THE SECOND DUAL SPACES OF THE SETS OF Λ -STRONGLY CONVERGENT AND BOUNDED SEQUENCES

A. M. JARRAH and E. MALKOWSKY

(Received 19 November 1998)

ABSTRACT. We give the second β -, γ -, and f-duals of the sets $w_0^p(\Lambda)$, $w_{\infty}^p(\Lambda)$ $(0 , <math>c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c_{\infty}^p(\Lambda)$ $(0 and the second continuous dual spaces of <math>w_0^p(\Lambda)$, $c_0^p(\Lambda)$, and $c^p(\Lambda)$ for $0 . Furthermore, we determine the <math>\alpha$ -duals of $c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c_{\infty}^p(\Lambda)$ for 1 .

Keywords and phrases. BK spaces, AK spaces, AD spaces, dual spaces.

2000 Mathematics Subject Classification. Primary 40H05, 46A45; Secondary 47B07.

1. Introduction and well-known results. We write ω for the set of all complex sequences $x = (x_k)_{k=0}^{\infty}$, ϕ , l_{∞} , c and c_0 for the sets of all finite, bounded, convergent sequences, and sequences convergent to naught, respectively, further *cs*, *bs*, and l_1 for the sets of all convergent, bounded, and absolutely convergent series.

By *e* and $e^{(n)}$ $(n \in \mathbb{N}_0)$, we denote the sequences such that $e_k = 1$ for k = 0, 1, ..., and $e_n^{(n)} = 1$ and $e_k^{(n)} = 0$ for $k \neq n$. For any sequence $x = (x_k)_{k=0}^{\infty}$, let $x^{[n]} = \sum_{k=0}^{n} x_k e^{(k)}$ be its *n*-section.

Let *X*, *Y* $\subset \omega$ and *z* $\in \omega$. Then we write

$$z^{-1} \times X = \{ x \in \omega : xz = (x_k z_k)_{k=0}^{\infty} \in X \},$$

$$M(X, Y) = \bigcap_{x \in X} x^{-1} \times Y = \{ a \in \omega : ax \in Y \ \forall x \in X \}$$

(1.1)

for the *multiplier space of X* and *Y*. The sets $M(X, l_1)$, M(X, cs), and M(X, bs) are called the α -, β -, and γ -*duals of X*.

A Fréchet subspace *X* of ω is called an FK space if it has continuous coordinates, that is, if convergence in *X* implies coordinatewise convergence. An FK space $X \supset \phi$ is said to have AK if, for every sequence $x = (x_k)_{k=0}^{\infty} \in X$, $x^{[n]} \rightarrow x$ $(n \rightarrow \infty)$; and it is said to have AD if ϕ is dense in *X*. A BK space is an FK space which is a Banach space.

If *X* is a *p*-normed space, then we write X^* for the set of all continuous linear functionals on *X*, the so-called *continuous dual of X*, with its norm $\|\cdot\|$ is given by

$$||f|| = \sup\{|f(x)| : ||x|| = 1\} \quad \forall f \in X^*.$$
(1.2)

Let $X \supset \phi$ be an FK space. Then the set $X^f = \{(f(e^{(n)}))_{n=0}^{\infty} : f \in X^*\}$ is called the *f*-dual of *X*.

Given any infinite matrix $A = (a_{nk})_{n,k=0}^{\infty}$ of complex numbers and any sequence $x \in \omega$, let $A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$ (n = 0, 1, ...), and let $A(x) = (A_n(x))_{n=0}^{\infty}$ provided the

series converge, and $X_A = \{x \in \omega : A(x) \in X\}$. If $0 , then we write <math>|x|^p = (|x_k|^p)_{k=0}^{\infty}$ and $X_{[A]^p} = \{x \in \omega : A(|x|^p) \in X\}$.

Let $0 and <math>\mu = (\mu_n)_{n=0}^{\infty}$ be a nondecreasing sequence of positive integers tending to infinity, throughout. We define the matrices Δ and M by

$$\Delta_{nk} = \begin{cases} 1 & (k = n), \\ -1 & (k = n - 1), \\ 0 & (\text{otherwise}), \end{cases}$$

$$M_{nk} = \begin{cases} \frac{1}{\mu_n^p} & (0 \le k \le n) \\ 0 & (k > n) \end{cases}$$
(1.3)

and use the convention that any symbol with a negative subscript has the value zero.

