SMALL BOUND ISOMORPHISMS OF THE DOMAIN OF A CLOSED $*$-DERIVATION

TOSHIKO MATSUMOTO and SEIJI WATANABE

(Received 31 December 1998)

Abstract

The domain $\mathscr{D}(\delta)$ of a closed $*$-derivation δ in $C(K)$ (K : a compact Hausdorff space) is a generalization of the space $C^{(1)}[0,1]$ of differentiable functions on [0,1$]$. In this paper, a problem proposed by Jarosz (1985) is studied in the context of derivations instead of $C^{(1)}[0,1]$.

Keywords and phrases. Closed $*$-derivation, linear isomorphism.
2000 Mathematics Subject Classification. Primary 46E15, 46J10, 46J15, 47B38.

Let K_{1} and K_{2} be two compact Hausdorff spaces. $C\left(K_{i}\right)$ denotes a space of all complex valued continuous functions on $K_{i}(i=1,2)$. Let T be a surjective linear isometry from $C\left(K_{1}\right)$ to $C\left(K_{2}\right)$. Then the Banach-Stone theorem states that there exist a homeomorphism τ from K_{2} to K_{1} and a function w in $C\left(K_{2}\right)$ with $|w(y)|=1$ ($y \in K_{2}$) such that

$$
\begin{equation*}
T f(y)=w(y) f(\tau(y)) \quad \text { for } f \in C\left(K_{1}\right), y \in K_{2} . \tag{1}
\end{equation*}
$$

That is, the existence of a surjective linear isometry between $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ implies that K_{1} and K_{2} are homeomorphic. Amir [1] and Cambern [2] extended this theorem from this viewpoint as follows.

Theorem 1 (see [1, 2]). If there is a surjective linear isomorphism $T: C\left(K_{1}\right) \rightarrow C\left(K_{2}\right)$ such that $\|T\|\left\|T^{-1}\right\|<2$, then K_{1} and K_{2} are homeomorphic.
Let X be a compact subset of the real line \mathbb{R} and $C^{(1)}(X)$ be the space of continuously differentiable functions on X with the Σ-norm defined by $\|f\|_{\Sigma}=\sup _{x \in X}|f(x)|+$ $\sup _{x \in X}\left|f^{\prime}(x)\right|$.
In [4], Jarosz proposed the following question: "Is there a positive ε such that for any compact subsets X, Y of the real line \mathbb{R} and any linear isomorphism $T: C^{(1)}(X) \rightarrow$ $C^{(1)}(Y),\|T\|\left\|T^{-1}\right\|<\varepsilon$ implies that X and Y are homeomorphic?"

In [5], Jun and Lee obtained some partial answers for this question.
Theorem 2 (see [5]). Let X and Y be compact subset of \mathbb{R} and $X \subset[a, b]$ and $Y \subset$ $[c, d]$. If T is a linear isomorphism between $C^{1}(X)$ and $C^{1}(Y)$ which satisfies
(i) if $f^{\prime}(t) \equiv 0$, then $(T f)^{\prime} \equiv 0$,
(ii) $\|f g\| \leq\|T f T g\| \leq(1+\varepsilon)^{2}\|f g\|$,
(iii) $\|f\| \leq\|T f\| \leq(1+\varepsilon)\|f\|$,
(iv) $\varepsilon<\min \{1 / 49,1 / 2(b-a+1), 1 / 2(c-d+1)\}$,
then X and Y are homeomorphic.

Theorem 3 [5]. Let X and Y be compact subsets of \mathbb{R} and $X \subset \bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right]$ ($a_{i}<$ $\left.b_{i}<a_{i+1}\right)$ andmax $\max _{i}\left\{b_{i}-a_{i} \mid\right\}<k$ and $Y \subset \bigcup_{j=1}^{m}\left[c_{j}, d_{j}\right]\left(c_{j}<d_{j}<c_{j+1}\right)$ and $\max _{i}\left\{\mid d_{j}-\right.$ $\left.c_{j} \mid\right\}<k$. If T is a linear map from $C^{1}(X)$ onto $C^{1}(Y)$ which satisfies
(i) $f^{\prime}(t) \equiv 0$ if and only if $(T f)^{\prime} \equiv 0$,
(ii) $\|f\| \leq\|T f\| \leq(1+\varepsilon)\|f\|$,
(iii) $k<(4-\sqrt{10}) / 6$ and $\varepsilon<6 k^{2}-8 k+1$,
then X and Y are homeomorphic.
In this paper, we consider this problem from another viewpoint. To the end, we recall a closed $*$-derivation.
Let K be a compact Hausdorff space and $C(K)$ denotes the space of all complex valued continuous functions on K with the supremum norm $\|\cdot\|_{\infty}$. A closed $*$-derivation δ in $C(K)$ is a linear mapping in $C(K)$ satisfying the following conditions:
(1) The domain $\mathscr{D}(\delta)$ of δ is a norm dense subalgebra of $C(K)$.
(2) $\delta(f g)=\delta(f) g+f \delta(g)(f, g \in \mathscr{D}(\delta))$.
(3) If $f_{n} \in \mathscr{D}(\delta), f_{n} \rightarrow f$, and $\delta\left(f_{n}\right) \rightarrow g$ implies $f \in \mathscr{D}(\delta)$ and $\delta(f)=g$ (i.e., δ is closed as a linear operator).
(4) $f \in \mathscr{D}(\delta)$ implies $f^{*} \in \mathscr{D}(\delta)$ and $\delta\left(f^{*}\right)=\delta(f)^{*}$, where f^{*} means the complex conjugate of f.
The differentiation $d / d t$ on the space $C^{(1)}([0,1])$ of continuously differentiable functions on $[0,1]$ is a typical example of closed $*$-derivations. For any closed *-derivation δ in $C(K)$, we may regard the domain $\mathscr{D}(\delta)$ of δ as a generalization of the Banach space $C^{(1)}([0,1])$. Moreover, if $\mathscr{D}(\delta)=C(K), \delta$ is bounded and hence $\delta \equiv 0$.
Properties of the domains of closed $*$-derivations have been studied by many authors.
We summarize useful properties of closed $*$-derivations which is used later frequently without references.

Property 4 [7]. For $f\left(=f^{*}\right) \in \mathscr{D}(\delta)$ and $h \in C^{(1)}\left(\left[-\|f\|_{\infty},\|f\|_{\infty}\right]\right), h(f)(=h \circ$ $f) \in \mathscr{D}(\delta)$ and $\delta(h(f))=h^{\prime}(f) \delta(f)$, where h^{\prime} means the derivative of h.

Property 5 [7]. If $f \in \mathscr{D}(\delta)$ is a constant in a neighborhood of $x \in K$, then $\delta(f)(x)=0$.

Property 6 [7]. Let J_{1} and J_{2} be disjoint closed subsets of K. Then there is a function $f \in \mathscr{D}(\delta)$ such that

$$
\begin{equation*}
f=0 \quad \text { on } J_{1}, \quad f=1 \quad \text { on } J_{2}, \quad(0 \leq f \leq 1) . \tag{2}
\end{equation*}
$$

Now, for any fixed point $x \in K$, we define a linear functional $\eta_{x} \circ \delta$ on $\mathscr{D}(\delta)$ by

$$
\begin{equation*}
\eta_{x} \circ \delta(f):=\delta(f)(x) \quad(f \in \mathscr{D}(\delta)) . \tag{3}
\end{equation*}
$$

Let $K(\delta)$ be the set of $x \in K$ such that $\eta_{x} \circ \delta \neq 0$, i.e.,

$$
\begin{equation*}
K(\delta)=\left\{x \in K: \eta_{x} \circ \delta \neq 0\right\}=\{x \in K: \exists f \in \mathscr{D}(\delta) \text { such that } \delta(f)(x) \neq 0\} . \tag{4}
\end{equation*}
$$

Then $K(\delta)$ is an open subset of K.

