf{T}} zf(y) d\mu^{x_{0}, x_{0}, 1} \right|$$

$$> (1 - \varepsilon)M_{2} - \varepsilon > 0.$$
(31)

From this and

$$\left| \int_{K_2 \times (U_{\varepsilon} \setminus \{\rho_2(x_0)\}) \times \mathbf{T}} \tilde{f} d\mu^{x_0, x_0, 1} \right| \le \left| \left| \tilde{f} \right| \right|_{\infty} \left| \mu^{x_0, x_0, 1} \right| \left(K_2 \times \left(U_{\varepsilon} \setminus \{\rho_2(x_0)\} \right) \times \mathbf{T} \right) \le \varepsilon, \quad (32)$$

we have

$$\left| \int_{K_2 \times U_{\varepsilon} \times \mathbf{T}} \tilde{f} d\mu^{x_0, x_0, 1} \right| \geq \left| \int_{K_2 \times \{\rho_2(x_0)\} \times \mathbf{T}} \tilde{f} d\mu^{x_0, x_0, 1} \right| - \left| \int_{K_2 \times (U_{\varepsilon} \setminus \{\rho_2(x_0)\}) \times \mathbf{T}} \tilde{f} d\mu^{x_0, x_0, 1} \right|$$

$$> (1 - \varepsilon) M_2 - 2\varepsilon > 0.$$
(33)

Since

$$\left| \int_{K_{2} \times (K_{2} \setminus U_{\varepsilon}) \times \mathbf{T}} \tilde{f} d\mu^{x_{0}, x_{0}, 1} \right| = \left| \int_{K_{2} \times (K_{2} \setminus U_{\varepsilon}) \times \mathbf{T}} zf(y) d\mu^{x_{0}, x_{0}, 1} \right|$$

$$\leq \|f\|_{\infty} \|\mu^{x_{0}, x_{0}, 1}\| \leq \varepsilon,$$
(34)

we get

$$|(\tilde{T}^{-1}\tilde{f})(x_{0},x_{0},1)| = |(\tilde{T}^{-1})^{*}L_{(x_{0},x_{0},1)}(\tilde{f})| = \left| \int_{W_{2}} \tilde{f} d\mu^{x_{0},x_{0},1} \right|$$

$$\geq \left| \int_{K_{2} \times U_{\varepsilon} \times \mathbf{T}} \tilde{f} d\mu^{x_{0},x_{0},1} \right| - \left| \int_{K_{2} \times (K_{2} \setminus U_{\varepsilon}) \times \mathbf{T}} \tilde{f} d\mu^{x_{0},x_{0},1} \right|$$

$$\geq (1 - \varepsilon)M_{2} - 3\varepsilon > 0.$$
(35)

Thus

$$|\delta_{1}(T^{-1}(f))(x_{0})| = |\tilde{T}^{-1}(\tilde{f})(x_{0}, x_{0}, 1) - T^{-1}(f)(x_{0})|$$

$$\geq |\tilde{T}^{-1}(\tilde{f})(x_{0}, x_{0}, 1)| - |T^{-1}(f)(x_{0})|$$

$$\geq (1 - \varepsilon)M_{2} - 3\varepsilon - \varepsilon ||T^{-1}||_{\infty} > 0,$$
(36)

that is, $x_0 \in K_1(\delta_1)$. This completes the proof.

LEMMA 14. If $y_0 \in \tilde{K}_2 \cap K_2(\delta_2)$, then $\rho_1(y_0) \in \tilde{K}_1 \cap K_1(\delta_1)$ and $\rho_2(\rho_1(y_0)) = y_0$.

PROOF. Let $\rho_1(y_0) = x_0$ $(y_0 \in \tilde{K}_2 \cap K_2(\delta_2))$. If $x_0 \in \tilde{K}_1$ and $\rho_2(x_0) = y_0$, then $x_0 \in K_1(\delta_1)$ from Lemma 13. Hence, suppose that either x_0 is not in \tilde{K}_1 or $x_0 \in \tilde{K}_1$ and $\rho_2(x_0) \neq y_0$. Then there exists $z_0 \in \mathbf{T}$ such that $|\mu^{x_0, x_0, z_0}(K_2 \times \{y_0\} \times \mathbf{T})| \le M_2$.

