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Abstract. We show that in the set Ω = R+ × (1,+∞) ⊂ R2+, endowed with the usual
Lebesgue measure, for almost all (h,λ) ∈ Ω the limit limn→+∞(1/n) ln|h(λn−λ−n)mod[− 12 , 12 )| exists and is equal to zero. The result is related to a characterization of relaxation
to equilibrium in mixing automorphisms of the two-torus. It is nothing but a curiosity, but
maybe you will find it nice.
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1. Introduction. In the analysis of relaxation to equilibrium of mixing automor-
phisms of the two-torus [1, 2, 3] one encounters the following problem. Suppose that
the one-torus is parameterized by the unit interval

[− 1
2 ,
1
2

)
and for appropriate con-

stants h> 0 and λ > 1 consider the real sequence

xn = h
(
λn−λ−n)mod [− 1

2
,
1
2

)
∀n∈N. (1.1)

A significant definition of an exponential “relaxation rate” can be given if the so-called
“thermodynamic” limit [3],

lim
n→+∞−

1
n
ln|xn| (1.2)

exists and is equal to zero. Existence of (1.2) is clearly not obvious, since the xn’s
typically wander through the whole interval

[− 1
2 ,
1
2

)
but every so often they visit a

small neighborhood of zero, where the logarithm is singular. Actually, not even if one
replaces the ordinary limit in (1.2) with a supremum limit the finiteness of the result
is assured.
This note is devoted to a measure theoretical discussion of the previous problem.

One can show that existence to zero of limit (1.2) occurs almost surely, for almost any
choice of the parameters h and λ, with respect to a measure suitably defined.

2. Results. Our goal is to prove the statement below.

Theorem 2.1. Consider the set Ω = R+ × (1,+∞) ⊂ R2+ endowed with the usual
Lebesgue measure µ. Then, for µ almost all (h,λ)∈Ω there holds

lim
n→+∞

1
n
ln
∣∣∣∣h(λn−λ−n)mod

[
− 1
2
,
1
2

)∣∣∣∣= 0. (2.1)
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This result can be easily deduced by means of standard arguments of measure the-
ory once the following main theorem is proved.

Theorem 2.2. Let h > 0 and Q ∈ N, Q > 1, some fixed constants. Consider the set
G of all λ ∈ [1,Q] for which a (possibly λ-dependent) real sequence (an)n∈N and an
integer n′ ∈N exist such that
(a) an > 0 ∀n>n′;
(b) an ≤ |h(λn−λ−n)mod

[− 1
2 ,
1
2

)| ∀n>n′;
(c) limn→+∞(1/n) lnan = 0.

Then, if µ denotes the Lebesgue measure on R:
(1) the set G ⊆ [1,Q] is actually nonempty;
(2) G is µ-measurable and its measure holds µ(G)=Q−1.

As a consequence, the set B = [1,Q]\G, where conditions (a), (b), and (c) are not simul-
taneously satisfied, is also µ-measurable and of vanishing measure.

We firstly prove the result by considering values of λ in the interval [1+η,Q], with
η small positive number arbitrarily fixed (η < 1/2). We therefore look for the subset
Gη of λ∈ [1+η,Q], where hypotheses (a), (b), and (c) are satisfied by a suitable choice
of the sequence (an)n∈N and of the integer n′ ∈N. The basic idea of the proof is that
the µ-measure of Gη turns out to be Q−1−η even if we confine ourselves to choose
the sequence (an)n∈N in the form

an = 1
n2

∀n∈N, (2.2)

which certainly fulfills requirements (a) and (c), and enable us to deal with the only
condition (b) on λ.
Let us then take an = 1/n2 for all n ∈ N and an arbitrarily given value of n ∈ N.

Before tackling the real proof, we need some definitions.