The sets

$$w_0^p(\mu) = (c_0)_{[M]^p}, \qquad w_\infty^p(\mu) = (l_\infty)_{[M]^p},$$

$$c_0^p(\mu) = (\mu)^{-1} \times (w_0^p(\mu))_\Delta, \qquad c_\infty^p(\mu) = (\mu)^{-1} \times (w_\infty^p(\mu))_\Delta, \qquad c^p(\mu) = c_0^p(\mu) \oplus e$$
(1.4)

were studied in [1], and their first duals were given there. If p = 1, then we omit the index p, i.e., we write $w_0(\mu) = w_0^1(\mu)$, etc.

Following the notation introduced in [3], we say that a nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ of positive reals tending to infinity is *exponentially bounded* if there are reals *s* and *t* with $0 < s \le t < 1$ such that for some subsequence $(\lambda_{n(v)})_{v=0}^{\infty}$ of Λ , we have

$$s \le \frac{\lambda_{n(\nu)}}{\lambda_{n(\nu+1)}} \le t \quad \forall \nu = 0, 1, \dots;$$
(1.5)

such a subsequence $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ is called an *associated subsequence*.

If $(n(\nu))_{\nu=0}^{\infty}$ is a strictly increasing sequence of nonnegative integers, then we write $K^{\langle \nu \rangle}$ for the set of all integers k with $n(\nu) \le k \le n(\nu+1) - 1$, and \sum_{ν} and \max_{ν} for the sum and maximum taken over all k in $K^{\langle \nu \rangle}$.

If $X^p(\Lambda)$ denotes any of the sets $w_0^p(\Lambda)$, $w_{\infty}^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$, or $c_{\infty}^p(\Lambda)$, then we write $\tilde{X}^p(\Lambda)$ for the respective space with the sections $1/\lambda_n^p \sum_{k=0}^n \dots$ replaced by the blocks $1/\lambda_{n(\nu+1)}^p \sum_{\nu} \dots$ Furthermore, we define

$$\|x\|_{w_{\infty}^{p}(\Lambda)} = \begin{cases} \sup_{n} \left(\frac{1}{\lambda_{n}^{p}} \sum_{k=0}^{n} |x_{k}|^{p} \right) & (0
$$\|x\|_{\tilde{w}_{\infty}^{p}(\Lambda)} = \begin{cases} \sup_{\nu} \left(\frac{1}{\lambda_{n}^{p}(\nu+1)} \sum_{\nu} |x_{k}|^{p} \right) & (0
$$\|x\|_{c_{\infty}^{p}(\Lambda)} = \|\Delta(\Lambda x)\|_{w_{\infty}^{p}(\Lambda)}, \qquad \|x\|_{\tilde{c}_{\infty}^{p}(\Lambda)} = \|\Delta(\Lambda x)\|_{\tilde{w}_{\infty}^{p}(\Lambda)}. \end{cases}$$
(1.6)$$$$

2. The second duals of the sets $w_0^p(\Lambda)$ and $w_{\infty}^p(\Lambda)$ for $0 . Let <math>\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals throughout and let $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ be an associated subsequence. We put

$$^{\mathcal{W}^{p}}(\Lambda) = \begin{cases} \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |a_{k}| < \infty \right\} & (0 < p \le 1), \\ \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} |a_{k}|^{p} \right)^{1/p} < \infty \right\} & \left(1 < p < \infty, \ q = \frac{p}{p-1} \right) \end{cases}$$
(2.1)

and, on $\mathcal{W}^{p}(\Lambda)$,

$$\|a\|_{W^{p}(\Lambda)} = \begin{cases} \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |a_{k}| & (0 (2.2)$$