Let $P := \sup\{|\mu^{x,x,z}(K_2 \times \{y_0\} \times \mathbf{T})|; (x,x,z) \in W_1\} \le 1$. Since $y_0 \in K_2(\delta_2)$, we have $P = \sup\{|\mu^{x,x',z}(K_2 \times \{y_0\} \times \mathbf{T})|; (x,x',z) \in W_1\}$ by Lemma 11. Since $P > M_2$ by Lemma 12 and $0 < ||T|| - M_1 < M_1$, there exists $(x_1, x_1, z_1) \in W_1$ such that

$$|\mu^{x_1,x_1,z_1}(K_2 \times \{y_0\} \times \mathbf{T})| > \max\{M_2, (||T|| - M_1)P/M_1\}.$$
(37)

Then, for arbitrary $z \in \mathbf{T}$ and any norm-preserving extension $\mu^{x_1,x_1,z}$,

$$\left| \boldsymbol{\mu}^{\boldsymbol{x}_1,\boldsymbol{x}_1,\boldsymbol{z}} \left(K_2 \times \{ \boldsymbol{y}_0 \} \times \mathbf{T} \right) \right| > M_2, \tag{38}$$

by Lemma 11. Thus, $x_1 \in \tilde{K}_1$, $\rho_2(x_1) = y_0$, and $x_1 \neq x_0$. Therefore, $x_1 \in K_1(\delta_1)$ by Lemma 13. Since $x_1 \neq x_0$, there exist $y_1(\neq y_0) \in \tilde{K}_2 \cap K_2(\delta_2)$ such that $\rho_1(y_1) = x_1$

by Lemma 12. For $y_0 \in K_2(\delta_2)$ and ε ($0 < \varepsilon < 1$), there exists a family $\{g_n\} \subset \mathfrak{D}(\delta_2)$ in Lemma 10. Then, since $y_1 \neq y_0$,

$$0 = \lim_{n \to \infty} (z_1 g_n(y_1) + \delta_2(g_n)(y_1)) = \lim_{n \to \infty} \tilde{g}_n(y_1, y_1, z_1)$$

$$= \lim_{n \to \infty} \tilde{T}^* L_{(y_1, y_1, z_1)}(\tilde{T}^{-1}(\tilde{g}_n)) = \lim_{n \to \infty} \int_{W_1} \tilde{T}^{-1}(\tilde{g}_n) d\mu^{y_1, y_1, z_1}$$

$$= \lim_{n \to \infty} \int_{K_1 \times \{x_1\} \times \mathbf{T}} \tilde{T}^{-1}(\tilde{g}_n) d\mu^{y_1, y_1, z_1} + \lim_{n \to \infty} \int_{K_1 \times (K_1 \setminus \{x_1\}) \times \mathbf{T}} \tilde{T}^{-1}(\tilde{g}_n) d\mu^{y_1, y_1, z_1}.$$
(39)