Definition 2.3. We introduce the set Bn ⊆ [1+η,Q]

Bn =
{
λ∈ [1+η,Q] : an >

∣∣∣∣h(λn−λ−n)mod
[
− 1
2
,
1
2

)∣∣∣∣
}
, (2.3)

that is, the set of λ∈ [1+η,Q], where the condition an ≤ |h(λn−λ−n)mod
[− 1

2 ,
1
2

)|
is not satisfied for the assigned n∈N.
Notice that Bn is a finite union of intervals because the function Φn(λ)= λn−λ−n is

strictly increasing in [+1,+∞) at fixed n. In fact

Φ′n(λ)=n
(
λn−1+λ−(n+1))> 0 ∀λ∈ [1,+∞). (2.4)

Consequently, Bn is µ-measurable as a finite union of bounded intervals.

Definition 2.4. We further introduce the set B̂n′ ⊆ [1+η,Q], n′ ∈N, given by

B̂n′ =
{
λ∈ [1+η,Q] : an >

∣∣∣∣h(λn−λ−n)mod
[
− 1
2
,
1
2

)∣∣∣∣, n > n′
}
=
⋃
n>n′

Bn (2.5)

which is obviously µ-measurable as a countable union of µ-measurable sets.
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Definition 2.5. We finally introduce the “bad” set Bη ⊆ [1+η,Q]

Bη =
∞⋂

n′=1
B̂n′ , (2.6)

where condition (b) is not satisfied—with this particular choice of the sequence
(an)n∈N. Bη is also a µ-measurable set, as a countable intersection of µ-measurable
sets.

An immediate consequence of the previous definitions is that [1+η,Q]\Gη = Bη.
Our goal is to prove that µ(Bη) = 0. To this end, since for all n′ ∈ N, Bη ⊆ B̂n′ by
definition, it is enough to show that

lim
n′→+∞

µ
(
B̂n′

)= 0. (2.7)

Therefore, we can confine ourselves to consider values of n′ ∈ N large enough, and
owing to Definition 2.4, we can also assume values of n ∈ N greater that n′. More
precisely, we impose the following technical requirements on the size of n′ and n. We
take n>n′ ∈N such that:
(i) an′ = 1/n′2 < η⇒ an < η ∀n>n′.
(ii) an−h/(1+η)n = 1/n2−h/(1+η)n > 0 ∀n>n′.
(iii) h[(1+η)n−(1+η)−n] > 3/2 and h[Qn−Q−n] > 5/2 ∀n>n′.
Under the previous conditions we can state the following lemmas.

Lemma 2.6. The µ-measure of Bn, n as above, admits the upper bound

µ
(
Bn
)≤ 2εn

(
1
h

)1/n[
h
(
Qn−Q−n)]1/n, (2.8)

where εn = an+h/(1+η)n > 0.

Proof. We firstly notice that 1+an < 1+η by (i); on the other hand, since η < 1/2
by hypothesis, (i) implies an < 1/2, so that all the intervals (p − an,p + an), p =
2, . . . ,�h(Qn−Q−n)�+1 are disjoint.
By using (iii) and denoted with In the integer set {2,3, . . . ,�h(Qn−Q−n)�+1}, we

deduce

Bn ⊆

λ∈ [1+η,Q] : h

(
λn−λ−n)∈ �h(Qn−Q−n)�+1⋃

p=2

(
p−an,p+an

)



= {λ∈ [1+η,Q] : p−an < h(λn−λ−n)<p+an, p ∈ In}
= {λ∈ [1+η,Q] : p−(an−hλ−n)<hλn < p+an+hλ−n, p ∈ In}.

