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Abstract. The notion of a fantastic filter in a lattice implication algebra is introduced,
and the relations among filter, positive implicative filter, and fantastic filter are given.
We investigate an equivalent condition for a filter to be fantastic, and state an extension
property for fantastic filter.
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1. Introduction. In order to research the logical system whose propositional value
is given in a lattice, Xu [5] proposed the concept of lattice implication algebras, and
discussed their some properties. Also, in [6], Xu and Qin discussed the properties of
lattice H implication algebras, and gave some equivalent conditions about lattice H
implication algebras. For the general development of lattice implication algebras, the
filter theory plays an important role as well as ideal theory. Xu and Qin [7] introduced
the notion of filters in a lattice implication algebra, and investigated their properties.
In [2], we gave an equivalent condition of a filter, and provided some equivalent con-
ditions that a filter is an implicative filter, and using this result an extension property
for implicative filter is constructed. Jun et al. [4] introduced the concepts of a posi-
tive implicative filter and an associative filter in a lattice H implication algebra. They
proved that (i) every positive implicative filter is an implicative filter, and (ii) every
associative filter is a filter. They also provided equivalent conditions for both a posi-
tive implicative filter and an associative filter. In [3], Jun et al. defined an LI-ideal of a
lattice implication algebra and showed that every LI-ideal is a lattice ideal. They gave
an example that a lattice ideal may not be an LI-ideal, and showed that every lattice
ideal is an LI-ideal in a lattice implication algebra. They discussed the relationship be-
tween filters and LI-ideals, and studied how to generate an LI-ideal by a set. Moreover
they constructed the quotient structure by using an LI-ideal, and studied the proper-
ties of LI-ideals related to implication homomorphisms. In this paper, the notion of
a fantastic filter in a lattice implication algebra is introduced, and then we give the
relations among filter, positive implicative filter and fantastic filter. We investigate an
equivalent condition for a filter to be fantastic, and state an extension property for
fantastic filter.

2. Preliminaries. By a lattice implication algebra we mean a bounded lattice (L,∨,
∧,0,1) with order-reversing involution “′” and a binary operation “→” satisfying the
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following axioms:
(I1) x→ (y → z)=y → (x→ z),
(I2) x→ x = 1,
(I3) x→y =y ′ → x′,
(I4) x→y =y → x = 1⇒ x =y ,
(I5) (x→y)→y = (y → x)→ x,
(L1) (x∨y)→ z = (x→ z)∧(y → z),
(L2) (x∧y)→ z = (x→ z)∨(y → z),

for all x,y,z ∈ L.
Note that the conditions (L1) and (L2) are equivalent to the conditions
(L3) x→ (y∧z)= (x→y)∧(x→ z), and
(L4) x→ (y∨z)= (x→y)∨(x→ z), respectively.
Example 2.1. Let L := {0,a,b,c,1}. Define the partially ordered relation on L as

0 < a < b < c < 1, and define x∧y :=min{x,y}, x∨y :=max{x,y} for all x,y ∈ L
and “′”and “→” as follows:

Table 2.1.

x x′

0 1

a c

b b

c a

1 0

→ 0 a b c 1

0 1 1 1 1 1

a c 1 1 1 1

b b c 1 1 1

c a b c 1 1

1 0 a b c 1

Then (L,∨,∧,′,→) is a lattice implication algebra.
In the sequel the binary operation “→” will be denoted by juxtaposition. We can

define a partial ordering “≤” on a lattice implication algebra L by x ≤y if and only if
xy = 1.
In a lattice implication algebra L, the following hold (see [5]):
(1) 0x = 1, 1x = x, and x1= 1.
(2) x′ = x0.
(3) xy ≤ (yz)(xz).
(4) x∨y = (xy)y .
(5) ((yx)y ′)′ = x∧y = ((xy)x′)′.
(6) x ≤y implies yz ≤ xz and zx ≤ zy .
(7) x ≤ (xy)y .
In what follows, L denotes a lattice implication algebra unless otherwise specified.

Definition 2.2 (Xu et al. [7]). A subset F of L is called a filter of L if it satisfies:
(F1) 1∈ F ,
(F2) x ∈ F and xy ∈ F imply y ∈ F for all x,y ∈ L.
A subset F of L is called an implicative filter of L if it satisfies (F1) and
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(F3) x(yz)∈ F and xy ∈ F imply xz ∈ F for all x,y,z ∈ L.
Proposition 2.3 (Jun [2, Proposition 3.2]). Every filter F of L has the following

property:

x ≤y and x ∈ F imply y ∈ F. (2.1)

Definition 2.4 (Jun et al. [4]). A subset F of L is called a positive implicative filter
of L if it satisfies (F1) and
(F4) x((yz)y)∈ F and x ∈ F imply y ∈ F for all x,y,z ∈ L.
Proposition 2.5 (Jun [4, Theorem 3.1]). Every positive implicative filter F of L is a

filter.