In [1, Theorem 2], it was shown that if $X^p(\Lambda) = w_0^p(\Lambda)$ or $X^p(\Lambda) = w_\infty^p(\Lambda)$ and \dagger stands for α , β , γ , or f, then $(X^p(\Lambda))^{\dagger} = W^p(\Lambda)$, that the continuous dual $(w_0^p(\Lambda))^*$ of $w_0^p(\Lambda)$ is norm isomorphic to $W^p(\Lambda)$ when $w_0^p(\Lambda)$ has the norm $\|\cdot\|_{\dot{w}_{\infty}^p(\Lambda)}$, and finally that $\|a\|_{\dot{w}_{\infty}^p(\Lambda)}^* = \|a\|_{W^p(\Lambda)}$ on $(w_{\infty}^p(\Lambda))^{\beta}$. Furthermore, $W^p(\Lambda)$ is a BK space with AK with $\|\cdot\|_{W^p(\Lambda)}$ (cf. [2]). Therefore the following result gives the second duals of the sets $w_0^p(\Lambda)$ and $w_{\infty}^p(\Lambda)$.

THEOREM 2.1. We put $p' = \max\{1, p\}$. If \dagger stands for any of the symbols α , β , γ , or f, then $(\mathcal{W}^p(\Lambda))^{\dagger} = w_{\infty}^{p'}(\Lambda)$ for $0 , and the continuous dual <math>(\mathcal{W}^p(\Lambda))^*$ of $\mathcal{W}^p(\Lambda)$ is norm isomorphic to $w_{\infty}^{p'}(\Lambda)$ with $\|\cdot\|_{\tilde{w}_{\infty}^{p'}}$.

PROOF. The statements of the theorem with the exception of those concerning the γ - and f-duals are well known (cf. [2, Theorems 2, 4, 5, and 6]). Since $\mathcal{W}^p(\Lambda)$ has AK, it follows that $(\mathcal{W}^p(\Lambda))^\beta = (\mathcal{W}^p(\Lambda))^f$ by [4, Theorem 7.2.7(ii),

Since $W^{p}(\Lambda)$ has AK, it follows that $(W^{p}(\Lambda))^{p} = (W^{p}(\Lambda))^{q}$ by [4, Theorem 7.2.7(ii), page 106], and so $(W^{p}(\Lambda))^{f} = w_{\infty}^{p'}(\Lambda)$. Further $W^{p}(\Lambda)$ has AD, since it has AK, and so $(W^{p}(\Lambda))^{\beta} = (W^{p}(\Lambda))^{\gamma}$ by [4, Theorem 7.2.7(iii), page 106], hence $(W^{p}(\Lambda))^{\gamma} = w_{\infty}^{p'}(\Lambda)$.

3. The α -duals of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c^p(\Lambda)$ for 1

THEOREM 3.1. We put

$$\mathscr{C}^{p}_{\alpha}(\Lambda) = \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} \left(\sum_{k=n}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \right)^{q} \right)^{1/q} < \infty \right\} \quad \left(1 < p < \infty; q = \frac{p}{p-1} \right),$$
$$\|a\|_{\mathscr{C}^{p}_{\alpha}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} \left(\sum_{k=n}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \right)^{q} \right)^{1/q}.$$
(3.1)

If $X^{p}(\Lambda)$ denotes any of the sets $c_{0}^{p}(\Lambda)$, $c^{p}(\Lambda)$, and $c_{\infty}^{p}(\Lambda)$, then $(X^{p}(\Lambda))^{\alpha} = \mathscr{C}_{\alpha}^{p}(\Lambda)$. Furthermore, $\mathscr{C}_{\alpha}^{p}(\Lambda)$ is a BK space with $\|\cdot\|_{\mathscr{C}_{\alpha}^{p}(\Lambda)}$. **PROOF.** First, we assume $a \in \mathscr{C}^p_{\alpha}(\Lambda)$, and let $x \in c^p_{\infty}(\Lambda)$. Then there is a constant *M* such that

$$\left(\sum_{\nu} \left| \left(\Delta(\Lambda x) \right)_{n} \right|^{p} \right)^{1/p} \leq \lambda_{n(\nu+1)} M \quad \forall \nu = 0, 1, \dots$$
(3.2)

Putting $R_n = \sum_{k=n}^{\infty} (|a_k|/\lambda_k)$ (n = 0, 1, ...) and using Hölder's inequality, we obtain

$$\sum_{k=0}^{\infty} |a_k x_k| \leq \sum_{\nu=0}^{\infty} \frac{|a_k|}{\lambda_k} \sum_{n=0}^k |(\Delta(\Lambda x))_n| = \sum_{n=0}^{\infty} |(\Delta(\Lambda x))_n| \sum_{k=n}^{\infty} \frac{|a_k|}{\lambda_k}$$
$$= \sum_{\nu=0}^{\infty} \sum_{\nu} |(\Delta(\Lambda x))_n| R_n \leq M \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_n^q\right)^{1/q}.$$
(3.3)

