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Abstract. This paper gives the definition of Lie rotated vector fields in the plane and
the conditions of movement of singular points on Lie rotated vector fields with variable
parameters.
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1. Introduction. Many engineering problems are usually run into a class of non-
linear equations that contain variable parameters. In order to study whole orbits or
whole phase diagrams of vector fields that contain parameters, it is a complicated and
interesting problem how the whole orbit or whole phase diagram change as param-
eter is changed. It is extremely complicated for general containing parameter vector
fields to change in the plane, but for some special containing parameter rotated vector
fields, their change has regular rule as parameter is changed. These are many results
in this respects [3, 4, 5, 6, 7].
In Section 2, we present the basic definitions of Lie rotated vector fields. We define

Lie rotated vector fields using one parameter group approach. In accordance with
the strict definition of rotated vector field, the singular points of X(µ) must be kept
fixed, but in this paper, the singular points of X(µ) can be moved as parameter µ is
changed. In Section 3, we discuss the motion of singular points on Lie rotated vector
fields. In the section, we require the singular points of X(µ) to be strictly moved
as parameter µ is changed, and permit the moved singular points to disappear or
decompose, which do not coincide with the singular points of original vector field. We
give some conditions and properties corresponding to the vector field Y . In this paper,
we give some examples to illustrate the concept and notion of Lie rotated vector fields.

2. Lie rotated vector fields. We consider vector fields on the plane x = (x1,x2)
∈R2,

X = (X1(x),X2(x)
)
, Y = (Y1(x),Y2(x)). (2.1)

For the vector fields (2.1), we define

X∧Y =X1Y2−X2Y1, 〈X,Y 〉 =X1Y1+X2Y2. (2.2)

If X and Y are vector fields, then [X,Y] is a vector field which is operated by Lie
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bracket, i.e.,

[X,Y]= (Z1,Z2
)
, (2.3)

where Z1 and Z2 are expressed as,

Z1 = 〈X,∇Y1〉−〈Y ,∇X1〉, Z2 = 〈X,∇Y2〉−〈Y ,∇X2〉, (2.4)

respectively, where ∇ is gradient operator.
Let the plane vector fields X(µ) = (X1(x,µ),X2(x,µ)) be defined by the following

differential equations:

dx1

dt
=X1(x,µ),

dx2

dt
=X2(x,µ), (2.5)

where X1 and X2 are functions of x and parameter µ ∈ I ⊂R, and the singular points
are isolated.

Definition 2.1. Let the plane vector field X(µ) be determined by (2.5), where
X1,X2 ∈ C3(R2×I,R), I = {µ | |µ|< δ} is a real interval, δ is a given positive number.
If vector field Y exists which is defined by the following differential equations:

dx1

dt
= Y1(x),

dx2

dt
= Y2(x), (2.6)

where Y1 and Y2 ∈ C3(R2,R). At all ordinary points of X(0), such that the following
relation holds

L(0) def= X(0)∧{X′µ(0)+[X(0),Y]
}
> 0 (< 0), (2.7)

where X′µ(0) is the derivative of the vector field X(µ) at µ = 0, then X(µ), µ ∈ I, is
called Lie rotated vector fields.

Remark 2.2. If the vector field X(µ) is defined on D× I, where D ⊂ R2, such that
X(0) satisfies relation (2.7) at all ordinary points of X(0) on D, then X(µ), µ ∈ I, is
called Lie rotated vector fields on D.

Lemma 2.3. Let ψs be a one parameter transform group which is produced by C1

vector field Y , s ∈R, and let X be C1 vector field. If s is fixed, and ϕp(t) is an integral
curve of X through the point p,ϕp(0)= p, thenψs ◦ϕp(t) is an integral curve ofψs∗X
through the point ψs(p). If X|p = 0, then (ψs∗X)|ψs(p) = 0.