Now, by Lemma 11,

$$\begin{aligned} \left| \lim_{n \to \infty} \int_{K_1 \times \{x_1\} \times \mathbf{T}} \tilde{T}^{-1}(\tilde{g}_n) d\mu^{y_1, y_1, z_1} \right| \\ &= \left| \int_{K_1 \times \{x_1\} \times \mathbf{T}} \lim_{n \to \infty} \tilde{T}^{-1}(\tilde{g}_n) d\mu^{y_1, y_1, z_1} \right| \\ &= \left| \int_{K_1 \times \{x_1\} \times \mathbf{T}} d_{y_0} \mu^{x, x_1, z} (K_2 \times \{y_0\} \times \mathbf{T}) d\mu^{y_1, y_1, z_1} \right| \\ &= \left| \int_{K_1 \times \{x_1\} \times \mathbf{T}} d_{y_0} \mu^{x_1, x_1, z_1} (K_2 \times \{y_0\} \times \mathbf{T}) d\mu^{y_1, y_1, z_1} \right| \\ &= \left| d_{y_0} \mu^{x_1, x_1, z_1} (K_2 \times \{y_0\} \times \mathbf{T}) \mu^{y_1, y_1, z_1} (K_1 \times \{x_1\} \times \mathbf{T}) \right| \\ &> \left| d_{y_0} \right| \cdot \frac{(\|\mathbf{T}\| - M_1)P}{M_1} \cdot M_1 = \left| d_{y_0} \left| P(\|\mathbf{T}\| - M_1). \end{aligned}$$
 (40)

On the other hand,

$$\lim_{n \to \infty} \int_{K_{1} \times (K_{1} \setminus \{x_{1}\}) \times \mathbf{T}} \tilde{T}^{-1}(\tilde{g}_{n}) d\mu^{y_{1}, y_{1}, z_{1}} \left| \\
= \left| \int_{K_{1} \times (K_{1} \setminus \{x_{1}\}) \times \mathbf{T}} \lim_{n \to \infty} \tilde{T}^{-1}(\tilde{g}_{n}) d\mu^{y_{1}, y_{1}, z_{1}} \right| \\
= \left| \int_{K_{1} \times (K_{1} \setminus \{x_{1}\}) \times \mathbf{T}} d_{y_{0}} \mu^{x, x', z} (K_{2} \times \{y_{0}\} \times \mathbf{T}) d\mu^{y_{1}, y_{1}, z_{1}} \right| \\
\leq |d_{y_{0}}| P | \mu^{y_{1}, y_{1}, z_{1}} | (K_{1} \times (K_{1} \setminus \{x_{1}\}) \times \mathbf{T}) \\
= |d_{y_{0}}| P (| \mu^{y_{1}, y_{1}, z_{1}} | (K_{1} \times K_{1} \times \mathbf{T}) - | \mu^{y_{1}, y_{1}, z_{1}} | (K_{1} \times \{x_{1}\} \times \mathbf{T})) \\
\leq |d_{y_{0}}| P (| |T|| - | \mu^{y_{1}, y_{1}, z_{1}} | (K_{1} \times \{x_{1}\} \times \mathbf{T})) < |d_{y_{0}}| P (||T|| - M_{1}).$$
(41)

This contradicts to

$$0 = \lim_{n \to \infty} \int_{K_1 \times \{x_1\} \times \mathbf{T}} \tilde{T}^{-1}(\tilde{g}_n) \, d\mu^{y_1, y_1, z_1} + \lim_{n \to \infty} \int_{K_1 \times (K_1 \setminus \{x_1\}) \times \mathbf{T}} \tilde{T}^{-1}(\tilde{g}_n) \, d\mu^{y_1, y_1, z_1}.$$
 (42)
us $x_0 \in \tilde{K}_1$ and $\gamma_0 = \rho_2(x_0) = \rho_2(\rho_1(\gamma_0)).$

Thus $x_0 \in \tilde{K}_1$ and $y_0 = \rho_2(x_0) = \rho_2(\rho_1(y_0))$.