This shows that $\mathscr{C}^p_{\alpha}(\Lambda) \subset (c^p_{\infty}(\Lambda))^{\alpha}$ and that

$$\sum_{k=0}^{\infty} |a_k x_k| \le ||a||_{\ell^p_{\alpha}(\Lambda)} ||x||_{\tilde{c}^p_{\infty}(\Lambda)}.$$
(3.4)

Conversely, we assume $a \in c_0^p(\Lambda)$. We define the maps $f_a^{(m)} : c_0^p(\Lambda) \to \mathbb{R}$ by $f_a^{(m)}(x) = \sum_{k=0}^m |a_k x_k| \ (x \in X)$. Then $(f_a^{(m)})_{m=0}^{\infty}$ is a sequence of seminorms on $c_0^p(\Lambda)$ which are continuous, since $c_0^p(\Lambda)$ is a BK space by [1, Theorem 1]. Further, $f_a^{(m)}(x) \leq \sum_{k=0}^{\infty} |a_k x_k| = M(x) < \infty$ for all $m \in \mathbb{N}_0$ and for all $x \in X$. By the uniform bound-edness principle, there is a constant M such that

$$\sum_{k=0}^{\infty} |a_k x_k| \le M \quad \forall x \in c_0^p(\Lambda) \text{ with } \|x\|_{\tilde{c}_{\infty}^p(\Lambda)} \le 1.$$
(3.5)

Since $a \in (c_0^p(\Lambda))^{\alpha}$ and $1/\Lambda = (1/\lambda_k)_{k=0}^{\infty} \in c_0^p(\Lambda)$, the numbers R_n are defined for all n. We put

$$S_{\mu} = \sum_{l=n(\mu)}^{n(\mu+1)-1} R_{l}^{q} \quad \forall \mu = 0, 1, \dots$$
(3.6)

Let $\nu(m) \in \mathbb{N}_0$ be given. We define the sequence $x^{\nu(m)}$ by

$$x_{n}^{\nu(m)} = \begin{cases} \frac{1}{\lambda_{n}} \left(\sum_{\mu=0}^{\nu-1} \lambda_{n(\mu+1)} S_{\mu}^{-1/p} \sum_{k=n(\mu)}^{n(\mu+1)-1} R_{k}^{q-1} + \lambda_{n(\nu+1)} S_{\nu}^{-1/p} \sum_{k=n(\nu)}^{n} R_{k}^{q-1} \right) \\ (n \in N^{\langle \nu \rangle}; \ 0 \le \nu \le \nu(m)), \\ \frac{1}{\lambda_{n}} \sum_{\mu=0}^{\nu(m)} \lambda_{n(\mu+1)} S_{\mu}^{-1/p} \sum_{k=n(\mu)}^{n(\mu+1)-1} R_{k}^{q-1} \quad (n \ge n(\nu(m)+1)). \end{cases}$$
(3.7)

Then

$$(\Delta(\Lambda x^{\nu(m)}))_{n} = \begin{cases} \lambda_{n(\nu+1)} S_{\nu}^{-1/p} R_{n}^{q-1} & (n \in N^{\langle \nu \rangle}; \nu = 0, 1, \dots, \nu(m)), \\ 0 & (n \in N^{\langle \nu \rangle}; \nu \ge \nu(m) + 1), \end{cases}$$

$$\sum_{\nu} |(\Delta(\Lambda x^{\nu(m)}))_{n}| = \begin{cases} \lambda_{n(\nu+1)}^{p} S_{\nu}^{-1} \sum_{\nu} R_{n}^{q} = \lambda_{n(\nu+1)}^{p} & (0 \le \nu \le \nu(m)), \\ 0 & (\nu \ge \nu(m+1)). \end{cases}$$