Proof. The proof follows from [1] and [2]. In fact, if ϕp(t) is an integral curve of
X through the point p, then

(
ψs ◦ϕp(t)

)∣∣
t=0 =ψs(p) (2.8)

and

(
ψs ◦ϕp(t)

)
∗t
·
(
d
dt

∣∣∣
t

)
=ψs

∗ϕp(t)
◦ϕp(t)∗t ·

(
d
dt

∣∣∣
t

)

=ψs
∗ϕp(t)

·Xϕp(t) =
(
ψs
∗X
)
ψs◦ϕp(t).

(2.9)
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It follows that ψs ◦ϕp(t) is an integral curve of ψs∗X through the point ψs(p).
Next, due to

ψs
∗X|q =Dψs(ψ−s(q)

)·X(ψ−s(q)
)
, q ∈R2. (2.10)

Set q = ψs(p), note that we already suppose X|p = 0, again note that ψs is a one
parameter transform which is produced by Y , then

ψs
∗X|ψs(p) =Dψs(p)·X(p)=Dψs(p)·X|p = 0, (2.11)

i.e., ψs(p) is a singular point of ψs∗X.

Lemma 2.4. Let ψs be a one parameter transform group which is produced by C1

vector field Y , s ∈ R, fix s, then the index of isolated singularity of C1 vector field X is
not changed under the ψs transform.

Proof. In fact, by the condition of the lemma, it is known thatψs is a differentiable
homeomorphism, then the lemma follows from [8, Theorem 4.2].
Next, if X(µ) is a Lie rotated vector field, then Y is a corresponding vector field

which satisfies (2.7), and ψs is a one parameter transform group which is produced
by Y , s ∈R.

Lemma 2.5. Let X(µ) be a Lie rotated vector field, for all ε > 0, there exist δ= δ(ε),
such that when |µ|< δ, ψs∗X(µ) constitutes a rotated vector field.

Proof. Let the singular points of ψs∗X(µ), µ �= 0, on the plane R2 be pµ1 , . . . ,pµk
and the singular points of X(0) on the plane R2 are p1, . . . ,pm, ∀ε > 0, 0< ε� 1, let
Sε(pµi) or Sε(pj) (1 ≤ i ≤ k, 1 ≤ j ≤m) be open neighborhood pµi (1 ≤ i ≤ k) and
pj (1≤ j ≤m), and radius ε, such that Sε(p)∩Sε(q)=∅, wherep and q ∈ {pµi}∪{pj}
(1 ≤ i ≤ k, 1 ≤ j ≤m), p �= q. Let ψs be a one parameter transform group which is
produced by C1 vector field Y , s ∈R. By the limit definition of Lie bracket, we have

ψs
∗X(µ)=ψ0

∗X(µ)+ s
1!

d
dt

∣∣∣
s=0ψ

s
∗X(µ)+ s2

2!
d2

dt2
∣∣∣
s=0ψ

s
∗X(µ)+···

=X(µ)+ s
1!
[X(µ),Y]+ s2

2!
[[X(µ),Y],Y]+··· .

(2.12)

Next, we notice that X(µ) can be unfolded as

X(µ)=X(0)+ µ
1!
X′µ(0)+

µ2

2!
X′′µ (0)+··· , (2.13)

since

[X(µ),Y]= [X(0),Y]+ µ
1!

[
X′µ(0),Y

]+ µ2

2!

[
X′′µ (0),Y

]+··· . (2.14)

Let s = µ, it follows from (2.12), (2.13), and (2.14) that

ψµ
∗X(µ)=X(0)+µ

{
X′µ(0)+[X(0),Y]

}

+ 1
2
µ2{X′′µ (0)+2[X′µ(0),Y ]+[[X(0),Y],Y]

}+··· . (2.15)
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At the ordinary points of R2\{⋃k
i=1Sε(pµi)

}⋃{⋃m
j=1Sε(pj)

}
, for given ε > 0, we

sooner or later can find δ1 = δ1(ε) > 0, such that when |µ|< δ1, we have

ψµ
∗X(µ)∧ ∂

∂µ
{
ψµ
∗X(µ)

