ABOUT THE EXISTENCE OF THE THERMODYNAMIC LIMIT FOR SOME DETERMINISTIC SEQUENCES OF THE UNIT CIRCLE

STEFANO SIBONI

(Received 20 December 1999)

ABSTRACT. We show that in the set $\Omega = \mathbb{R}_+ \times (1, +\infty) \subset \mathbb{R}^2_+$, endowed with the usual Lebesgue measure, for almost all $(h, \lambda) \in \Omega$ the limit $\lim_{n \to +\infty} (1/n) \ln |h(\lambda^n - \lambda^{-n}) \mod [-\frac{1}{2}, \frac{1}{2})|$ exists and is equal to zero. The result is related to a characterization of relaxation to equilibrium in mixing automorphisms of the two-torus. It is nothing but a curiosity, but maybe you will find it nice.

Keywords and phrases. Thermodynamic limit, Borel-Cantelli argument.

2000 Mathematics Subject Classification. Primary 11B83; Secondary 37A25.

1. Introduction. In the analysis of relaxation to equilibrium of mixing automorphisms of the two-torus [1, 2, 3] one encounters the following problem. Suppose that the one-torus is parameterized by the unit interval $\left[-\frac{1}{2}, \frac{1}{2}\right)$ and for appropriate constants h > 0 and $\lambda > 1$ consider the real sequence

$$x_n = h(\lambda^n - \lambda^{-n}) \mod \left[-\frac{1}{2}, \frac{1}{2}\right) \quad \forall n \in \mathbb{N}.$$
 (1.1)

A significant definition of an exponential "relaxation rate" can be given if the so-called "thermodynamic" limit [3],

$$\lim_{n \to +\infty} -\frac{1}{n} \ln |x_n| \tag{1.2}$$

exists and is equal to zero. Existence of (1.2) is clearly not obvious, since the x_n 's typically wander through the whole interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ but every so often they visit a small neighborhood of zero, where the logarithm is singular. Actually, not even if one replaces the ordinary limit in (1.2) with a supremum limit the finiteness of the result is assured.

This note is devoted to a measure theoretical discussion of the previous problem. One can show that existence to zero of limit (1.2) occurs almost surely, for almost any choice of the parameters h and λ , with respect to a measure suitably defined.

2. Results. Our goal is to prove the statement below.

THEOREM 2.1. Consider the set $\Omega = \mathbb{R}_+ \times (1, +\infty) \subset \mathbb{R}^2_+$ endowed with the usual Lebesgue measure μ . Then, for μ almost all $(h, \lambda) \in \Omega$ there holds

$$\lim_{n \to +\infty} \frac{1}{n} \ln \left| h(\lambda^n - \lambda^{-n}) \mod \left[-\frac{1}{2}, \frac{1}{2} \right) \right| = 0.$$
(2.1)

This result can be easily deduced by means of standard arguments of measure theory once the following main theorem is proved.

THEOREM 2.2. Let h > 0 and $Q \in \mathbb{N}$, Q > 1, some fixed constants. Consider the set G of all $\lambda \in [1,Q]$ for which a (possibly λ -dependent) real sequence $(a_n)_{n \in \mathbb{N}}$ and an integer $n' \in \mathbb{N}$ exist such that

(a) $a_n > 0 \forall n > n';$

(b)
$$a_n \leq |h(\lambda^n - \lambda^{-n}) \mod \left[-\frac{1}{2}, \frac{1}{2}\right)| \forall n > n';$$

(c) $\lim_{n \to +\infty} (1/n) \ln a_n = 0.$

Then, if μ *denotes the Lebesgue measure on* \mathbb{R} *:*

(1) the set $G \subseteq [1, Q]$ is actually nonempty;

(2) *G* is μ -measurable and its measure holds $\mu(G) = Q - 1$.

As a consequence, the set $B = [1,Q] \setminus G$, where conditions (a), (b), and (c) are not simultaneously satisfied, is also μ -measurable and of vanishing measure.