By Lemmas 12 and 14, we have $K_1(\delta_1) \subseteq \rho_1(\tilde{K}_2 \cap K_2(\delta_2)) \subseteq \tilde{K}_1 \cap K_1(\delta_1) \subseteq K_1(\delta_1)$ and $K_2(\delta_2) \subseteq \rho_2(\tilde{K}_1 \cap K_1(\delta_1)) = \rho_2(K_1(\delta_1)) = \rho_2(\rho_1(\tilde{K}_2 \cap K_2(\delta_2))) \subseteq \tilde{K}_2 \cap K_2(\delta_2) \subseteq$ $K_2(\delta_2)$. Thus, $K_1(\delta_1) \subseteq \tilde{K}_1, K_1(\delta_1) = \rho_1(\tilde{K}_2 \cap K_2(\delta_2))$, and $K_2(\delta_2) = \tilde{K}_2 \cap K_2(\delta_2) \subseteq \tilde{K}_2$. Therefore, $\rho_1(K_2(\delta_2)) = K_1(\delta_1)$ and $\rho_2(K_1(\delta_1)) = K_2(\delta_2)$. Since $\rho_2(\rho_1(y)) = y$ for $y \in K_2(\delta_2)$ from Lemma 14, ρ_1 is injective on $K_2(\delta_2)$. Moreover, we have $\rho_1(\rho_2(x)) =$ *x* for $x \in K_1(\delta_1)$ and hence ρ_2 is injective on $K_1(\delta_1)$.

LEMMA 15. ρ_i is continuous on $K_i(\delta_i)$ (i = 1, 2).

PROOF. We show that ρ_1 is continuous. Suppose that ρ_1 is discontinuous at $y_0 \in K_2(\delta_2)$. Then there exists a sequence $\{y_n\} \subset K_2(\delta_2)$ such that $y_n \to y_0 \in K_2(\delta_2)$, but $x_n := \rho_1(y_n)$ is not converge to $\rho_1(y_0) = x_0$. There exists an open neighborhood $V_1(\subset K_1(\delta_1))$ of x_0 such that for every n_0 there is $n(\ge n_0)$ with x_n outside V_1 . Since $\mu^{y_0,y_0,1}$ is regular, for ε $(0 < \varepsilon < (2M_1 - ||T||)/(||T|| + 2M_1 + 10))$ there exists an open neighborhood $U_1(\subset V_1)$ of x_0 such that

$$\left| \mu^{\gamma_{0},\gamma_{0},1} \right| \left(K_{1} \times \left(U_{1} \setminus \{ x_{0} \} \right) \times \mathbf{T} \right) < \varepsilon, \quad \overline{U}_{1} \subset V_{1}.$$

$$\tag{43}$$

For x_0, U_1 , and ε , by Lemma 9, there exists a function $f \in \mathfrak{D}(\delta_1)$ such that

$$\|f\| \le 1, \quad \|f\|_{\infty} \le \varepsilon, \quad f(x_0) = 0, 1 > |\delta_1(f)(x_0)| > 1 - \varepsilon, \quad f = \delta_1(f) = 0 \quad \text{on } K_1 \setminus U_1.$$
(44)

Since

$$\left| \int_{K_{1} \times \{x_{0}\} \times \mathbf{T}} zf(x) \, d\mu^{y_{0}, y_{0}, 1} \right| \leq \|f\|_{\infty} ||\mu^{y_{0}, y_{0}, 1}|| \leq 2\varepsilon,$$

$$\int_{K_{1} \times \{x_{0}\} \times \mathbf{T}} \delta_{1}(f)(x_{0}) \, d\mu^{y_{0}, y_{0}, 1} = |\delta_{1}(f)(x_{0})| |\mu^{y_{0}, y_{0}, 1}|| (K_{1} \times \{x_{0}\} \times \mathbf{T}) |$$

$$> (1 - \varepsilon) M_{1},$$
(45)

we have

$$\left| \int_{K_1 \times \{x_0\} \times \mathbf{T}} \tilde{f} d\mu^{\mathcal{Y}_0, \mathcal{Y}_0, 1} \right| > (1 - \varepsilon) M_1 - 2\varepsilon > \varepsilon.$$

$$\tag{46}$$

From (46) and

$$\left| \int_{K_1 \times (U_1 \setminus \{x_0\}) \times \mathbf{T}} \tilde{f} d\mu^{\mathcal{Y}_0, \mathcal{Y}_0, 1} \right| \le \left| \left| \tilde{f} \right| \right|_{\infty} \left| \mu^{\mathcal{Y}_0, \mathcal{Y}_0, 1} \right| \left(K_1 \times (U_1 \setminus \{x_0\}) \times \mathbf{T} \right) \le \varepsilon,$$
(47)