$$(3.8)$$

124

Thus $x^{\nu(m)} \in c_0^p(\Lambda)$ and $||x^{\nu(m)}||_{\tilde{c}_{\infty}^p(\Lambda)} = 1$. Now, by (3.5) and (3.8) and since $x_k^{\nu(m)} \ge 0$ for all k = 0, 1, ...,

$$\sum_{\nu=0}^{\nu(m)} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_{n}^{q} \right)^{1/q} = \sum_{\nu=0}^{\nu(m)} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_{n}^{q} \right) S_{\nu}^{-1/p} = \sum_{\nu=0}^{\nu(m)} \sum_{\nu} \left(\lambda_{n(\nu+1)} S_{\nu}^{-1/p} R_{n}^{q-1} \right) R_{n}$$
$$= \sum_{\nu=0}^{\nu(m)} \sum_{\nu} \left| \left(\Delta (\Lambda x^{\nu(m)}) \right)_{n} \right| R_{n} \leq \sum_{n=0}^{\infty} \left| \left(\Delta (\Lambda x^{\nu(m)}) \right)_{n} \right| \sum_{k=n}^{\infty} \frac{|a_{k}|}{\lambda_{k}}$$
$$= \sum_{k=0}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \left| \sum_{n=0}^{k} \left(\Delta (\Lambda x^{\nu(m)}) \right)_{n} \right| = \sum_{k=0}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \lambda_{k} \left| x_{k}^{\nu(m)} \right|$$
$$= \sum_{k=0}^{\infty} |a_{k}| \left| x_{k}^{\nu(m)} \right| \leq M.$$
(3.9)

Since $v(m) \in \mathbb{N}_0$ was arbitrary, we have

$$\sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_n^q\right)^{1/q} \le \sum_{k=0}^{\infty} |a_k x_k| < \infty,$$
(3.10)

that is, $a \in \mathscr{C}^p_{\alpha}(\Lambda)$.

Therefore we have shown $(c_{\infty}^{p}(\Lambda))^{\alpha} = (c_{0}^{p}(\Lambda))^{\alpha} = \mathscr{C}_{\alpha}^{p}(\Lambda)$. Since $c_{0}^{p}(\Lambda) \subset c^{p}(\Lambda) \subset c_{\infty}^{p}(\Lambda) \subset c_{\infty}^{p}(\Lambda)$ for $1 (cf. [1, Lemma 1(b)]), we also have <math>(c^{p}(\Lambda))^{\alpha} = \mathscr{C}_{\alpha}^{p}(\Lambda)$.

Finally, $\mathscr{C}^{p}_{\alpha}(\Lambda)$ is a BK space with $\|\cdot\|_{\mathscr{C}^{p}_{\alpha}(\Lambda)}$ by [4, Theorem 4.3.15, page 64], (3.4), and (3.10).

4. The second duals of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c_{\infty}^p(\Lambda)$ for 0 . We put

$$\mathscr{C}(\Lambda) = \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right| < \infty \right\},$$

$$\|a\|_{\mathscr{C}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right|.$$
(4.1)

In [1, Theorem 4], it was shown that if $X^p(\Lambda)$ is any of the sets $c_0^p(\Lambda)$ or $c_{\infty}^p(\Lambda)$ and \dagger stands for any of the symbols β , γ , or f, then $(X^p(\Lambda))^{\dagger} = \mathcal{C}(\Lambda)$ and that this also holds when $X^p(\Lambda) = c(\Lambda)$ or $X^p(\Lambda) = c^p(\Lambda)$ for 0 whenever

$$\sup_{n} \frac{1}{\mu_{n}^{p}} \sum_{k=0}^{n} \left| \left(\Delta(\mu x) \right)_{k} \right|^{p} < \infty;$$