(2.9)

Now it is clear that for all λ∈ [1+η,Q],

an− h
(1+η)n ≤ an−hλ

−n < an+hλ−n ≤ an+ h
(1+η)n (2.10)

and by (ii),

an− h
(1+η)n > 0 (2.11)
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from which we obtain

0<an− h
(1+η)n ≤ an−hλ

−n < an+hλ−n ≤ an+ h
(1+η)n ∀λ∈ [1+η,Q]. (2.12)

By enlarging each covering interval in (2.9), we are then led to the inclusion

Bn ⊆
{
λ∈ [1+η,Q] : p−

(
an+ h

(1+η)n
)
<hλn < p+an+ h

(1+η)n , p ∈ In
}
(2.13)

and recalling the definition of εn,

Bn ⊆
{
λ∈ [1+η,Q] :

(
p−εn
h

)1/n
< λ <

(
p+εn
h

)1/n
, p ∈ In

}

⊆
�h(Qn−Q−n)�+1⋃

p=2

((
p−εn
h

)1/n
,
(
p+εn
h

)1/n)
,

(2.14)

the final set being µ-measurable as a finite union of intervals. Whence

µ
(
Bn
)≤ �h(Qn−Q−n)�+1∑

p=2

(
1
h

)1/n[(
p+εn

)1/n−(p−εn)1/n]. (2.15)

Moreover, for all p = 2,3, . . . ,�h(Qn−Q−n)�+1 Lagrange mean value theorem implies
the equalities below

(
p+εn

)1/n−(p−εn)1/n = 1n
(
p+ξp

)(1/n)−1
2εn (2.16)

for some ξp ∈ (−εn,εn), and since
(
p+ξp

)(1/n)−1 = 1
(p+ξp)1−(1/n) ≤

1
(p−1)1−(1/n) (2.17)

we conclude that

µ
(
Bn
)≤ �h(Qn−Q−n)�+1∑

p=2

(
1
h

)1/n 1
n

1
(p−1)1−(1/n) 2εn

= 2εn
n

(
1
h

)1/n �h(Qn−Q−n)�∑
p=1

1
p1−(1/n)

.

(2.18)

As (p1−(1/n))−1 is a decreasing function of p, the following upper estimate holds

�h(Qn−Q−n)�∑
p=1

1
p1−(1/n)

≤
∫ �h(Qn−Q−n)�
0

p(1/n)−1dp = [np1/n]�h(Qn−Q−n)�0

=n⌊h(Qn−Q−n)⌋1/n
(2.19)

and finally µ(Bn)≤ 2εn(1/h)1/n[h(Qn−Q−n)]1/n, which completes the proof.
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Lemma 2.7. If n′ > 0 (satisfying (i), (ii), and (iii)) is sufficiently large, the µ-measure
of B̂n′ is bounded by

µ
(
B̂n′

)≤ 2(Q+ε) ∞∑
n=n′+1

εn (2.20)

for some small ε > 0.

Proof. Because of the identity B̂n′ = ∪n>n′Bn and using Lemma 2.6, we have the
following estimate

µ
(
B̂n′

)≤ ∞∑
n=n′+1

µ
(
Bn
)≤ 2 ∞∑

n=n′+1
εn
(
1
h

)1/n[
h
(
Qn−Q−n)]1/n. (2.21)

Notice that for all h> 0, and Q∈N, Q> 1

lim
n→+∞

(
1
h

)1/n[
h
(
Qn−Q−n)]1/n =Q (2.22)

so that for some ε > 0, ε�Q, and n′ sufficiently large there holds

Q−ε <
(
1
h

)1/n[
h
(
Qn−Q−n)]1/n <Q+ε ∀n∈N, n > n′. (2.23)

Whence for n′ as above

µ
(
B̂n′

)≤ 2 ∞∑
n=n′+1

εn(Q+ε)= 2(Q+ε)
∞∑

n=n′+1
εn (2.24)

which is finite, owing to

∞∑
n=1

εn =
∞∑
n=1

(
1
n2
+ h
(1+η)n

)
= π

2

6
+ h
η
. (2.25)

Lemma 2.8. The measure of Bη is zero

µ
(
Bη
)= 0. (2.26)

Proof. Since for all n′ ∈N we have that Bη ⊆ B̂n′ , in particular this will be true for
all n′ ∈N large enough to satisfy the requirements of the previous lemmas. Thus