We firstly prove the result by considering values of λ in the interval $[1 + \eta, Q]$, with η small positive number arbitrarily fixed ($\eta < 1/2$). We therefore look for the subset G_{η} of $\lambda \in [1 + \eta, Q]$, where hypotheses (a), (b), and (c) are satisfied by a suitable choice of the sequence $(a_n)_{n \in \mathbb{N}}$ and of the integer $n' \in \mathbb{N}$. The basic idea of the proof is that the μ -measure of G_{η} turns out to be $Q - 1 - \eta$ even if we confine ourselves to choose the sequence $(a_n)_{n \in \mathbb{N}}$ in the form

$$a_n = \frac{1}{n^2} \quad \forall n \in \mathbb{N}, \tag{2.2}$$

which certainly fulfills requirements (a) and (c), and enable us to deal with the *only* condition (b) on λ .

Let us then take $a_n = 1/n^2$ for all $n \in \mathbb{N}$ and an arbitrarily given value of $n \in \mathbb{N}$. Before tackling the real proof, we need some definitions.

DEFINITION 2.3. We introduce the set $B_n \subseteq [1 + \eta, Q]$

$$B_n = \left\{ \lambda \in [1+\eta, Q] : a_n > \left| h(\lambda^n - \lambda^{-n}) \mod \left[-\frac{1}{2}, \frac{1}{2} \right) \right| \right\},$$
(2.3)

that is, the set of $\lambda \in [1 + \eta, Q]$, where the condition $a_n \leq |h(\lambda^n - \lambda^{-n}) \mod \left[-\frac{1}{2}, \frac{1}{2}\right)|$ is not satisfied for the assigned $n \in \mathbb{N}$.

Notice that B_n is a finite union of intervals because the function $\Phi_n(\lambda) = \lambda^n - \lambda^{-n}$ is strictly increasing in $[+1, +\infty)$ at fixed *n*. In fact

$$\Phi'_{n}(\lambda) = n(\lambda^{n-1} + \lambda^{-(n+1)}) > 0 \quad \forall \lambda \in [1, +\infty).$$
(2.4)

Consequently, B_n is μ -measurable as a finite union of bounded intervals.

DEFINITION 2.4. We further introduce the set $\hat{B}_{n'} \subseteq [1 + \eta, Q]$, $n' \in \mathbb{N}$, given by

$$\hat{B}_{n'} = \left\{ \lambda \in [1+\eta, Q] : a_n > \left| h(\lambda^n - \lambda^{-n}) \mod \left[-\frac{1}{2}, \frac{1}{2} \right) \right|, \ n > n' \right\} = \bigcup_{n > n'} B_n \quad (2.5)$$

which is obviously μ -measurable as a countable union of μ -measurable sets.

858

DEFINITION 2.5. We finally introduce the "bad" set $B_{\eta} \subseteq [1 + \eta, Q]$

$$B_{\eta} = \bigcap_{n'=1}^{\infty} \hat{B}_{n'}, \qquad (2.6)$$

where condition (b) is not satisfied—with this particular choice of the sequence $(a_n)_{n \in \mathbb{N}}$. B_η is also a μ -measurable set, as a countable intersection of μ -measurable sets.

An immediate consequence of the previous definitions is that $[1 + \eta, Q] \setminus G_{\eta} = B_{\eta}$. Our goal is to prove that $\mu(B_{\eta}) = 0$. To this end, since for all $n' \in \mathbb{N}$, $B_{\eta} \subseteq \hat{B}_{n'}$ by definition, it is enough to show that

$$\lim_{n' \to +\infty} \mu(\hat{B}_{n'}) = 0.$$
(2.7)

Therefore, we can confine ourselves to consider values of $n' \in \mathbb{N}$ large enough, and owing to Definition 2.4, we can also assume values of $n \in \mathbb{N}$ greater that n'. More precisely, we impose the following technical requirements on the size of n' and n. We take $n > n' \in \mathbb{N}$ such that:

- (i) $a_{n'} = 1/{n'}^2 < \eta \Rightarrow a_n < \eta \ \forall n > n'.$
- (ii) $a_n h/(1+\eta)^n = 1/n^2 h/(1+\eta)^n > 0 \ \forall n > n'.$
- (iii) $h[(1+\eta)^n (1+\eta)^{-n}] > 3/2$ and $h[Q^n Q^{-n}] > 5/2 \quad \forall n > n'$.