$$(4.2)$$

otherwise $(c^p(\Lambda))^\beta = \mathscr{C}(\Lambda) \cap cs$ and $(c^p(\Lambda))^\gamma = \mathscr{C}(\Lambda) \cap bs$. Furthermore, it was shown that the continuous dual $(c_0^p(\Lambda))^*$ of $c_0^p(\Lambda)$ is norm isomorphic to $\mathscr{C}(\Lambda)$ when $c_0^p(\Lambda)$ has the *p*-norm $\|\cdot\|_{\tilde{c}^p_{\infty}(\Lambda)}$ and $\|a\|_{\tilde{c}^p_{\infty}(\Lambda)}^* = \|a\|_{\mathscr{C}(\Lambda)}$ on $c_{\infty}^p(\Lambda)$. Finally, that $f \in c^*(\Lambda)$ if and only if $f(x) = l\chi_f + \sum_{n=0}^{\infty} a_n x_n$ for all $x \in c(\Lambda)$ where $a \in \mathscr{C}(\Lambda)$, $l \in \mathbb{C}$ with $x - le \in c_0(\Lambda)$ and $\chi_f = f(e) - \sum_{n=0}^{\infty} a_n$, and that $\|f\|$ is equivalent to $|\chi_f| + \|a\|_{\mathscr{C}(\Lambda)}$; if condition (4.2) is satisfied, then this also holds for $c^p(\Lambda)$ (0 .

Therefore the following result gives the second duals.

THEOREM 4.1. (a) The space $\mathscr{C}(\Lambda)$ with $\|\cdot\|_{\mathscr{C}(\Lambda)}$ is a BK space with AK.

(b) The set $c_{\infty}(\Lambda)$ is β perfect, that is, $c_{\infty}^{\beta\beta}(\Lambda) = c_{\infty}(\Lambda)$. Further $||a||_{\mathscr{C}(\Lambda)}^* = ||a||_{\tilde{c}_{\infty}(\Lambda)}$ for all $a \in \mathscr{C}^{\beta}(\Lambda)$.

(c) Finally, $\mathscr{C}^{f}(\Lambda) = \mathscr{C}^{\gamma}(\Lambda) = \mathscr{C}^{\beta}(\Lambda)$.

PROOF. We apply Abel's summation by parts. If $a \in cs$, then we write R(a) for the sequence with $R_n(a) = \sum_{k=n}^{\infty} a_k$ (n = 0, 1, ...). Then

$$\sum_{n=0}^{m-1} a_n y_n = \sum_{n=0}^m R_n(a) (\Delta y)_n - R_m(a) y_m \quad \forall m = 0, 1, \dots.$$
(4.3)

(a) The space $\mathcal{W}(\Lambda)$ is a BK space with $\|\cdot\|_{\mathcal{W}(\Lambda)}$ (cf. [2, Theorem 2]). Further, the matrix A defined by $a_{nk} = 1/\lambda_k$ for $k \ge n$ and $a_{nk} = 0$ for $0 \le n-1$ (n = 0, 1, ...) is one-to-one, and $x = A(y) \in \mathcal{C}(\Lambda)$ if and only if $y \in \mathcal{W}(\Lambda)$. So, by [4, Theorem 4.3.2, page 61], $\mathcal{C}(\Lambda)$ is a BK space with $\|x\|_{\mathcal{C}(\Lambda)} = \|A(y)\|_{\mathcal{W}(\Lambda)}$. Now, we show that $\mathcal{C}(\Lambda)$ has AK. First, we observe that $\phi \subset \mathcal{C}(\Lambda)$, since $\mathcal{C}(\Lambda)$ is the β -dual of a sequence space. Now, let $x \in \mathcal{C}(\Lambda)$ and let $\varepsilon > 0$. For each $m \in \mathbb{N}_0$, let v_m denote the uniquely determined integer for which $m \in N^{(v_m)}$. We choose $m_0 \in \mathbb{N}_0$ such that

$$\sum_{\nu=\nu_m}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_n(x/\Lambda)| < \varepsilon \quad \forall m \ge m_0.$$
(4.4)

Let $m \ge m_0$. Since the sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ is exponentially bounded, there is $t \in (0,1)$ such that, by (1.5),

$$\begin{aligned} ||x - x^{[m]}||_{\mathfrak{E}(\Lambda)} &= \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_n((x - x^{[m]})/\Lambda)| \\ &\leq \sum_{\nu=0}^{\nu_m-1} \lambda_{n(\nu+1)} |R_{m+1}(x/\Lambda)| + \sum_{\nu=\nu_m}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_n(x/\Lambda)| \\ &< \varepsilon + \sum_{\nu=0}^{\nu_m-1} \frac{\lambda_{n(\nu+1)}}{\lambda_{n(\nu_m+1)}} \lambda_{n(\nu_m+1)} \max_{\nu_m} |R_n(x/\Lambda)| \\ &< \varepsilon + \varepsilon \sum_{\nu=0}^{\nu_m-1} t^{\nu_m-\nu} < \varepsilon \frac{1}{1-t}. \end{aligned}$$

$$(4.5)$$

This shows that $\mathscr{C}(\Lambda)$ has AK.