Throughout this paper, the norm |||| in $\mathscr{D}(\delta)$ is given by

$$
\begin{equation*}
\|f\|:=\|f\|_{\infty}+\|\delta(f)\|_{\infty} \quad(f \in \mathscr{D}(\delta)) . \tag{5}
\end{equation*}
$$

Then we note that for $x_{0} \in K(\delta)$, the norm of a linear functional $\eta_{x_{0}} \circ \delta$ is 1 (see [6]). In [6], we obtained the following result.

Theorem 7. Let K_{i} be a compact Hausdorff space and let δ_{i} be a closed $*$-derivation in $C\left(K_{i}\right)(i=1,2)$. Let T be a surjective linear isometry between $\mathscr{D}\left(\delta_{1}\right)$ and $\mathscr{D}\left(\delta_{2}\right)$. Then, there exist a homeomorphism τ from K_{2} to $K_{1}, w_{1} \in \operatorname{ker}\left(\delta_{2}\right)$ and a continuous function w_{2} on $K_{2}\left(\delta_{2}\right)$ such that $\tau\left(K_{2}\left(\delta_{2}\right)\right)=K_{1}\left(\delta_{1}\right),\left|w_{1}(y)\right|=1$ for all $y \in K_{2},\left|w_{2}(y)\right|=1$ for all $y \in K_{2}\left(\delta_{2}\right)$,

$$
\begin{align*}
(T f)(y) & =w_{1}(y) f(\tau(y)) \quad \text { for } f \in \mathscr{D}\left(\delta_{1}\right), y \in K_{2}, \\
\delta_{2}(T f)(y) & =w_{2}(y) \delta_{1}(f)(\tau(y)) \quad \text { for } f \in \mathscr{D}\left(\delta_{1}\right), y \in K_{2}\left(\delta_{2}\right) . \tag{6}
\end{align*}
$$

In this paper, we consider Jarosz's problem in the same context as this theorem.
We use the following notation, for a Banach space B, B^{*} denotes the conjugate space of $B . B_{1}$ and B_{1}^{*} denote the closed unit balls of B and B^{*}, respectively. T denotes the unit circle $\{z \in \mathbb{C}:|z|=1\}$ in the complex plane.
We shall prove the following theorem.
Theorem 8. Let K_{i} be a compact Hausdorff space satisfying the first countable axiom, and let δ_{i} be a closed $*$-derivation in $C\left(K_{i}\right)(i=1,2)$. If there exist a linear isomorphism T of $\mathscr{D}\left(\delta_{1}\right)$ onto $\mathscr{D}\left(\delta_{2}\right)$ with $\|T\|\left\|T^{-1}\right\|<2$ and T, T^{-1} are bounded under the uniform norm, then $K_{1}\left(\delta_{1}\right)$ and $K_{2}\left(\delta_{2}\right)$ are homeomorphic. Moreover, if the range $\mathscr{R}\left(\delta_{i}\right)$ contains $1(i=1,2)$, then K_{1} and K_{2} are homeomorphic.

The proof of this theorem is done along the line in [3].
Let K be a compact Hausdorff space satisfying the first countable axiom and let δ be a closed $*$-derivation in $C(K)$.

The following two lemmas will be used in the rest of the paper.
Lemma 9. For $x_{0} \in K(\delta)$, an open neighborhood U of x_{0} and $\varepsilon(0<\varepsilon<1)$, there exists a function $f \in \mathscr{D}(\delta)$ such that

$$
\begin{gather*}
\|f\| \leq 1, \quad\|f\|_{\infty} \leq \varepsilon, \quad f\left(x_{0}\right)=0, \\
f=\delta(f)=0 \quad \text { on } K \backslash U, \quad 1>\left|\delta(f)\left(x_{0}\right)\right|>1-\varepsilon . \tag{7}
\end{gather*}
$$

Proof. We take an open neighborhood V of x_{0} such that $\bar{V} \subset U$ and take a function $g \in \mathscr{D}(\delta)$ such that

$$
\begin{equation*}
0 \leq g \leq 1, \quad g\left(x_{0}\right)=1, \quad g=0 \quad \text { on } K \backslash V . \tag{8}
\end{equation*}
$$

Then, $g=\delta(g)=0$ on $K \backslash U$. Since $x_{0} \in K(\delta)$, there is a function $g_{\varepsilon}\left(=g_{\varepsilon}^{*}\right) \in \mathscr{D}(\delta)$ such that

$$
\begin{equation*}
\left\|g_{\varepsilon}\right\|<1, \quad 1-\varepsilon=\left\|\eta_{x_{0}} \circ \delta\right\|-\varepsilon<\left|\delta\left(g_{\varepsilon}\right)\left(x_{0}\right)\right| . \tag{9}
\end{equation*}
$$

For $c_{\varepsilon}:=\min \left\{\left(1-\left\|\delta\left(g_{\varepsilon}\right)\right\|_{\infty}\right) /\left(1+\|\delta(g)\|_{\infty}\right), \varepsilon\right\}$, there is a function $h \in C^{1}\left(0\left[-\left\|g_{\varepsilon}\right\|_{\infty}\right.\right.$, $\left.\left\|g_{\varepsilon}\right\|_{\infty}\right]$) such that

$$
\begin{equation*}
\|h\|_{\infty} \leq c_{\varepsilon}, \quad h\left(g_{\varepsilon}\left(x_{0}\right)\right)=0, \quad h^{\prime}\left(g_{\varepsilon}\left(x_{0}\right)\right)=1, \quad\left\|h^{\prime}\right\|_{\infty}=1 . \tag{10}
\end{equation*}
$$

Then $f:=h\left(g_{\varepsilon}\right) g \in \mathscr{D}(\delta)$ has all required properties in Lemma 9.
Lemma 10. For $x_{0} \in K(\delta)$ and $\varepsilon(0<\varepsilon<1)$, there exists a sequence $\left\{f_{n}\right\} \subset \mathscr{D}(\delta)$ such that

$$
\begin{array}{cl}
\left\|f_{n}\right\| \leq 1, \quad\left\|f_{n}\right\|_{\infty} \leq \frac{1}{n}, \quad f_{n}\left(x_{0}\right)=0 \tag{11}\\
\lim _{n \rightarrow \infty} \delta\left(f_{n}\right)(x)=0 & \left(x \neq x_{0}\right), 1>\left|\delta\left(f_{n}\right)\left(x_{0}\right)\right|>1-\varepsilon
\end{array}
$$

and $d_{x_{0}}:=\delta\left(f_{n}\right)\left(x_{0}\right)$ is independent of n.
Proof. Since K satisfies the first countable axiom, there is a family $\left\{U_{n}\right\}$ of open neighborhood of x_{0} such that $U_{i+1} \subset U_{i}$ and $\bigcap_{1}^{\infty} U_{n}=\left\{x_{0}\right\}$. Then there exists a family $\left\{V_{n}\right\}$ of open neighborhood of x_{0} such that $\bar{V}_{n} \subset U_{n}$, and there is $g_{n} \in \mathscr{D}(\delta)$ such that

$$
\begin{equation*}
g_{n}\left(x_{0}\right)=1, \quad 0 \leq g_{n} \leq 1, \quad g_{n}=0 \quad \text { on } K \backslash V_{n} . \tag{12}
\end{equation*}
$$