Under the previous conditions we can state the following lemmas.

LEMMA 2.6. The μ -measure of B_n , n as above, admits the upper bound

$$\mu(B_n) \le 2\varepsilon_n \left(\frac{1}{h}\right)^{1/n} [h(Q^n - Q^{-n})]^{1/n}, \qquad (2.8)$$

where $\varepsilon_n = a_n + h/(1+\eta)^n > 0$.

PROOF. We firstly notice that $1 + a_n < 1 + \eta$ by (i); on the other hand, since $\eta < 1/2$ by hypothesis, (i) implies $a_n < 1/2$, so that all the intervals $(p - a_n, p + a_n)$, $p = 2, ..., \lfloor h(Q^n - Q^{-n}) \rfloor + 1$ are disjoint.

By using (iii) and denoted with I_n the integer set $\{2, 3, ..., \lfloor h(Q^n - Q^{-n}) \rfloor + 1\}$, we deduce

$$B_{n} \subseteq \left\{ \lambda \in [1+\eta, Q] : h(\lambda^{n} - \lambda^{-n}) \in \bigcup_{p=2}^{\lfloor h(Q^{n} - Q^{-n}) \rfloor + 1} (p - a_{n}, p + a_{n}) \right\}$$

$$= \left\{ \lambda \in [1+\eta, Q] : p - a_{n} < h(\lambda^{n} - \lambda^{-n}) < p + a_{n}, p \in I_{n} \right\}$$

$$= \left\{ \lambda \in [1+\eta, Q] : p - (a_{n} - h\lambda^{-n}) < h\lambda^{n} < p + a_{n} + h\lambda^{-n}, p \in I_{n} \right\}.$$

(2.9)

Now it is clear that for all $\lambda \in [1 + \eta, Q]$,

$$a_n - \frac{h}{(1+\eta)^n} \le a_n - h\lambda^{-n} < a_n + h\lambda^{-n} \le a_n + \frac{h}{(1+\eta)^n}$$
(2.10)

and by (ii),

$$a_n - \frac{h}{(1+\eta)^n} > 0 \tag{2.11}$$

from which we obtain

$$0 < a_n - \frac{h}{(1+\eta)^n} \le a_n - h\lambda^{-n} < a_n + h\lambda^{-n} \le a_n + \frac{h}{(1+\eta)^n} \quad \forall \lambda \in [1+\eta, Q].$$
(2.12)

By enlarging each covering interval in (2.9), we are then led to the inclusion

$$B_n \subseteq \left\{ \lambda \in [1+\eta, Q] : p - \left(a_n + \frac{h}{(1+\eta)^n} \right) < h\lambda^n < p + a_n + \frac{h}{(1+\eta)^n}, \ p \in I_n \right\}$$
(2.13)

and recalling the definition of ε_n ,

$$B_{n} \subseteq \left\{ \lambda \in [1+\eta, Q] : \left(\frac{p-\varepsilon_{n}}{h}\right)^{1/n} < \lambda < \left(\frac{p+\varepsilon_{n}}{h}\right)^{1/n}, \ p \in I_{n} \right\}$$
$$\subseteq \bigcup_{p=2}^{\lfloor h(Q^{n}-Q^{-n})\rfloor+1} \left(\left(\frac{p-\varepsilon_{n}}{h}\right)^{1/n}, \left(\frac{p+\varepsilon_{n}}{h}\right)^{1/n} \right),$$
(2.14)

the final set being μ -measurable as a finite union of intervals. Whence

$$\mu(B_n) \le \sum_{p=2}^{\lfloor h(Q^n - Q^{-n}) \rfloor + 1} \left(\frac{1}{h}\right)^{1/n} [(p + \varepsilon_n)^{1/n} - (p - \varepsilon_n)^{1/n}].$$
(2.15)