(b) First, we show that $\mathscr{C}^{\beta}(\Lambda) = c_{\infty}(\Lambda)$.

For any $X \subset \omega$, $X \subset X^{\beta\beta}$ by [4, Theorem 7.1.2, page 105]. So we have to show $c_{\infty}(\Lambda) \subset \mathscr{C}^{\beta}(\Lambda)$ by [1, Theorem 4].

Let $a \in \mathscr{C}^{\beta}(\Lambda)$. We define $f_a : \mathscr{C}(\Lambda) \to \mathbb{C}$ by $f_a(x) = \sum_{k=0}^{\infty} a_k x_k$ for all $x \in \mathscr{C}(\Lambda)$. Then $f_a \in \mathscr{C}^*(\Lambda)$ by [4, Theorem 7.2.9, page 107], and so

$$\left|f_{a}(x)\right| \leq \|f_{a}\| \|x\|_{\mathscr{C}(\Lambda)} < \infty \quad \forall x \in \mathscr{C}(\Lambda).$$

$$(4.6)$$

Let $m \in \mathbb{N}_0$ be given and ν_m the uniquely determined integer such that $m \in N^{\langle \nu_m \rangle}$. Since Λ is exponentially bounded, there are $s, t \in (0, 1)$ such that, by (1.5),

$$\begin{aligned} ||e^{(m)}||_{\mathscr{C}(\Lambda)} &= \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| R_n \left(\frac{e^{(m)}}{\Lambda_k} \right) \right| = \sum_{\nu=0}^{\nu_m} \frac{\lambda_{n(\nu+1)}}{\lambda_m} \\ &\leq \sum_{\nu=0}^{\nu_m} \frac{\lambda_{n(\nu+1)}}{\lambda_{n(\nu_m+1)}} \frac{\lambda_{n(\nu_m+1)}}{\lambda_{n(\nu_m)}} \leq \frac{1}{s} \sum_{\nu=0}^{\nu_m} t^{\nu_m-\nu} \leq \frac{1}{s(1-t)} < \infty. \end{aligned}$$

$$(4.7)$$

Now (4.6) implies

$$|a_{m}| = |f_{a}(e^{(m)})| \le ||f_{a}|| ||e^{(m)}||_{\mathscr{C}(\Lambda)} \le ||f_{a}|| \frac{1}{s(1-t)} \quad \forall m \in \mathbb{N}_{0},$$
(4.8)

and so $a \in l_{\infty}$. Further, $x \in \mathscr{C}(\Lambda)$ implies that $R_n(x/\Lambda) \in cs$ for all n, and $\Lambda R(x/\Lambda) \in c_0$. Therefore $a\Lambda R(x/\Lambda) \in c_0$. Now (4.3) yields

$$\sum_{n=0}^{\infty} a_n x_n = \sum_{n=0}^{\infty} R_n (x/\Lambda) (\Delta(\Lambda a))_n \quad \forall x \in \mathscr{C}(\Lambda).$$
(4.9)

Thus $R(x/\Lambda)\Delta(\Lambda a) \in cs$ for all $x \in \mathcal{C}(\Lambda)$. Now $x \in \mathcal{C}(\Lambda)$ if and only if $R(x/\Lambda) \in \mathcal{W}(\Lambda)$ and, by [2, Theorem 4], $\Delta(\Lambda a) \in \mathcal{W}^{\beta}(\Lambda) = w_{\infty}(\Lambda)$. But this means that $a \in c_{\infty}(\Lambda)$. Thus we have shown that $\mathcal{C}^{\beta}(\Lambda) \subset c_{\infty}(\Lambda)$.