}=X(0)∧{X′µ(0)+[X(0),Y]
}

+µX(0)∧{X′′µ (0)+2[X′µ(0),Y ]+[[X(0),Y],Y]
}+···

= L(0)+O(µ) > 0 (< 0)
(2.16)

and let ϑ(µ) be the crossing angle of ψµ
∗X(µ) and the x1 axis, for given ε > 0, we

sooner or later can find δ2 = δ2(ε), such that when |µ|< δ2, at the ordinary points of
R2 \{⋃k

i=1Sε(pµi)
}⋃{⋃m

j=1Sε(pj)
}
(ψµ

∗X(µ) is X(0) when µ = 0, ϑ(0) is the crossing
angle of X(0) and the x1 axis), so

0< |ϑ(µ)−ϑ(0)|<π. (2.17)

Take δ=min{δ1,δ2}, then when |µ|< δ, ψµ
∗X(µ) constitutes a rotated vector field.

Remark 2.6. In accordance with the strict definition of rotated vector field, the
singular points must be kept fixed, but the singular points of ψµ

∗X(µ) in Lemma 2.5
can be moved as parameter µ is changed. In the unmistakable circumstance, when
|µ|< δ, we call ψµ

∗X(µ) a rotated vector.

In the above lemma, δ needs not be a quite small positive number, i.e., 0 < δ� 1
need not be set up. For the sake of distinctness, we cite an example to illustrate this
equation.

Example 2.7. Let X(µ)= (x2,−x1+µx2), if we take Y = (−x2/2,0), then at all the
ordinary points of X(0), we have

X(0)= 1

2
(
x2
1+x2

2

) > 0, (2.18)

that is, X(µ) is a Lie rotated vector field.

Now we consider the range of µ, because

ψµ
∗X(µ)=

(
1
2
µx1+

(
1− 1

4
µ2
)
x2,−x1+ 1

2
µx2

)
(2.19)

so

ψµ
∗X(µ)∧ ∂

∂µ
{
ψµ
∗X(µ)

}= 1
2

(
x2
1+x2

2

)− 1
2
µx1x2+ 1

8
µ2x2

2 . (2.20)

Formula (2.16) is compared with formula (2.20), we can find that O(µ) in formula
(2.16) is replaced by O(µ) in formula (2.20),

O(µ)=−1
2
µx1x2+ 1

8
µ2x2

2 (2.21)
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yet go a step further calculating, we have

ψµ
∗X(µ)∧ ∂

∂µ
{
ψµ
∗X(µ)

}= 1
2
x2
2+

1
8

(
µx2−2x1

)2
(2.22)

which is larger than zero at the ordinary points of X(0) and ψµ
∗X(µ) for all µ ∈ R,

but the range of µ that satisfies formula (2.17) is |µ| < 4, thus we take δ = 4, when
|µ|< δ= 4, ψµ

∗X(µ) constitutes rotated vector field.

3. The motion of singular points. Let X(µ) be a Lie rotated vector field, we require
the singular points ofX(µ) to be strictly moved as parameter µ is changed, and permit
the singular points that have been moved disappear or decompose, but require the
singular points that have been decomposed to be at most limited in number, which
do not coincide with the singular points of the original vector field.
If p is a singular point of X(µ), we name Jµ(p) for index of singular point p of X(µ),

under the same circumstances, J0(p0) for index of singular point p0 of X(µ), Jµ∗(q)
for index of singular point q of ψµ

∗X(µ) (µ �= 0).

Theorem 3.1. Let X(µ) be a Lie rotated vector field, X(0)|p0 = 0, and let Y |p0 = 0. If
the singular point p0 of X(0) disappears or decomposes as pi (1≤ i≤ k) in X(µ) (µ �=
0), then J0(p0)= 0, and Jµ(pi)= 0 (µ �= 0, 1≤ i≤ k).