we have

$$\left| \int_{K_{1}\times U_{1}\times \mathbf{T}} \tilde{f}d\mu^{y_{0},y_{0},1} \right| \geq \left| \int_{K_{1}\times \{x_{0}\}\times \mathbf{T}} \tilde{f}d\mu^{y_{0},y_{0},1} \right|$$
$$- \left| \int_{K_{1}\times (U_{1}\setminus \{x_{0}\})\times \mathbf{T}} \tilde{f}d\mu^{y_{0},y_{0},1} \right|$$
$$\geq (1-\varepsilon)M_{1} - 3\varepsilon > 2\varepsilon \qquad (48)$$
$$\left| \int_{K_{1}\times (K_{1}\setminus U_{1})\times \mathbf{T}} \tilde{f}d\mu^{y_{0},y_{0},1} \right| = \left| \int_{K_{1}\times (K_{1}\setminus U_{1})\times \mathbf{T}} zf(x) d\mu^{y_{0},y_{0},1} \right|$$
$$\leq \|f\|_{\infty} \|\mu^{y_{0},y_{0},1}\| \leq 2\varepsilon.$$

Thus

$$\begin{split} |\tilde{T}(\tilde{f})(y_{0},y_{0},1)| &= |\tilde{T}^{*}L_{(y_{0},y_{0},1)}(\tilde{f})| = \left| \int_{W_{1}} \tilde{f}d\mu^{y_{0},y_{0},1} \right| \\ &\geq \left| \int_{K_{1}\times U_{1}\times \mathrm{T}} \tilde{f}d\mu^{y_{0},y_{0},1} \right| - \left| \int_{K_{1}\times (K_{1}\setminus U_{1})\times \mathrm{T}} \tilde{f}d\mu^{y_{0},y_{0},1} \right| \qquad (49) \\ &> (1-\varepsilon)M_{1} - 5\varepsilon > 0. \end{split}$$

Now, since $y_n \to y_0$ in K_2 , then $(y_n, y_n, 1) \to (y_0, y_0, 1)$ in W_2 . There exists n_0 such that $\forall n(>n_0)$ implies $|\tilde{T}(\tilde{f})(y_n, y_n, 1)| > (1-\varepsilon)M_1 - 5\varepsilon$. Fix $n_1(\ge n_0)$ such that $x_{n_1} = \rho_1(y_{n_1})$ lies outside V_1 . Since $\mu^{y_{n_1}, y_{n_1}, 1}$ is regular, there exists an open neighborhood $U_2(\subset K_1)$ of x_{n_1} such that

$$|\mu^{\mathcal{Y}_{n_1},\mathcal{Y}_{n_1},1}|(K_1\times(U_2\setminus\{x_{n_1}\})\times\mathbf{T})<\varepsilon,\qquad \overline{U}_1\cap\overline{U}_2=\phi.$$
(50)

For x_{n_1} , U_2 , and ε , we take $g \in \mathfrak{D}(\delta_1)$ in Lemma 9 such that

$$\|g\| \le 1, \qquad \|g\|_{\infty} \le \varepsilon, \qquad g(x_{n_1}) = 0,$$

$$1 > |\delta_1(g)(x_{n_1})| > 1 - \varepsilon, \quad g = \delta_1(g) = 0 \quad \text{on } K_1 \setminus U_2.$$
(51)

By the same way as above, we have

$$\left| \int_{K_{1}\times U_{2}\times \mathbf{T}} \tilde{g}d\mu^{\mathcal{Y}_{n_{1}},\mathcal{Y}_{n_{1}},1} \right| > (1-\varepsilon)M_{1} - 3\varepsilon > 0,$$

$$\left| \int_{K_{1}\times (K_{1}\setminus U_{2})\times \mathbf{T}} \tilde{g}d\mu^{\mathcal{Y}_{n_{1}},\mathcal{Y}_{n_{1}},1} \right| = \left| \int_{K_{1}\times (K_{1}\setminus U_{2})\times \mathbf{T}} zg(x)d\mu^{\mathcal{Y}_{n_{1}},\mathcal{Y}_{n_{1}},1} \right| \qquad (52)$$

$$\leq \|g\|_{\infty} \|\mu^{\mathcal{Y}_{n_{1}},\mathcal{Y}_{n_{1}},1}\| \leq 2\varepsilon.$$