Now we show

$$\|a\|_{\mathscr{C}(\Lambda)}^{*} = \|a\|_{\tilde{c}_{\infty}(\Lambda)} \quad \forall a \in \mathscr{C}^{\beta}(\Lambda).$$

$$(4.10)$$

Let $a \in \mathscr{C}^{\beta}(\Lambda) = c_{\infty}(\Lambda)$, by what we have just shown. Then by (4.9), for all $x \in \mathscr{C}(\Lambda)$,

$$\left|\sum_{n=0}^{\infty} a_n x_n\right| \leq \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| R_n(x/\Lambda) \right| \frac{1}{\lambda_{n(\nu+1)}} \sum_{\nu} \left| \left(\Delta(\Lambda a) \right)_n \right|$$

$$\leq \|a\|_{\tilde{c}_{\infty}(\Lambda)} \|x\|_{\mathfrak{C}(\Lambda)}, \tag{4.11}$$

and so

$$\|a\|_{\mathscr{C}(\Lambda)}^* \le \|a\|_{\tilde{c}_{\infty}(\Lambda)}. \tag{4.12}$$

Let $\nu_m \in \mathbb{N}_0$. By $\nu_{0,m}$, we denote the smallest integer with $0 \le \nu_{0,m} \le \nu_m$ for which

$$\frac{1}{\lambda_{n(\nu_{0,m}+1)}} \sum_{\nu_{0,m}} \left| \left(\Delta(\Lambda a) \right)_{n} \right| = \max_{0 \le \nu \le \nu_{m}} \left(\frac{1}{\lambda_{n(\nu+1)}} \sum_{\nu} \left| \left(\Delta(\Lambda a) \right)_{n} \right| \right).$$
(4.13)

We define the sequences $R^{(m)}$ and $x^{(m)}$ by

$$R_n^{(m)} = \begin{cases} \frac{1}{\lambda_{n(\nu_{0,m}+1)}} \operatorname{sgn}((\Delta(\Lambda a))_n) & \text{for } n \in N^{\langle \nu_{0,m} \rangle}, \\ 0 & \text{for } n \notin N^{\langle \nu_{0,m} \rangle}, \end{cases}$$
(4.14)

127

and $x_n^{(m)} = R_n^{(m)} - R_{n+1}^{(m)}$ (*n* = 0, 1,...). Then we have

$$||x^{(m)}||_{\mathscr{C}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_{n}^{(m)}| = \lambda_{n(\nu_{0,m}+1)} \max_{\nu_{0,m}} |R_{n}^{(m)}| \le 1,$$

$$\left| \sum_{n=0}^{\infty} a_{n} x_{n}^{(m)} \right| = \max_{0 \le \nu \le \nu_{m}} \frac{1}{\lambda_{n(\nu+1)}} \sum_{\nu} |(\Delta(\Lambda a))_{n}| \le ||a||_{\mathscr{C}(\Lambda)}^{*} ||x||_{\mathscr{C}(\Lambda)} \le ||a||_{\mathscr{C}(\Lambda)}^{*}.$$
(4.15)

Since ν_m was arbitrary, we obtain $||a||_{\tilde{c}_{\infty}(\Lambda)} \leq ||a||_{\mathfrak{C}(\Lambda)}^*$. Together with (4.12), this yields (4.10).

(c) Since $\mathscr{C}(\Lambda)$ has AK by part (b) and so AD, part (c) follows from [4, Theorem 7.2.7(ii) and (iii), page 106].

REFERENCES

- A. M. Jarrah and E. Malkowsky, *The dual spaces of Λ-strongly convergent and bounded sequences*, to appear.
- [2] E. Malkowsky, Matrix Transformations in a New Class of Sequences that Includes Spaces of Absolutely and Strongly Summable Sequences, Habilitationsschrift, Giessen, Univ. Giessen, 1989. Zbl 684.46011.
- [3] _____, The continuous duals of the spaces $c_0(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ , Acta Sci. Math. (Szeged) **61** (1995), no. 1-4, 241–250. MR 97d:46005. Zbl 846.40008.
- [4] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, 85, North-Holland Publishing Co., Amsterdam-New York, 1984, Notas de Matematica [Mathematical Notes], 91. MR 85d:40006. Zbl 531.40008.

A. M. JARRAH: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, YARMOUK UNIVERSITY, IRBID, JORDAN

E-mail address: ajarrah@yu.edu.jo

E. MALKOWSKY: C/O DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, YARMOUK UNIVER-SITY, IRBID, JORDAN

E-mail address: malkowsky@math.uni-giessen.de