Then $g_{n}=\delta\left(g_{n}\right)=0$ on $K \backslash U_{n}$. Since x_{0} is in $K(\delta)$, there is a function $g_{\varepsilon}\left(=g_{\varepsilon}^{*}\right) \in \mathscr{D}(\delta)$ such that

$$
\begin{equation*}
\left\|g_{\varepsilon}\right\|<1, \quad 1-\varepsilon=\left\|n_{x_{0}} \circ \delta\right\|-\varepsilon<\left|\delta\left(g_{\varepsilon}\right)\left(x_{0}\right)\right| \tag{13}
\end{equation*}
$$

For each $c_{n}:=\min \left\{\left(1-\left\|\delta\left(g_{\varepsilon}\right)\right\|_{\infty}\right) /\left(1+\left\|\delta\left(g_{n}\right)\right\|_{\infty}\right), 1 / n\right\}$, there is a function $h_{n} \in$ $C^{1}\left(\left[-\left\|g_{\varepsilon}\right\|_{\infty},\left\|g_{\varepsilon}\right\|_{\infty}\right]\right)$ such that

$$
\begin{equation*}
\left\|h_{n}\right\|_{\infty} \leq c_{n}, \quad h_{n}\left(g_{\varepsilon}\left(x_{0}\right)\right)=0, \quad h_{n}^{\prime}\left(g_{\varepsilon}\left(x_{0}\right)\right)=1, \quad\left\|h_{n}^{\prime}\right\|_{\infty}=1 . \tag{14}
\end{equation*}
$$

Then every $f_{n}:=h_{n}\left(g_{\varepsilon}\right) g_{n} \in \mathscr{D}(\delta)$ has the properties required in Lemma 10.
Let W be the compact Hausdorff space $W=K \times K \times \mathbf{T}$ with the product topology. For $f \in \mathscr{D}(\delta)$, we define $\tilde{f} \in C(W)$ by

$$
\begin{equation*}
\tilde{f}\left(x, x^{\prime}, z\right):=z f(x)+\delta(f)\left(x^{\prime}\right) \tag{15}
\end{equation*}
$$

for $\left(x, x^{\prime}, z\right) \in W$. Then we have $\|\tilde{f}\|_{\infty}=\|f\|$.
Proof of Theorem 7. Let $W_{i}:=K_{i} \times K_{i} \times \mathbf{T}$ and $S_{i}=\left\{\tilde{f} \in C\left(W_{i}\right) ; f \in \mathscr{D}\left(\delta_{i}\right)\right\}$ ($i=1,2$).
Define a linear isomorphism \tilde{T} of S_{1} onto S_{2} by

$$
\begin{equation*}
\tilde{T}(\tilde{f}):=\widetilde{T(f)} \quad\left(\tilde{f} \in S_{1}\right) \tag{16}
\end{equation*}
$$

Then \tilde{T} is well defined since $f \rightarrow \tilde{f}$ is a linear isomorphism.
We may assume that $\left\|T^{-1}\right\|=1$ and $1<\|T\|<2$. Then we have $\left\|\tilde{T}^{-1}\right\|=\left\|T^{-1}\right\|=1$ and $\|\tilde{T}\|=\|T\|<2$. For $\left(y_{0}, y_{0}^{\prime}, z_{0}\right) \in W_{2}$, let Φ be a norm-preserving extension of $\tilde{T}^{*} L_{\left(y_{0}, y_{0}^{\prime}, z_{0}\right)}$ to $C\left(W_{1}\right)$, where $L_{\left(y_{0}, y_{0}^{\prime}, z_{0}\right)}$ denotes the linear functional defined by
$L_{\left(y_{0}, y_{0}^{\prime}, z_{0}\right)}(\tilde{f})=\tilde{f}\left(y_{0}, y_{0}^{\prime}, z_{0}\right)\left(\tilde{f} \in S_{2}\right)$. Then, from the Riesz representation theorem, there exists a regular Borel measure $\mu^{y_{0}, y_{0}^{\prime}, z_{0}}$ on W_{1} such that $\left\|\mu^{y_{0}, y_{0}^{\prime}, z_{0}}\right\|=\|\Phi\|=$ $\left\|\tilde{T}^{*} L_{\left(y_{0}, y_{0}^{\prime}, z_{0}\right)}\right\| \leq\|T\|<2$ and

$$
\begin{equation*}
\Phi(h)=\int_{W_{1}} h d \mu^{y_{0}, y_{0}^{\prime}, z_{0}} \quad\left(h \in C\left(W_{1}\right)\right) . \tag{17}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
z_{0}(T f)\left(y_{0}\right)+\delta_{2}(T f)\left(y_{0}^{\prime}\right) & =\int_{W_{1}} \tilde{f}\left(x, x^{\prime}, z\right) d \mu^{y_{0}, y_{0}^{\prime}, z_{0}} \\
& =\int_{W_{1}}\left(z f(x)+\delta_{1}(f)\left(x^{\prime}\right)\right) d \mu^{y_{0}, y_{0}^{\prime}, z_{0}} \tag{18}
\end{align*}
$$

for $f \in \mathscr{D}\left(\delta_{1}\right)$.
In the following, we identify Φ and $\mu^{y_{0}, y_{0}^{\prime}, z_{0}}$.
$\mu^{x_{0}, x_{0}^{\prime}, z_{0}}$, where $\left(x_{0}, x_{0}^{\prime}, z_{0}\right) \in W_{1}$, is also defined in a similar way. Then we have $\left\|\mu^{x_{0}, x_{0}^{\prime}, z_{0}}\right\| \leq 1$.
The following lemma shows that for $x_{0} \in K_{1}\left(\delta_{1}\right), \mu^{y, y^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right)$, where $\left(y, y^{\prime}, z\right) \in W_{2}$ depends on y^{\prime} only, that is, $\mu^{y, y^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right)$ is independent of y, z, and any choice of norm-preserving extension of $\tilde{T}^{*} L_{\left(y, y^{\prime}, z\right)}$.
Lemma 11. (1) For $x_{0} \in K_{1}\left(\delta_{1}\right)$ and $\varepsilon(0<\varepsilon<1)$, let $\left\{f_{n}\right\} \subset \mathscr{D}\left(\delta_{1}\right)$ be a sequence in Lemma 10. Then for $\left(y, y^{\prime}, z\right) \in W_{2}$,

$$
\begin{align*}
\mu^{y, y^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right) & =\left(\frac{1}{d_{x_{0}}}\right) \lim _{n \rightarrow \infty} \tilde{T}\left(\tilde{f}_{n}\right)\left(y, y^{\prime}, z\right) \tag{19}\\
& =\left(\frac{1}{d_{x_{0}}}\right) \lim _{n \rightarrow \infty} \delta_{2}\left(T\left(f_{n}\right)\right)\left(y^{\prime}\right) .
\end{align*}
$$