Moreover, for all $p = 2, 3, ..., \lfloor h(Q^n - Q^{-n}) \rfloor + 1$ Lagrange mean value theorem implies the equalities below

$$(p+\varepsilon_n)^{1/n} - (p-\varepsilon_n)^{1/n} = \frac{1}{n} (p+\xi_p)^{(1/n)-1} 2\varepsilon_n$$
(2.16)

for some $\xi_p \in (-\varepsilon_n, \varepsilon_n)$, and since

$$(p+\xi_p)^{(1/n)-1} = \frac{1}{(p+\xi_p)^{1-(1/n)}} \le \frac{1}{(p-1)^{1-(1/n)}}$$
(2.17)

we conclude that

$$\mu(B_n) \leq \sum_{p=2}^{\lfloor h(Q^n - Q^{-n}) \rfloor + 1} \left(\frac{1}{h}\right)^{1/n} \frac{1}{n} \frac{1}{(p-1)^{1-(1/n)}} 2\varepsilon_n$$

$$= \frac{2\varepsilon_n}{n} \left(\frac{1}{h}\right)^{1/n} \sum_{p=1}^{\lfloor h(Q^n - Q^{-n}) \rfloor} \frac{1}{p^{1-(1/n)}}.$$
(2.18)

As $(p^{1-(1/n)})^{-1}$ is a decreasing function of p, the following upper estimate holds

$$\sum_{p=1}^{\lfloor h(Q^n - Q^{-n}) \rfloor} \frac{1}{p^{1-(1/n)}} \le \int_0^{\lfloor h(Q^n - Q^{-n}) \rfloor} p^{(1/n)-1} dp = [np^{1/n}]_0^{\lfloor h(Q^n - Q^{-n}) \rfloor}$$

$$= n \lfloor h(Q^n - Q^{-n}) \rfloor^{1/n}$$
(2.19)

and finally $\mu(B_n) \leq 2\varepsilon_n (1/h)^{1/n} [h(Q^n - Q^{-n})]^{1/n}$, which completes the proof. \Box

860

LEMMA 2.7. If n' > 0 (satisfying (i), (ii), and (iii)) is sufficiently large, the μ -measure of $\hat{B}_{n'}$ is bounded by

$$\mu(\hat{B}_{n'}) \le 2(Q+\varepsilon) \sum_{n=n'+1}^{\infty} \varepsilon_n$$
(2.20)

for some small $\varepsilon > 0$ *.*

PROOF. Because of the identity $\hat{B}_{n'} = \bigcup_{n>n'} B_n$ and using Lemma 2.6, we have the following estimate

$$\mu(\hat{B}_{n'}) \le \sum_{n=n'+1}^{\infty} \mu(B_n) \le 2 \sum_{n=n'+1}^{\infty} \varepsilon_n \left(\frac{1}{h}\right)^{1/n} [h(Q^n - Q^{-n})]^{1/n}.$$
 (2.21)

Notice that for all h > 0, and $Q \in \mathbb{N}$, Q > 1

$$\lim_{n \to +\infty} \left(\frac{1}{h}\right)^{1/n} \left[h(Q^n - Q^{-n})\right]^{1/n} = Q$$
(2.22)

so that for some $\varepsilon > 0$, $\varepsilon \ll Q$, and n' sufficiently large there holds

$$Q - \varepsilon < \left(\frac{1}{h}\right)^{1/n} \left[h\left(Q^n - Q^{-n}\right)\right]^{1/n} < Q + \varepsilon \quad \forall n \in \mathbb{N}, \ n > n'.$$
(2.23)