Proposition 2.6 (Jun [4, Theorem 3.3]). Let F be a filter of L. Then F is a positive
implicative filter of L if and only if
(F5) (xy)x ∈ F implies x ∈ F for all x,y ∈ L.
Proposition 2.7 (Jun [2, Theorem 3.4]). Let F be a non-empty subset of L. Then F

is a filter of L if and only if it satisfies: for all x,y ∈ F and z ∈ L,
(F6) x ≤yz implies z ∈ F.

3. Fantastic filters

Definition 3.1. A non-empty subset F of L is called a fantastic filter of L if it
satisfies (F1) and
(F7) z(yx)∈ F and z ∈ F imply ((xy)y)x ∈ F for all x,y,z ∈ L.
Example 3.2. Let L := {0,a,b,c,d,1} be a set with Figure 3.1 as a partial ordering.

Define a unary operation “′” and a binary operation denoted by juxtaposition on L as
follows (Tables 3.2 and 3.3, respectively):

1

0

a b

cd

Figure 3.1.

Define ∨- and ∧-operations on L as follows:

x∨y := (xy)y, x∧y := ((x′y ′)y ′)′, (3.1)
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Table 3.2.

x x′

0 1

a c

b d

c a

d b

1 0

Table 3.3.

0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1

for all x,y ∈ L. Then L is a lattice implication algebra. One can see that F := {b,c,1}
is a fantastic filter of L.

Theorem 3.3. Every fantastic filter of L is a filter.

Proof. Let F be a fantastic filter of L and let zx ∈ F and z ∈ F . Then z(1x) ∈ F
and z ∈ F . It follows from (F7) that x = ((x1)1)x ∈ F so that F is a filter.
We now give an equivalent condition for a filter to be a fantastic filter.

Theorem 3.4. A filter F of L is fantastic if and only if it satisfies:
(F8) yx ∈ F implies ((xy)y)x ∈ F for all x,y ∈ L.
Proof. Assume that F is a fantastic filter of L and let x,y ∈ L be such that yx ∈ F .

Then 1(yx)= yx ∈ F and 1∈ F . It follows from (F7) that ((xy)y)x ∈ F . Conversely
let F be a filter of L satisfying (F8) and let x,y,z ∈ L be such that z(yx) ∈ F and
z ∈ F . Then yx ∈ F by (F2) and hence ((xy)y)x ∈ F by (F8). Therefore F is a fantas-
tic filter of L.

Theorem 3.5. Every positive implicative filter of L is fantastic.

Proof. Let F be a positive implicative filter of L. Then F is a filter of L (see
Proposition 2.5). Let x,y ∈ L be such that yx ∈ F . It is sufficient to show that
((xy)y)x ∈ F . Since x ≤ ((xy)y)x, we get (((xy)y)x)y ≤ xy . Putting a =
((xy)y)x, we obtain

(ay)a= ((((xy)y)x)y)(((xy)y)x)

≥ (xy)(((xy)y)x)= ((xy)y)((xy)x)≥yx. (3.2)
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It follows from Proposition 2.3 that (ay)a ∈ F so, from Proposition 2.6, that a ∈ F ,
i.e., ((xy)y)x ∈ F . Hence F is a fantastic filter of L.

Open problem. Does the converse of Theorem 3.5 hold?

Theorem 3.6 (extension property for fantastic filter). Let F and G be filters of L
such that F ⊆G. If F is fantastic, then so is G.

Proof. Let x,y ∈ L be such that yx ∈ G. Then y((yx)x) = (yx)(yx) = 1 ∈ F .
Since F is fantastic, it follows from Theorem 3.4 that

(((
(yx)x

)
y
)
y
)(
(yx)x

)∈ F (3.3)

so that (yx)(((((yx)x)y)y)x)∈ F ⊆G. Since yx ∈G, therefore ((((yx)x)y)y)x ∈
G. But

((((
(yx)x

)
y
)
y
)
x
)((
(xy)y

)
x
)≥ ((xy)y)((((yx)x)y)y)

≥ (((yx)x)y)(xy)≥ x((yx)x)

= (yx)(xx)= (yx)1= 1.
(3.4)

Using Proposition 2.7, we get ((xy)y)x ∈G. Hence, by Theorem 3.4, G is a fantastic
filter of L.
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