Then

$$|\tilde{T}(\tilde{g})(y_{n_{1}},y_{n_{1}},1)| = |\tilde{T}^{*}L_{(y_{n_{1}},y_{n_{1}},1)}(\tilde{g})| = \left| \int_{W_{1}} \tilde{g} \, d\mu^{y_{n_{1}},y_{n_{1}},1} \right|$$

$$\geq \left| \int_{K_{1}\times U_{2}\times T} \tilde{g} \, d\mu^{y_{n_{1}},y_{n_{1}},1} \right| - \left| \int_{K_{1}\times (K_{1}\setminus U_{2})\times T} \tilde{g} \, d\mu^{y_{n_{1}},y_{n_{1}},1} \right| \quad (53)$$

$$> (1-\varepsilon)M_{1} - 5\varepsilon > 0.$$

Thus, if we choose a complex number $\lambda_0 \in \mathbf{T}$ such that $\tilde{T}(\tilde{f})(y_{n_1}, y_{n_1}, 1)$ and λ_0 $(\tilde{T}(\tilde{g}))(y_{n_1}, y_{n_1}, 1)$ have equal arguments, then

$$||f + \lambda_0 g|| = \max\{||f||_{\infty}, ||g||_{\infty}\} + \max\{||\delta_1(f)||_{\infty}, ||\delta_1(g)||_{\infty}\} \le 1 + \varepsilon,$$
(54)

This is a contradiction. Therefore, ρ_1 is continuous on $K_2(\delta_2)$. A similar argument shows that ρ_2 is continuous on $K_1(\delta_2)$.

From Lemma 15, it follows that $K_1(\delta_1)$ and $K_2(\delta_2)$ are homeomorphic. Thus, all proofs of Theorem are completed.

REMARK 16. There is not a nonzero closed *-derivation in C(D) (*D* is the Cantor set). However, we can obtain similar results for $C^{(1)}(X)$ (*X* : a compact subset of \mathbb{R}) by the same way as above.

References

- D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205–210. MR 34#596. Zbl 141.31301.
- M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062– 1066. MR 36#669. Zbl 165.47402.
- M. Cambern and V. D. Pathak, *Isomorphisms of spaces of differentiable functions*, Rev. Roumaine Math. Pures Appl. 27 (1982), no. 7, 737-743. MR 84a:46052. Zbl 497.46015.
- K. Jarosz, *Perturbations of Banach Algebras*, Lecture Notes in Mathematics, vol. 1120, Springer-Verlag, Berlin, 1985. MR 86k:46074. Zbl 557.46029.
- [5] K. W. Jun and Y. H. Lee, *Isometries with small bound on C¹(X) spaces*, Bull. Korean Math. Soc. **32** (1995), no. 1, 85–91. MR 96c:46024. Zbl 910.46018.
- [6] T. Matsumoto and S. Watanabe, *Extreme points and linear isometries of the domain of a closed *-derivation in C(K)*, J. Math. Soc. Japan 48 (1996), no. 2, 229–254. MR 96m:46129. Zbl 860.46013.
- S. Sakai, *Operator Algebras in Dynamical Systems*, Cambridge University Press, Cambridge, 1991, The theory of unbounded derivations in *c**-algebras. MR 92h:46099. Zbl 743.46078.

TOSHIKO MATSUMOTO: 2-19-1143 IKEGO ZUSHI, 249-0003, JAPAN

Seiji Watanabe: Niigata Institute of Technology, 1719 Fujihashi, Kashiwazaki 945-1195, Japan