Whence for n' as above

$$\mu(\hat{B}_{n'}) \le 2\sum_{n=n'+1}^{\infty} \varepsilon_n(Q+\varepsilon) = 2(Q+\varepsilon)\sum_{n=n'+1}^{\infty} \varepsilon_n$$
(2.24)

which is finite, owing to

$$\sum_{n=1}^{\infty} \varepsilon_n = \sum_{n=1}^{\infty} \left(\frac{1}{n^2} + \frac{h}{(1+\eta)^n} \right) = \frac{\pi^2}{6} + \frac{h}{\eta}.$$
 (2.25)

LEMMA 2.8. The measure of B_{η} is zero

$$\mu(B_{\eta}) = 0. \tag{2.26}$$

PROOF. Since for all $n' \in \mathbb{N}$ we have that $B_{\eta} \subseteq \hat{B}_{n'}$, in particular this will be true for all $n' \in \mathbb{N}$ large enough to satisfy the requirements of the previous lemmas. Thus

$$\mu(B_{\eta}) \le \mu(\hat{B}_{n'}) \le 2(Q+\varepsilon) \sum_{n=n'+1}^{\infty} \varepsilon_n$$
(2.27)

and therefore

$$\mu(B_{\eta}) \leq \lim_{n' \to +\infty} 2(Q + \varepsilon) \sum_{n=n'+1}^{\infty} \varepsilon_n, \qquad (2.28)$$

where the limit is obviously zero, because of $\sum_{n=1}^{\infty} \varepsilon_n < +\infty$. By the nonnegativity of measure we have the result.

STEFANO SIBONI

PROOF OF THEOREM 2.2. As a consequence of Lemma 2.8, the "good" set $G_{\eta} = [1 + \eta, Q] \setminus B_{\eta}$ of λ -values in $[1 + \eta, Q]$ satisfying condition (b) for the particular choice of $(a_n)_{n \in \mathbb{N}}$, $a_n = 1/n^2$, is of course μ -measurable and with Lebesgue measure

$$\mu(G_{\eta}) = Q - 1 - \eta - \mu(B_{\eta}) = Q - 1 - \eta.$$
(2.29)

If we now consider an *arbitrary* choice of the sequence $(a_n)_{n \in \mathbb{N}}$, compatible again with conditions (a) and (c), the previous set G_η will maybe "grow" by a subset $\tilde{G}_\eta \subseteq [1 + \eta, Q] \setminus G_\eta$:

$$G_{\eta} \longrightarrow G_{\eta}^{o} = G_{\eta} \cup \tilde{G}_{\eta}.$$
 (2.30)

But as $\mu([1+\eta, Q] \setminus G_{\eta}) = 0$ it follows that \tilde{G}_{η} is also μ -measurable and of vanishing μ -measure. Hence we finally conclude that the *full* set G_{η}^{o} , corresponding to arbitrary (a)- and (c)-conditioned sequences $(a_{n})_{n \in \mathbb{N}}$, is μ -measurable with measure

$$\mu(G_n^o) = Q - 1 - \eta \tag{2.31}$$

and that the corresponding *full* set $B_{\eta}^{o} = [1 + \eta, Q] \setminus G_{\eta}^{o}$ of λ values where condition (b) is not fulfilled for *any* (a)- and (c)-conditioned sequence $(a_{n})_{n \in \mathbb{N}}$ is in turn μ -measurable with vanishing μ -measure:

$$\mu(B_{\eta}^{o}) = Q - 1 - \eta - \mu(G_{\eta}^{o}) = 0.$$
(2.32)