(2) For $y_{0} \in K_{2}\left(\delta_{2}\right)$ and $\varepsilon(0<\varepsilon<1)$, let $\left\{g_{n}\right\} \subset \mathscr{D}\left(\delta_{2}\right)$ be a sequence in Lemma 10. Then for $\left(x, x^{\prime}, z\right) \in W_{1}$,

$$
\begin{align*}
\mu^{x, x^{\prime}, z}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right) & =\left(\frac{1}{d_{y_{0}}}\right) \lim _{n \rightarrow \infty} \tilde{T}^{-1}\left(\tilde{g}_{n}\right)\left(x, x^{\prime}, z\right) \tag{20}\\
& =\left(\frac{1}{d_{y_{0}}}\right) \lim _{n \rightarrow \infty} \delta_{1}\left(T^{-1}\left(g_{n}\right)\right)\left(x^{\prime}\right) .
\end{align*}
$$

Proof. (1) Let $\mu^{y, y^{\prime}, z}$ be a norm-preserving extension of $\tilde{T}^{*} L_{\left(y, y^{\prime}, z\right)}$.

$$
\begin{align*}
\lim _{n \rightarrow \infty} \tilde{T}\left(\tilde{f}_{n}\right)\left(y, y^{\prime}, z\right) & =\lim _{n \rightarrow \infty} \int_{W_{1}} \tilde{f}_{n} d \mu^{y, y^{\prime}, z}=\int_{W_{1}} \lim _{n \rightarrow \infty} \tilde{f}_{n} d \mu^{y, y^{\prime}, z} \\
& =\int_{K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}} d_{x_{0}} d \mu^{y, y^{\prime}, z}=d_{x_{0}} \mu^{y, y^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right) . \tag{21}
\end{align*}
$$

From the uniform boundedness of T,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{T}\left(\tilde{f}_{n}\right)\left(y, y^{\prime}, z\right)=\lim _{n \rightarrow \infty}\left(z\left(T f_{n}\right)(y)+\delta_{2}\left(T f_{n}\right)\left(y^{\prime}\right)\right)=\lim _{n \rightarrow \infty} \delta_{2}\left(T f_{n}\right)\left(y^{\prime}\right) \tag{22}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
d_{x_{0}} \mu^{y, y^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right)=\lim _{n \rightarrow \infty} \delta_{2}\left(T f_{n}\right)\left(y^{\prime}\right) \tag{23}
\end{equation*}
$$

which implies that for $x_{0} \in K_{1}\left(\delta_{1}\right), \mu^{y, y^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right)$ depends on $y^{\prime} \in K_{2}$ only.
The statement (2) is also shown by the same argument as above.
Now, let M_{1} be any real number with $(1<)\|T\|<2 M_{1}<2$. Let $\tilde{K}_{2}:=\left\{y \in K_{2}: \exists x \in\right.$ K_{1} such that $\left|\mu^{y, y, z}\left(K_{1} \times\{x\} \times \mathbf{T}\right)\right|>M_{1}$ for every $z \in \mathbf{T}$ and every norm-preserving extension $\mu^{y, y, z}$ of $\left.\tilde{T}^{*} L_{(y, y, z)}\right\}$. Since $\left\|\mu^{y, y, z}\right\|=\left\|\tilde{T}^{*} L_{(y, y, z)}\right\| \leq\|T\|<2 M_{1}$, for $y \in$ \tilde{K}_{2}, there can be at most one $x \in K_{1}$ with the property in the definition of \tilde{K}_{2}. Thus the map ρ_{1} of \tilde{K}_{2} to K_{1} is well defined by $\rho_{1}(y):=x$ if x is related to y as above.
Next, we set $M_{2}:=1 /\left(2 M_{1}\right)$. Let $\tilde{K}_{1}:=\left\{x \in K_{1}: \exists y \in K_{2}\right.$ such that $\mid \mu^{x, x, z}\left(K_{2} \times\right.$ $\{y\} \times \mathbf{T}) \mid>M_{2}$ for every $z \in \mathbf{T}$ and for every norm-preserving extension $\mu^{x, x^{\prime}, z}$ of $\left.\left(\tilde{T}^{-1}\right)^{*} L_{(x, x, z)}\right\}$. Since $\left\|\mu^{x, x, z}\right\|=\left\|\left(\tilde{T}^{-1}\right)^{*} L_{(x, x, z)}\right\| \leq\left\|T^{-1}\right\| \leq 1$, for $x \in \tilde{K}_{1}$, there can be at most one $y \in K_{2}$ with the property in the definition of \tilde{K}_{1}. Thus, the map ρ_{2} of \tilde{K}_{1} to K_{2} is well defined by $\rho_{2}(x):=y$ if y is related to x as above.

The following lemma shows that \tilde{K}_{i} contains sufficiently many elements (hence, is nonempty).

Lemma 12. (1) For $x_{0} \in K_{1}\left(\delta_{1}\right)$, there exists $y_{0} \in \tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)$ such that $\rho_{1}\left(y_{0}\right)=x_{0}$. (2) For $y_{0} \in K_{2}\left(\delta_{2}\right)$, there exists $x_{0} \in \tilde{K}_{1} \cap K_{1}\left(\delta_{1}\right)$ such that $\rho_{2}\left(x_{0}\right)=y_{0}$.

Proof. (1) For $x_{0} \in K_{1}\left(\delta_{1}\right)$ and $0<\varepsilon<1-M_{1}$, there exists a family $\left\{f_{n}\right\} \subset \mathscr{D}\left(\delta_{1}\right)$ in Lemma 10 such that

$$
\begin{gather*}
\left\|f_{n}\right\| \leq 1, \quad\left\|f_{n}\right\|_{\infty} \leq \frac{1}{n}, \quad f_{n}\left(x_{0}\right)=0 \tag{24}\\
\lim _{n \rightarrow \infty} \delta_{1}\left(f_{n}\right)(x)=0 \quad\left(\forall x \neq x_{0}\right), \quad 1-\varepsilon<\left|d_{x_{0}}\right|<1,
\end{gather*}
$$

where $d_{x_{0}}=\delta_{1}\left(f_{n}\right)\left(x_{0}\right)$. If $\lim _{n \rightarrow \infty}\left|\tilde{T}\left(\tilde{f}_{n}\right)\left(y, y^{\prime}, z\right)\right| \leq M_{1}$ for every $\left(y, y^{\prime}, z\right) \in W_{2}$, then

$$
\begin{align*}
1-\varepsilon<\left|d_{x_{0}}\right| & =\lim _{n \rightarrow \infty}\left|f_{n}\left(x_{0}\right)+\delta_{1}\left(f_{n}\right)\left(x_{0}\right)\right|=\lim _{n \rightarrow \infty}\left|\tilde{f}_{n}\left(x_{0}, x_{0}, 1\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|\left(\tilde{T}^{-1}\right)^{*} L_{\left(x_{0}, x_{0}, 1\right)}\left(\tilde{T}\left(\tilde{f}_{n}\right)\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|\int_{W_{2}} \tilde{T}\left(\tilde{f}_{n}\right)\left(y, y^{\prime}, z\right) d \mu^{x_{0}, x_{0}, 1}\right| \tag{25}\\
& \leq \int_{W_{2}} \lim _{n \rightarrow \infty}\left|\tilde{T}\left(\tilde{f}_{n}\right)\left(y, y^{\prime}, z\right)\right| d\left|\mu^{x_{0}, x_{0}, 1}\right| \\
& \leq M_{1}| | \mu^{x_{0}, x_{0}, 1}| | \leq M_{1} .
\end{align*}
$$