Proof. First of all, we prove that J0(p0)= 0. In fact, because ofX(µ)|p0 �= 0 (µ �= 0),
utilize Lemma 2.3 and condition Y |p0 = 0, we know thatψµ

∗X(µ)|p0 �= 0 (µ �= 0), it fol-
lows from Lemma 2.5, for given δ > 0, when |µ| < δ, ψµ

∗X(µ) constitutes a rotated
vector field. Take η > 0 as quite small positive number, such that Sη(p0) does not
contain the singular points of ψµ

∗X(µ) (µ �= 0), and only contains the isolate singu-
lar point p0 of X(0). It is easy to know that Jµ∗(p0) = 0 about ∂Sη(p0). By (2.17)
of Lemma 2.5, it follows that J0(p0)= 0 when |µ|< δ.
Using the same method, we prove Jµ∗(ψµ(pi)) = 0 (µ �= 0, 1 ≤ i ≤ k) and by

Lemma 2.4, we find Jµ(pi)= 0 (µ �= 0, 1≤ i≤ k).

Corollary 3.2. Let X(µ) be a Lie rotated vector field, X(0)|p0 = 0, if Y |p0 �= 0,
and moved the singular points pi �= ψ−µ(p0) (µ �= 0, 1 ≤ i ≤ k), then J0(p0) = 0 and
Jµ(pi)= 0 (µ �= 0, 1≤ i≤ k).

Proof. Since X(0)|p0 = 0, let the singular point of X(µ) (µ �= 0) disappears or
decomposes into p1, . . . ,pk points which do not coincide with singular point p0 of
X(0), i.e., X(µ)|pi = 0 (1 ≤ i ≤ k), yet because of X(µ)|p0 �= 0 (µ �= 0) and Y |p0 �= 0.
By Lemma 2.3, we have ψµ

∗X(µ)|ψµ(p0) �= 0 and ψµ
∗X(µ)|ψµ(pi) = 0, but by condition

ψµ(pi) �= p0, we know that ψµ
∗X(µ)|p0 �= 0, as in the proof of Theorem 3.1, we can

prove that J0(p0)= 0 and Jµ(pi)= 0 (µ �= 0, 1≤ i≤ k).

Corollary 3.3. Let X(µ) be a Lie rotated vector field, X(0)|p0 = 0, if Y |p0 �= 0,
but for some i0 (1 ≤ i0 ≤ k), set up ψµ(pi0) = p0 (µ �= 0), then J0(p0) = jµ(pi0),
Jµ(pi)= 0 (µ �= 0, 1≤ i≤ k and i �= i0).

Example 3.4. Let X(µ)= (x2
2 ,−x1+µ

)
, and let

Y = (3x1−αx2,2x2
)

(3.1)
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when |µ|< δ, we take α> 0 and α� 1, on the range ofD = {(x1,x2) | x2 <α−1} ⊂R2,
at all ordinary points ∈D of X(0), set up

L(0)=αx2
1+x2

2−αx2
3 > 0, (3.2)

that is, X(µ) constitutes a Lie rotated vector field onD, the singular points of X(µ) are
strictly moved as parameter µ is changed. We note that Y |p0 = 0, p0 = (0,0) is singular
point of X(0), by Theorem 3.1, we can find that J0(p0) = 0 and Jµ(pi) = 0 (µ �= 0),
where pi = (µ,0).

Theorem 3.5. Let X(µ) be a Lie rotated vector field, X(0)|p0 = 0, p0 is elementary.
(1) If Y |p0 = 0, then p0 cannot be moved as parameter µ is changed.
(2) If Y |p0 �= 0, then p0 can be moved as parameter µ is changed, and the moved point

is the singular point ψ−µ(p0) of X(µ) (µ �= 0).