µ
(
Bη
)≤ µ(B̂n′)≤ 2(Q+ε)

∞∑
n=n′+1

εn (2.27)

and therefore

µ
(
Bη
)≤ lim

n′→+∞
2(Q+ε)

∞∑
n=n′+1

εn, (2.28)

where the limit is obviously zero, because of
∑∞
n=1 εn < +∞. By the nonnegativity of

measure we have the result.
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Proof of Theorem 2.2. As a consequence of Lemma 2.8, the “good” set Gη =
[1+η,Q]\Bη of λ-values in [1+η,Q] satisfying condition (b) for the particular choice
of (an)n∈N, an = 1/n2, is of course µ-measurable and with Lebesgue measure

µ
(
Gη
)=Q−1−η−µ(Bη)=Q−1−η. (2.29)

If we now consider an arbitrary choice of the sequence (an)n∈N, compatible again
with conditions (a) and (c), the previous set Gη will maybe “grow” by a subset G̃η ⊆
[1+η,Q]\Gη:

Gη �→Goη =Gη∪G̃η. (2.30)

But as µ([1+η,Q]\Gη) = 0 it follows that G̃η is also µ-measurable and of vanishing
µ-measure. Hence we finally conclude that the full set Goη, corresponding to arbitrary
(a)- and (c)-conditioned sequences (an)n∈N, is µ-measurable with measure

µ
(
Goη
)=Q−1−η (2.31)

and that the corresponding full set Boη = [1+η,Q]\Goη of λ valueswhere condition (b) is
not fulfilled for any (a)- and (c)-conditioned sequence (an)n∈N is in turn µ-measurable
with vanishing µ-measure:

µ
(
Boη
)=Q−1−η−µ(Goη)= 0. (2.32)

So far we have proved that Bη is a set of vanishing measure in any closed interval
[1+η,Q] with η > 0. Consider now B,G in [1,Q], that is, according to the previous
notation

B = B0, G =G0. (2.33)

We firstly notice that B and G are both µ-measurable because

G =
∞⋃

n′=1

⋂
n>n′

Sn, (2.34)

where Sn is the finite union of subintervals in [1,Q] (dependent on n), and B =
[1,Q]\G. Then take

B = (B∩[1,1+η))∪(B∩[1+η,Q]) (2.35)

union of disjoint sets, for some fixed η∈ (0, 12). The µ-measurable set B∩[1+η,Q] is
the “bad” set in [1+η,Q], so that by Lemma 2.8,

µ
(
B∩[1+η,Q])= 0. (2.36)

As for the µ-measurable set B∩[1,1+η), we have the identity

B∩[1,1+η)= B∩
(
{1}∪

∞⋃
k=1

[
1+ η

k+1 ,1+
η
k

))

= B∩{1}∪
∞⋃
k=1
B∩

[
1+ η

k+1 ,1+
η
k

) (2.37)
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union of disjoint sets. But the µ-measurable set

B∩
[
1+ η

k+1 ,1+
η
k

)
, k∈N\{0}, (2.38)

satisfies

B∩
[
1+ η

k+1 ,1+
η
k

)
⊆ B∩

[
1+ η

k+1 ,Q
]

(2.39)

and since 1/2> η/(k+1) > 0 for any given k∈N\{0}, we obtain

µ
(
B∩

[
1+ η

k+1 ,1+
η
k

))
= 0. (2.40)

On the other hand, there trivially holds µ(B∩{1})= 0, so that

µ
(
B∩[1,1+η))= µ(B∩{1})+ ∞∑

k=1
µ
(
B∩

[
1+ η

k+1 ,1+
η
k

))
= 0. (2.41)

Whence, finally,

µ(B)= µ(B∩[1,1+η))+µ(B∩[1+η,Q))= 0, (2.42)

that is, µ(B)= 0 and µ(G)=Q−1. The proof is complete.
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