This contradicts with $1-\varepsilon>M_{1}$.
Hence there exists ($y_{0}, y_{0}^{\prime}, z_{0}$) $\in W_{2}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\tilde{T}\left(\tilde{f}_{n}\right)\left(y_{0}, y_{0}^{\prime}, z_{0}\right)\right|>M_{1} . \tag{26}
\end{equation*}
$$

Then, from Lemma 11 we have for arbitrary $z \in \mathbf{T}$ and any norm-preserving extension $\mu^{y_{0}, y_{0}^{\prime}, z}$ of $\tilde{T}^{*} L_{\left(y_{0}, y_{0}^{\prime}, z\right)}$,

$$
\begin{align*}
M_{1} & <\lim _{n \rightarrow \infty}\left|\tilde{T}\left(\tilde{f}_{n}\right)\left(y_{0}, y_{0}^{\prime}, z_{0}\right)\right|=\lim _{n \rightarrow \infty}\left|\delta_{2}\left(T f_{n}\right)\left(y_{0}^{\prime}\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|\tilde{T}\left(\tilde{f}_{n}\right)\left(y_{0}^{\prime}, y_{0}^{\prime}, z_{0}\right)\right|=\left|d_{x_{0}} \mu^{y_{0}^{\prime}, y_{0}^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right)\right| \tag{27}\\
& <\left|\mu^{y_{0}^{\prime}, y_{0}^{\prime}, z}\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right)\right| .
\end{align*}
$$

Thus, $y_{0}^{\prime} \in \tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)$ and $\rho_{1}\left(y_{0}^{\prime}\right)=x_{0}$.
(2) For $y_{0} \in K_{2}\left(\delta_{2}\right)$ and $0<\varepsilon<1-M_{2}\|T\|$, we take a family $\left\{g_{n}\right\} \subset \mathscr{D}\left(\delta_{2}\right)$ in Lemma 10. The remainder of the proof is completed by the same way as above.

Now, we state another important lemma which holds without the first countability axiom.

Lemma 13. If $x_{0} \in \tilde{K}_{1}$ and $\rho_{2}\left(x_{0}\right) \in K_{2}\left(\delta_{2}\right)$, then $x_{0} \in K_{1}\left(\delta_{1}\right)$.
Proof. Let $\mu^{x_{0}, x_{0}, 1}$ be a norm-preserving extension of $\left(\tilde{T}^{-1}\right)^{*} L_{\left(x_{0}, x_{0}, 1\right)}$. Since $\mu^{x_{0}, x_{0}, 1}$ is regular, Since for all ε such that $0<\varepsilon<M_{2} /\left(M_{2}+3+\left\|T^{-1}\right\|_{\infty}\right)$ there is an open neighborhood U_{ε} of $\rho_{2}\left(x_{0}\right)$ such that

$$
\begin{equation*}
\left|\mu^{x_{0}, x_{0}, 1}\right|\left(K_{2} \times\left(U_{\varepsilon} \backslash\left\{\rho_{2}\left(x_{0}\right)\right\}\right) \times \mathbf{T}\right)<\varepsilon . \tag{28}
\end{equation*}
$$

For $\varepsilon, U_{\varepsilon}$ and $\rho_{2}\left(x_{0}\right)$, we take a function $f \in \mathscr{D}\left(\delta_{2}\right)$ in Lemma 9 , then

$$
\begin{gather*}
\|f\| \leq 1, \quad\|f\|_{\infty} \leq \varepsilon, \quad f\left(\rho_{2}\left(x_{0}\right)\right)=0, \\
f=\delta_{2}(f)=0 \quad \text { on } K_{2} \backslash U_{\varepsilon}, \quad 1>\left|\delta_{2}(f)\left(\rho_{2}\left(x_{0}\right)\right)\right|>1-\varepsilon . \tag{29}
\end{gather*}
$$

Since

$$
\begin{align*}
\left|\int_{K_{2} \times\left\{\rho_{2}\left(x_{0}\right)\right\} \times \mathbf{T}} z f(y) d \mu^{x_{0}, x_{0}, 1}\right| & \leq\|f\|_{\infty}\left\|\mu^{x_{0}, x_{0}, 1}\right\| \leq \varepsilon, \\
\mid \int_{K_{2} \times\left\{\rho_{2}\left(x_{0}\right)\right\} \times \mathbf{T}} \delta_{2}(f) & \left(\rho_{2}\left(x_{0}\right)\right) d \mu^{x_{0}, x_{0}, 1} \mid \tag{30}\\
& =\left|\delta_{2}(f)\left(\rho_{2}\left(x_{0}\right)\right)\left\|\mu^{x_{0}, x_{0}, 1}\right\|\left(K_{2} \times\left\{\rho_{2}\left(x_{0}\right)\right\} \times \mathbf{T}\right)\right| \\
& >(1-\varepsilon) M_{2},
\end{align*}
$$

we have

$$
\begin{align*}
\left|\int_{K_{2} \times\left\{\rho_{2}\left(x_{0}\right)\right\} \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| & \geq\left|\int_{K_{2} \times\left\{\rho_{2}\left(x_{0}\right)\right\} \times \mathbf{T}} \delta_{2}(f)\left(\rho_{2}\left(x_{0}\right)\right) d \mu^{x_{0}, x_{0}, 1}\right| \\
& -\left|\int_{K_{2} \times\left\{\rho_{2}\left(x_{0}\right)\right\} \times \mathbf{T}} z f(y) d \mu^{x_{0}, x_{0}, 1}\right| \tag{31}\\
& >(1-\varepsilon) M_{2}-\varepsilon>0 .
\end{align*}
$$

From this and

$$
\begin{equation*}
\left|\int_{K_{2} \times\left(U_{\varepsilon} \backslash\left\{\rho_{2}\left(x_{0}\right)\right\}\right) \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| \leq\|\tilde{f}\|_{\infty}\left|\mu^{x_{0}, x_{0}, 1}\right|\left(K_{2} \times\left(U_{\varepsilon} \backslash\left\{\rho_{2}\left(x_{0}\right)\right\}\right) \times \mathbf{T}\right) \leq \varepsilon \tag{32}
\end{equation*}
$$

we have

$$
\begin{align*}
\left|\int_{K_{2} \times U_{\varepsilon} \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| & \geq\left|\int_{K_{2} \times\left\{\rho_{2}\left(x_{0}\right)\right\} \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| \\
& -\left|\int_{K_{2} \times\left(U_{\varepsilon} \backslash\left\{\rho_{2}\left(x_{0}\right)\right\}\right) \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| \tag{33}\\
& >(1-\varepsilon) M_{2}-2 \varepsilon>0 .
\end{align*}
$$

Since

$$
\begin{align*}
\left|\int_{K_{2} \times\left(K_{2} \backslash U_{\varepsilon}\right) \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| & =\left|\int_{K_{2} \times\left(K_{2} \backslash U_{\varepsilon}\right) \times \mathbf{T}} z f(y) d \mu^{x_{0}, x_{0}, 1}\right| \tag{34}\\
& \leq\|f\|_{\infty}\left\|\mu^{x_{0}, x_{0}, 1}\right\| \leq \varepsilon,
\end{align*}
$$

we get

$$
\begin{align*}
\left|\left(\tilde{T}^{-1} \tilde{f}\right)\left(x_{0}, x_{0}, 1\right)\right| & =\left|\left(\tilde{T}^{-1}\right)^{*} L_{\left(x_{0}, x_{0}, 1\right)}(\tilde{f})\right|=\left|\int_{W_{2}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| \\
& \geq\left|\int_{K_{2} \times U_{\varepsilon} \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right|-\left|\int_{K_{2} \times\left(K_{2} \backslash U_{\varepsilon}\right) \times \mathbf{T}} \tilde{f} d \mu^{x_{0}, x_{0}, 1}\right| \tag{35}\\
& \geq(1-\varepsilon) M_{2}-3 \varepsilon>0 .
\end{align*}
$$