Proof. (1) We note J0(p0)=±1 �= 0, it is proved immediately from Theorem 3.1.
(2) First of all, we prove that p0 is indeed moved as µ is changed, suppose that

it is not real, i.e., p0 is not moved as µ is changed, then that X(µ)|p0 = 0 (µ �= 0),
by Lemma 2.3, we know that ψµ

∗X(µ)|ψµ(p0) = 0. Because p0 is isolate singular point
of X(0), we take δ̄ > 0 and ample small η > 0, it follows that ψµ(p0) �∈ Sη(p0). When
0 < |µ| < δ̄ < δ, then for ∂Sη(p0), we have Jµ∗(p0) = 0 (since ψµ

∗X(µ)|p0 �= 0), where
µ �= 0. But J0(p0) = ±1 �= 0, this is a contradiction from Lemma 2.5. Thus we have
proved p0 is indeed moved as µ is changed, and by Corollaries 3.2 and 3.3, it follows
that p0 is moved as the singular point ψ−µ(p0) of X(µ) (µ �= 0) when µ is changed.

Lemma 3.6. LetX(µ) be a Lie rotated vector field,X(0)|p0 = 0, and there is an elliptic
region at the singular point p0.
(1) If Y |p0 = 0, then the singular point p0 cannot be moved when parameter µ �= 0.
(2) If Y |p0 �= 0, then when parameter µ �= 0, singular point p0 is moved, and p0 be

moved as singular point ψ−µ(p0) of X(µ).

Proof. (1) We already know that Y |p0 , suppose the original equation is not real,
then when µ �= 0, singular point p0 is moved, thus we let p0 moved as the singu-
lar point pµ of X(µ), X(µ)|pµ = 0, pµ �= p0, µ �= 0. From Lemma 2.3, we know that
ψµ
∗X(µ)|ψµ(pµ) = 0, and by Y |p0 = 0, we know that ψµ(pµ) �= p0 (µ �= 0). Let Ω be an

elliptic region at the singular point p0 of X(0), for arbitrary fixed µ (0 < |µ| < δ), it
is sure to have some elliptic trajectory r of X(0), which does not contain the point
of ψµ(pµ) on r and in r . Since r has single direction, and there is no singular point
of ψµ

∗X(µ) on r and in r . By Lemma 2.5, we can know that positive half trajectory or
negative half trajectory of ψµ

∗X(µ) which pass through the point p will wander about
without a home to go to, where p is any point which passes the inner region of r , this
is a contradiction.
(2) Now we know Y |p0 �= 0, yet use reduction to absurdity. Suppose, when µ �= 0, sin-

gular pointp0 is notmoved, i.e., establishX(µ)|p0=0, namelywe haveψµ
∗X(µ)|ψµ(pµ)=

0, and ψµ(p0) �= p0. The method of the proof is completely alike as part (1), we can
prove it is a contradiction. Thus let µ �= 0, singular point p0 is moved as singular
point pµ (p0 �= pµ) of X(µ), i.e., ψµ

∗X(µ)|ψµ (pµ) = 0 (µ �= 0). If ψµ(pµ) �= p0, the
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method of the proof is alike as in part (1), yet it is a contradiction, thus only establish
ψµ(pµ)= p0, or pµ =ψ−µ(p0).

Lemma 3.7. Let X(µ) be a Lie rotated vector field, X(0)|p0 = 0, and when µ �= 0, p0

is moved as the singular point pµ (pµ �= p0) of X(µ) as µ is changed. If Y |p0 = 0, then
for singular point pµ (or p0), at least there are a positive half trajectory and a negative
half trajectory of X(µ) (or X(0)) to get into it.

Proof. We only prove the circumstance of point pµ (the proof is completely alike
as the circumstance of point p0).
From Lemma 3.6, we know that there is no elliptic region which links with the singu-

lar point p0 ofX(0), the same do the singular point pµ ofX(µ), and from Theorem 3.1,
we know that the index of pµ of X(µ) is zero. Take pµ as circular center, make the
circumference of a circle l with radius rather small, and let that hyperbolic region of
point pµ which intersects with the circumference of a circle l has h. By the Bendixson’s
formula in §6 of Chapter 3 of [8], we can immediately find h= 2.

From Lemmas 3.6 and 3.7, we have the following theorem.

Theorem 3.8. Let X(µ) be a Lie rotated vector field, X(0)|p0 = 0, and let Y |p0 = 0,
then some singulars while can bemoved as parameter µ is changed inX(µ) only contain
two hyperbolic regions and their index is zero.
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