So far we have proved that B_{η} is a set of vanishing measure in any closed interval $[1+\eta, Q]$ with $\eta > 0$. Consider now B, G in [1, Q], that is, according to the previous notation

$$B = B_0, \qquad G = G_0. \tag{2.33}$$

We firstly notice that *B* and *G* are both μ -measurable because

$$G = \bigcup_{n'=1}^{\infty} \bigcap_{n>n'} S_n, \qquad (2.34)$$

where S_n is the finite union of *subintervals* in [1,Q] (dependent on *n*), and $B = [1,Q] \setminus G$. Then take

$$B = (B \cap [1, 1 + \eta)) \cup (B \cap [1 + \eta, Q])$$
(2.35)

union of disjoint sets, for some fixed $\eta \in (0, \frac{1}{2})$. The μ -measurable set $B \cap [1 + \eta, Q]$ is the "bad" set in $[1 + \eta, Q]$, so that by Lemma 2.8,

$$\mu(B \cap [1+\eta, Q]) = 0. \tag{2.36}$$

As for the μ -measurable set $B \cap [1, 1 + \eta)$, we have the identity

$$B \cap [1, 1+\eta) = B \cap \left(\{1\} \cup \bigcup_{k=1}^{\infty} \left[1 + \frac{\eta}{k+1}, 1 + \frac{\eta}{k}\right]\right)$$
$$= B \cap \{1\} \cup \bigcup_{k=1}^{\infty} B \cap \left[1 + \frac{\eta}{k+1}, 1 + \frac{\eta}{k}\right]$$
(2.37)

union of disjoint sets. But the μ -measurable set

$$B \cap \left[1 + \frac{\eta}{k+1}, 1 + \frac{\eta}{k}\right), \quad k \in \mathbb{N} \setminus \{0\},$$
(2.38)

satisfies

$$B \cap \left[1 + \frac{\eta}{k+1}, 1 + \frac{\eta}{k}\right) \subseteq B \cap \left[1 + \frac{\eta}{k+1}, Q\right]$$
(2.39)

and since $1/2 > \eta/(k+1) > 0$ for any given $k \in \mathbb{N} \setminus \{0\}$, we obtain

$$\mu\left(B\cap\left[1+\frac{\eta}{k+1},1+\frac{\eta}{k}\right]\right)=0.$$
(2.40)

On the other hand, there trivially holds $\mu(B \cap \{1\}) = 0$, so that

$$\mu(B \cap [1, 1+\eta)) = \mu(B \cap \{1\}) + \sum_{k=1}^{\infty} \mu\left(B \cap \left[1 + \frac{\eta}{k+1}, 1 + \frac{\eta}{k}\right]\right) = 0.$$
(2.41)

Whence, finally,

$$\mu(B) = \mu(B \cap [1, 1+\eta)) + \mu(B \cap [1+\eta, Q)) = 0, \qquad (2.42)$$

that is, $\mu(B) = 0$ and $\mu(G) = Q - 1$. The proof is complete.

References

- A. Bazzani, S. Siboni, G. Turchetti, and S. Vaienti, *From dynamical systems to local diffusion processes*, Chaotic Dynamics (Patras, 1991), pp. 139–144, NATO Adv. Sci. Inst. Ser. B Phys., vol. 298, Plenum, New York, 1992. CMP 1 209 873.
- [2] S. Siboni, Rilassamento all'equilibrio in un sistema mixing e analisi di un modello di diffusione modulata, Tesi di Dottorato di Ricerca dell'Università degli Studi, Bologna (Italy), 1991.
- [3] S. Siboni, G. Turchetti, and S. Vaienti, *Thermodynamic limit and relaxation to equilibrium in toral area-preserving transformations*, Jour. Stat. Phys. **75** (1994), no. 1–2, 167.

STEFANO SIBONI: DIPARTIMENTO DI INGEGNERIA DEI MATERIALI, FACOLTÀ DI INGEGNERIA, UNIVERSITÀ DI TRENTO, MESIANO 38050, TRENTO, ITALY

E-mail address: stefano.siboni@ing.unitn.it

863