Thus

$$
\begin{align*}
\left|\delta_{1}\left(T^{-1}(f)\right)\left(x_{0}\right)\right| & =\left|\tilde{T}^{-1}(\tilde{f})\left(x_{0}, x_{0}, 1\right)-T^{-1}(f)\left(x_{0}\right)\right| \\
& \geq\left|\tilde{T}^{-1}(\tilde{f})\left(x_{0}, x_{0}, 1\right)\right|-\left|T^{-1}(f)\left(x_{0}\right)\right| \tag{36}\\
& \geq(1-\varepsilon) M_{2}-3 \varepsilon-\varepsilon\left\|T^{-1}\right\|_{\infty}>0,
\end{align*}
$$

that is, $x_{0} \in K_{1}\left(\delta_{1}\right)$. This completes the proof.
Lemma 14. If $y_{0} \in \tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)$, then $\rho_{1}\left(y_{0}\right) \in \tilde{K}_{1} \cap K_{1}\left(\delta_{1}\right)$ and $\rho_{2}\left(\rho_{1}\left(y_{0}\right)\right)=y_{0}$.
Proof. Let $\rho_{1}\left(y_{0}\right)=x_{0}\left(y_{0} \in \tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)\right)$. If $x_{0} \in \tilde{K}_{1}$ and $\rho_{2}\left(x_{0}\right)=y_{0}$, then $x_{0} \in K_{1}\left(\delta_{1}\right)$ from Lemma 13. Hence, suppose that either x_{0} is not in \tilde{K}_{1} or $x_{0} \in \tilde{K}_{1}$ and $\rho_{2}\left(x_{0}\right) \neq y_{0}$. Then there exists $z_{0} \in \mathbf{T}$ such that $\left|\mu^{x_{0}, x_{0}, z_{0}}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right)\right| \leq M_{2}$.
Let $P:=\sup \left\{\left|\mu^{x, x, z}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right)\right| ;(x, x, z) \in W_{1}\right\}(\leq 1)$. Since $y_{0} \in K_{2}\left(\delta_{2}\right)$, we have $P=\sup \left\{\left|\mu^{x, x^{\prime}, z}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right)\right| ;\left(x, x^{\prime}, z\right) \in W_{1}\right\}$ by Lemma 11. Since $P>M_{2}$ by Lemma 12 and $0<\|T\|-M_{1}<M_{1}$, there exists $\left(x_{1}, x_{1}, z_{1}\right) \in W_{1}$ such that

$$
\begin{equation*}
\left|\mu^{x_{1}, x_{1}, z_{1}}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right)\right|>\max \left\{M_{2},\left(\|T\|-M_{1}\right) P / M_{1}\right\} . \tag{37}
\end{equation*}
$$

Then, for arbitrary $z \in \mathbf{T}$ and any norm-preserving extension $\mu^{x_{1}, x_{1}, z}$,

$$
\begin{equation*}
\left|\mu^{x_{1}, x_{1}, z}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right)\right|>M_{2}, \tag{38}
\end{equation*}
$$

by Lemma 11. Thus, $x_{1} \in \tilde{K}_{1}, \rho_{2}\left(x_{1}\right)=y_{0}$, and $x_{1} \neq x_{0}$. Therefore, $x_{1} \in K_{1}\left(\delta_{1}\right)$ by Lemma 13. Since $x_{1} \neq x_{0}$, there exist $y_{1}\left(\neq y_{0}\right) \in \tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)$ such that $\rho_{1}\left(y_{1}\right)=x_{1}$
by Lemma 12. For $y_{0} \in K_{2}\left(\delta_{2}\right)$ and $\varepsilon(0<\varepsilon<1)$, there exists a family $\left\{g_{n}\right\} \subset \mathscr{D}\left(\delta_{2}\right)$ in Lemma 10. Then, since $y_{1} \neq y_{0}$,

$$
\begin{align*}
0 & =\lim _{n \rightarrow \infty}\left(z_{1} g_{n}\left(y_{1}\right)+\delta_{2}\left(g_{n}\right)\left(y_{1}\right)\right)=\lim _{n \rightarrow \infty} \tilde{g}_{n}\left(y_{1}, y_{1}, z_{1}\right) \\
& =\lim _{n \rightarrow \infty} \tilde{T}^{*} L_{\left(y_{1}, y_{1}, z_{1}\right)}\left(\tilde{T}^{-1}\left(\tilde{g}_{n}\right)\right)=\lim _{n \rightarrow \infty} \int_{W_{1}} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}} \tag{39}\\
& =\lim _{n \rightarrow \infty} \int_{K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}}+\lim _{n \rightarrow \infty} \int_{K_{1} \times\left(K_{1} \backslash\left\{x_{1}\right\}\right) \times \mathbf{T}} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}} .
\end{align*}
$$

Now, by Lemma 11,

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}} \mid \\
&=\left|\int_{K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}} \lim _{n \rightarrow \infty} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}}\right| \\
&=\left|\int_{K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}} d_{y_{0}} \mu^{x, x_{1}, z}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right) d \mu^{y_{1}, y_{1}, z_{1}}\right| \tag{40}\\
&=\left|\int_{K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}} d_{y_{0}} \mu^{x_{1}, x_{1}, z_{1}}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right) d \mu^{y_{1}, y_{1}, z_{1}}\right| \\
&=\left|d_{y_{0}} \mu^{x_{1}, x_{1}, z_{1}}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right) \mu^{y_{1}, y_{1}, z_{1}}\left(K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}\right)\right| \\
&>\left|d_{y_{0}}\right| \cdot \frac{\left(\|T\|-M_{1}\right) P}{M_{1}} \cdot M_{1}=\left|d_{y_{0}}\right| P\left(\|T\|-M_{1}\right) .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \mid \lim _{n \rightarrow \infty} \int_{K_{1} \times\left(K_{1} \backslash\left\{x_{1}\right\}\right) \times \mathbf{T}} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}} \mid \\
&=\left|\int_{K_{1} \times\left(K_{1} \backslash\left\{x_{1}\right\}\right) \times \mathbf{T}} \lim _{n \rightarrow \infty} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}}\right| \\
& \quad=\left|\int_{K_{1} \times\left(K_{1} \backslash\left\{x_{1}\right\}\right) \times \mathbf{T}} d_{y_{0}} \mu^{x, x^{\prime}, z}\left(K_{2} \times\left\{y_{0}\right\} \times \mathbf{T}\right) d \mu^{y_{1}, y_{1}, z_{1}}\right| \tag{41}\\
& \quad \leq\left|d_{y_{0}}\right| P\left|\mu^{y_{1}, y_{1}, z_{1}}\right|\left(K_{1} \times\left(K_{1} \backslash\left\{x_{1}\right\}\right) \times \mathbf{T}\right) \\
&=\left|d_{y_{0}}\right| P\left(\left|\mu^{y_{1}, y_{1}, z_{1}}\right|\left(K_{1} \times K_{1} \times \mathbf{T}\right)-\left|\mu^{y_{1}, y_{1}, z_{1}}\right|\left(K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}\right)\right) \\
& \quad \leq\left|d_{y_{0}}\right| P\left(\|T\|-\left|\mu^{y_{1}, y_{1}, z_{1}}\right|\left(K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}\right)\right)<\left|d_{y_{0}}\right| P\left(\|T\|-M_{1}\right) .
\end{align*}
$$

This contradicts to

$$
\begin{equation*}
0=\lim _{n \rightarrow \infty} \int_{K_{1} \times\left\{x_{1}\right\} \times \mathbf{T}} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}}+\lim _{n \rightarrow \infty} \int_{K_{1} \times\left(K_{1} \backslash\left\{x_{1}\right\}\right) \times \mathbf{T}} \tilde{T}^{-1}\left(\tilde{g}_{n}\right) d \mu^{y_{1}, y_{1}, z_{1}} . \tag{42}
\end{equation*}
$$

Thus $x_{0} \in \tilde{K}_{1}$ and $y_{0}=\rho_{2}\left(x_{0}\right)=\rho_{2}\left(\rho_{1}\left(y_{0}\right)\right)$.
By Lemmas 12 and 14, we have $K_{1}\left(\delta_{1}\right) \subseteq \rho_{1}\left(\tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)\right) \subseteq \tilde{K}_{1} \cap K_{1}\left(\delta_{1}\right) \subseteq K_{1}\left(\delta_{1}\right)$ and $K_{2}\left(\delta_{2}\right) \subseteq \rho_{2}\left(\tilde{K}_{1} \cap K_{1}\left(\delta_{1}\right)\right)=\rho_{2}\left(K_{1}\left(\delta_{1}\right)\right)=\rho_{2}\left(\rho_{1}\left(\tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)\right)\right) \subseteq \tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right) \subseteq$ $K_{2}\left(\delta_{2}\right)$. Thus, $K_{1}\left(\delta_{1}\right) \subseteq \tilde{K}_{1}, K_{1}\left(\delta_{1}\right)=\rho_{1}\left(\tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right)\right)$, and $K_{2}\left(\delta_{2}\right)=\tilde{K}_{2} \cap K_{2}\left(\delta_{2}\right) \subseteq \tilde{K}_{2}$. Therefore, $\rho_{1}\left(K_{2}\left(\delta_{2}\right)\right)=K_{1}\left(\delta_{1}\right)$ and $\rho_{2}\left(K_{1}\left(\delta_{1}\right)\right)=K_{2}\left(\delta_{2}\right)$. Since $\rho_{2}\left(\rho_{1}(y)\right)=y$ for $y \in K_{2}\left(\delta_{2}\right)$ from Lemma 14, ρ_{1} is injective on $K_{2}\left(\delta_{2}\right)$. Moreover, we have $\rho_{1}\left(\rho_{2}(x)\right)=$ x for $x \in K_{1}\left(\delta_{1}\right)$ and hence ρ_{2} is injective on $K_{1}\left(\delta_{1}\right)$.

Lemma 15. ρ_{i} is continuous on $K_{i}\left(\delta_{i}\right)(i=1,2)$.
Proof. We show that ρ_{1} is continuous. Suppose that ρ_{1} is discontinuous at $y_{0} \in$ $K_{2}\left(\delta_{2}\right)$. Then there exists a sequence $\left\{y_{n}\right\} \subset K_{2}\left(\delta_{2}\right)$ such that $y_{n} \rightarrow y_{0} \in K_{2}\left(\delta_{2}\right)$, but $x_{n}:=\rho_{1}\left(y_{n}\right)$ is not converge to $\rho_{1}\left(y_{0}\right)=x_{0}$. There exists an open neighborhood $V_{1}\left(\subset K_{1}\left(\delta_{1}\right)\right)$ of x_{0} such that for every n_{0} there is $n\left(\geq n_{0}\right)$ with x_{n} outside V_{1}. Since $\mu^{y_{0}, y_{0}, 1}$ is regular, for $\varepsilon\left(0<\varepsilon<\left(2 M_{1}-\|T\|\right) /\left(\|T\|+2 M_{1}+10\right)\right)$ there exists an open neighborhood $U_{1}\left(\subset V_{1}\right)$ of x_{0} such that

$$
\begin{equation*}
\left|\mu^{y_{0}, y_{0}, 1}\right|\left(K_{1} \times\left(U_{1} \backslash\left\{x_{0}\right\}\right) \times \mathbf{T}\right)<\varepsilon, \quad \bar{U}_{1} \subset V_{1} . \tag{43}
\end{equation*}
$$

For x_{0}, U_{1}, and ε, by Lemma 9 , there exists a function $f \in \mathscr{D}\left(\delta_{1}\right)$ such that

$$
\begin{gather*}
\|f\| \leq 1, \quad\|f\|_{\infty} \leq \varepsilon, \quad f\left(x_{0}\right)=0, \\
1>\left|\delta_{1}(f)\left(x_{0}\right)\right|>1-\varepsilon, \quad f=\delta_{1}(f)=0 \quad \text { on } K_{1} \backslash U_{1} . \tag{44}
\end{gather*}
$$

Since

$$
\begin{align*}
\left|\int_{K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}} z f(x) d \mu^{y_{0}, y_{0}, 1}\right| & \leq\|f\|_{\infty}\left\|\mu^{y_{0}, y_{0}, 1}\right\| \leq 2 \varepsilon, \\
\left|\int_{K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}} \delta_{1}(f)\left(x_{0}\right) d \mu^{y_{0}, y_{0}, 1}\right| & =\left|\delta_{1}(f)\left(x_{0}\right)\left\|\mu^{y_{0}, y_{0}, 1}\right\|\left(K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}\right)\right| \tag{45}\\
& >(1-\varepsilon) M_{1},
\end{align*}
$$

we have

$$
\begin{equation*}
\left|\int_{K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right|>(1-\varepsilon) M_{1}-2 \varepsilon>\varepsilon . \tag{46}
\end{equation*}
$$

From (46) and

$$
\begin{equation*}
\left|\int_{K_{1} \times\left(U_{1} \backslash\left\{x_{0}\right\}\right) \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right| \leq\|\tilde{f}\|_{\infty}\left|\mu^{y_{0}, y_{0}, 1}\right|\left(K_{1} \times\left(U_{1} \backslash\left\{x_{0}\right\}\right) \times \mathbf{T}\right) \leq \varepsilon, \tag{47}
\end{equation*}
$$

we have

$$
\begin{align*}
\left|\int_{K_{1} \times U_{1} \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right| & \geq\left|\int_{K_{1} \times\left\{x_{0}\right\} \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right| \\
& -\left|\int_{K_{1} \times\left(U_{1} \backslash\left\{x_{0}\right\}\right) \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right| \\
& \geq(1-\varepsilon) M_{1}-3 \varepsilon>2 \varepsilon \tag{48}\\
\left|\int_{K_{1} \times\left(K_{1} \backslash U_{1}\right) \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right| & =\left|\int_{K_{1} \times\left(K_{1} \backslash U_{1}\right) \times \mathbf{T}} z f(x) d \mu^{y_{0}, y_{0}, 1}\right| \\
& \leq\|f\|_{\infty} \| \mu^{y_{0}, y_{0}, 1} \mid \leq 2 \varepsilon .
\end{align*}
$$

Thus

$$
\begin{align*}
\left|\tilde{T}(\tilde{f})\left(y_{0}, y_{0}, 1\right)\right| & =\left|\tilde{T}^{*} L_{\left(y_{0}, y_{0}, 1\right)}(\tilde{f})\right|=\left|\int_{W_{1}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right| \\
& \geq\left|\int_{K_{1} \times U_{1} \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right|-\left|\int_{K_{1} \times\left(K_{1} \backslash U_{1}\right) \times \mathbf{T}} \tilde{f} d \mu^{y_{0}, y_{0}, 1}\right| \tag{49}\\
& >(1-\varepsilon) M_{1}-5 \varepsilon>0 .
\end{align*}
$$

Now, since $y_{n} \rightarrow y_{0}$ in K_{2}, then $\left(y_{n}, y_{n}, 1\right) \rightarrow\left(y_{0}, y_{0}, 1\right)$ in W_{2}. There exists n_{0} such that $\forall n\left(>n_{0}\right)$ implies $\left|\tilde{T}(\tilde{f})\left(y_{n}, y_{n}, 1\right)\right|>(1-\varepsilon) M_{1}-5 \varepsilon$. Fix $n_{1}\left(\geq n_{0}\right)$ such that $x_{n_{1}}=$ $\rho_{1}\left(y_{n_{1}}\right)$ lies outside V_{1}. Since $\mu^{y_{n_{1}}, y_{n_{1}}, 1}$ is regular, there exists an open neighborhood $U_{2}\left(\subset K_{1}\right)$ of $x_{n_{1}}$ such that

$$
\begin{equation*}
\left|\mu^{y_{n_{1}}, y_{n_{1}}, 1}\right|\left(K_{1} \times\left(U_{2} \backslash\left\{x_{n_{1}}\right\}\right) \times \mathbf{T}\right)<\varepsilon, \quad \bar{U}_{1} \cap \bar{U}_{2}=\phi . \tag{50}
\end{equation*}
$$

For $x_{n_{1}}, U_{2}$, and ε, we take $g\left(\in \mathscr{D}\left(\delta_{1}\right)\right)$ in Lemma 9 such that

$$
\begin{gather*}
\|\mathfrak{g}\| \leq 1, \quad\|\mathfrak{g}\|_{\infty} \leq \varepsilon, \quad g\left(x_{n_{1}}\right)=0, \\
1>\left|\delta_{1}(g)\left(x_{n_{1}}\right)\right|>1-\varepsilon, \quad g=\delta_{1}(g)=0 \quad \text { on } K_{1} \backslash U_{2} . \tag{51}
\end{gather*}
$$

By the same way as above, we have

$$
\begin{align*}
\left|\int_{K_{1} \times U_{2} \times \mathbf{T}} \tilde{g} d \mu^{y_{n_{1}}, y_{n_{1}}, 1}\right| & >(1-\varepsilon) M_{1}-3 \varepsilon>0, \\
\left|\int_{K_{1} \times\left(K_{1} \backslash U_{2}\right) \times \mathbf{T}} \tilde{g} d \mu^{y_{n_{1}}, y_{n_{1}}, 1}\right| & =\left|\int_{K_{1} \times\left(K_{1} \backslash U_{2}\right) \times \mathbf{T}} z g(x) d \mu^{y_{n_{1}}, y_{n_{1}}, 1}\right| \tag{52}\\
& \leq\|g\|_{\infty}\left\|\mu^{y_{n_{1}}, y_{n_{1}}, 1}\right\| \leq 2 \varepsilon .
\end{align*}
$$

Then

$$
\begin{align*}
\left|\tilde{T}(\tilde{g})\left(y_{n_{1}}, y_{n_{1}}, 1\right)\right| & =\left|\tilde{T}^{*} L_{\left(y_{n_{1}}, y_{n_{1}}, 1\right)}(\tilde{\mathfrak{g}})\right|=\left|\int_{W_{1}} \tilde{\mathcal{g}} d \mu^{y_{n_{1}}, y_{n_{1}}, 1}\right| \\
& \geq\left|\int_{K_{1} \times U_{2} \times \mathbf{T}} \tilde{\mathfrak{g}} d \mu^{y_{n_{1}}, y_{n_{1}}, 1}\right|-\left|\int_{K_{1} \times\left(K_{1} \backslash U_{2}\right) \times \mathbf{T}} \tilde{\mathfrak{g}} d \mu^{y_{n_{1}}, y_{n_{1}}, 1}\right| \tag{53}\\
& >(1-\varepsilon) M_{1}-5 \varepsilon>0 .
\end{align*}
$$

Thus, if we choose a complex number $\lambda_{0} \in \mathbf{T}$ such that $\tilde{T}(\tilde{f})\left(y_{n_{1}}, y_{n_{1}}, 1\right)$ and λ_{0} $(\tilde{T}(\tilde{g}))\left(y_{n_{1}}, y_{n_{1}}, 1\right)$ have equal arguments, then

$$
\begin{equation*}
\left\|f+\lambda_{0} g\right\|=\max \left\{\|f\|_{\infty},\|g\|_{\infty}\right\}+\max \left\{\left\|\delta_{1}(f)\right\|_{\infty},\left\|\delta_{1}(g)\right\|_{\infty}\right\} \leq 1+\varepsilon \tag{54}
\end{equation*}
$$

This is a contradiction. Therefore, ρ_{1} is continuous on $K_{2}\left(\delta_{2}\right)$. A similar argument shows that ρ_{2} is continuous on $K_{1}\left(\delta_{2}\right)$.

From Lemma 15, it follows that $K_{1}\left(\delta_{1}\right)$ and $K_{2}\left(\delta_{2}\right)$ are homeomorphic. Thus, all proofs of Theorem are completed.

REmARK 16. There is not a nonzero closed $*$-derivation in $C(D)$ (D is the Cantor set). However, we can obtain similar results for $C^{(1)}(X)(X$: a compact subset of $\mathbb{R})$ by the same way as above.

References

[1] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205-210. MR 34\#596. Zbl 141.31301.
[2] M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 10621066. MR 36\#669. Zbl 165.47402.
[3] M. Cambern and V. D. Pathak, Isomorphisms of spaces of differentiable functions, Rev. Roumaine Math. Pures Appl. 27 (1982), no. 7, 737-743. MR 84a:46052. Zbl 497.46015.
[4] K. Jarosz, Perturbations of Banach Algebras, Lecture Notes in Mathematics, vol. 1120, Springer-Verlag, Berlin, 1985. MR 86k:46074. Zbl 557.46029.
[5] K. W. Jun and Y. H. Lee, Isometries with small bound on $C^{1}(X)$ spaces, Bull. Korean Math. Soc. 32 (1995), no. 1, 85-91. MR 96c:46024. Zbl 910.46018.
[6] T. Matsumoto and S. Watanabe, Extreme points and linear isometries of the domain of a closed *-derivation in $C(K)$, J. Math. Soc. Japan 48 (1996), no. 2, 229-254. MR 96m:46129. Zbl 860.46013.
[7] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge University Press, Cambridge, 1991, The theory of unbounded derivations in c^{*}-algebras. MR 92h:46099. Zbl 743.46078.

Toshiko Matsumoto: 2-19-1143 Ikego Zushi, 249-0003, Japan
Seiji Watanabe: Niigata Institute of Technology, 1719 Fujihashi, Kashiwazaki 9451195 , Japan

