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Abstract. We obtain some topological results of the sequence spaces ∆m(X), where
∆m(X) = {x = (xk) : (∆mxk) ∈ X}, (m ∈ N), and X is any sequence space. We com-
pute the pα-, pβ-, and pγ-duals of l∞,c, and c0 and we investigate the N-(or null) dual of
the sequence spaces ∆m(l∞),∆m(c), and ∆m(c0). Also we show that any matrix map from
∆m(l∞) into a BK-space which does not contain any subspace isomorphic to ∆m(l∞) is
compact.
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1. Introduction. w denotes the space of all scalar sequences and any subspace of
w is called a sequence space. The following sequence spaces will be used in what
follows:
l∞, the space of all bounded scalar sequences;
c, the space of all convergent scalar sequences;
c0, the space of all null scalar sequences;
l1, the space of all absolutely 1-summable scalar sequences;
s, the space of all real sequences;
s0, the space of all statistically convergent sequences of real numbers;
∆m(l∞), the space of all ∆m-bounded scalar sequences;
∆m(c), the space of all ∆m-convergent scalar sequences;
∆m(c0), the space of all ∆m-null scalar sequences;
∆m(s0), the space of all ∆m-statistically convergent sequences of real numbers.
It is known that l∞, c, and c0 are B-spaces (Banach spaces) with their usual norm

‖x‖∞ = supk |xk|, where k ∈ N = {1,2, . . .}. The sequence spaces l∞(∆m), c(∆m),
c0(∆m) have been introduced by Et and Çolak [1]. These sequence spaces are BK-
spaces (Banach coordinate spaces) with norm

‖x‖∆ =
m∑
i=1

∣∣xi
∣∣+∥∥∆mx

∥∥∞, (1.1)

wherem∈N, ∆◦x = (xk), ∆x = (xk−xk+1), ∆mx = (∆mxk)= (∆m−1xk−∆m−1xk+1),
and so

∆mxk =
m∑
ν=0

(−1)v
(
m
ν

)
xk+ν . (1.2)
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For convenience we denote these spaces ∆m(l∞), ∆m(c), and ∆m(c0) and call ∆m-
bounded, ∆m-convergent, and ∆m-null sequences, respectively. The operators

∆(m),
∑(m)

:w �→w (1.3)

are defined by

∆(1)xk = xk−xk−1,
∑(1)

xk =
k∑

j=0
xj, (k= 0,1, . . .),

∆(m) =∆(1)
0∆(m−1),

∑(m) =
∑(1)

0

∑(m−1)
, (m≥ 2),

(1.4)

and

∑(m)
0∆(m) =∆(m)

0

∑(m) = id, (1.5)

the identity on w (see [4]).
For any subset X of w let

∆m(X)= {x = (xk
)
:
(
∆mxk

)∈X
}
. (1.6)

Now we define

∆(m)xk =
m∑
ν=0

(−1)ν
(
m
ν

)
xk−ν . (1.7)

It is trivial that (∆mxk) ∈ X if and only if (∆(m)xk) ∈ X, for X = l∞, c or c0. In [4],
Malkowsky and Parashar also showed that the sequence spaces ∆m(l∞), ∆m(c), and
∆m(c0) are also BK-spaces with norm

‖x‖∆1 = sup
k

∣∣∆(m)xk
∣∣. (1.8)

It is trivial that the norms (1.1) and (1.8) are equivalent. Obviously

∆(m) :∆(m)(X) �→X, ∆(m)x =y = (∆(m)xk
)
,

∑(m)
:X �→∆(m)(X),

∑(m)
x =y =

(∑(m)
xk

)
(1.9)

are isometric isomorphism, for X = l∞, c or c0.
Hence ∆m(l∞), ∆m(c), and ∆m(c0) are isometrically isomorphic to l∞,c, and c0,

respectively. Thus l1 is continuous dual of ∆m(c) and ∆m(c0).
Throughout the paper, we write

∑
k for

∑∞
k=1 and limn for limn �→∞.

Let A= (ank) be an infinite matrix of complex numbers. Let E and F be BK-spaces.
We write Ax = (An(x)) if An(x) =

∑
kankxk converges for each n ∈ N. If Ax =

(An(x)) ∈ E for each x = (xk) ∈ F , then we say that A defines a matrix map from
F into E and we denote it by A : F → E. By (F,E) we mean the class of matrices A such
that A : F → E. We denote the set {x ∈w : Ax exists and Ax ∈ E} by EA. Note that A
is a matrix map from F into E if and only if F ⊆ EA. From now on, E unless specified
shall denote a BK-space.
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In B-space E, the following statements are equivalent (see [5]).
(i)

∑
nxn is unconditionally convergent.

(ii)
∑

nxn is weakly subseries convergent; that is, weak limn
∑n

j=1xkj exists for each
increasing sequence (kn) of positive integers.
(iii)

∑
nxn is subseries convergent; that is, norm limn

∑n
j=1xkj exists with (kn)

above.
(iv)

∑
nxn is bounded multiplier convergent; that is,

∑
nxntn exists for each se-

quence t = (tn) of bounded scalars.

2. Some properties of ∆m(X). In this section, we will give some properties of
∆m(X).

Theorem 2.1. LetX be a vector space and letA⊂X. IfA is a convex set, then∆m(A)
is a convex set in ∆m(X),

Proof. Let x, y ∈∆m(A), then ∆mx, ∆my ∈A. Since ∆m is linear, we have

λ∆mx+(1−λ)∆my =∆m(λx+(1−λ)y
)
, (0≤ λ≤ 1). (2.1)

Since A is convex (λ∆mx + (1 − λ)∆my) ∈ A and so (λx + (1− λ)y) ∈ ∆m(A),
(0≤ λ≤ 1).

Lemma 2.2. Letm be a positive integer. Then
(i) ∆m(

⋃∞
n=1An)=

⋃∞
n=1∆m(An),

(ii) ∆m(
⋂∞

n=1An)=
⋂∞

n=1∆m(An).

The proof is clear.

Lemma 2.3. Let X be a Banach space and let A⊂X. Then
(i) If A is nowhere dense in X, then ∆m(A) is nowhere dense in ∆m(X).
(ii) If A is dense in X, then ∆m(A) is dense in ∆m(X).
(iii) ∆m(w)=w, wherem is a positive integer.

Proof. (i) Suppose that
◦
Ā = ∅, but

◦
∆m(A) ≠ ∅. Then Ā contains no neighbor-

hood and B(a) ⊂ ∆m(A), where B(a) is a neighborhood (or open ball) of center a
and radius r . Hence a ∈ B(a) ⊂ ∆m(A) = ∆m(Ā). This implies that ∆m(a) ∈ Ā. So

B(∆m(a))∩A≠∅. On the other hand, B(∆m(a))∩A⊂ Ā. This contradicts to
◦
Ā=∅.

Hence
◦

∆m(A)=∅.
(ii) and (iii) are trivial.

Theorem 2.4. (i) The set ∆m(s0) is dense in the space s.
(ii) The set ∆m(s0) is a set of the first Baire category in the space s.
(iii) The set s-∆m(s0) is a set of the second Baire category in the space s.

Proof. The proof follows from [6, Theorem 3.1], Lemmas 2.2, and 2.3, we recall
that the complement Mc of a meager (or of the first category) subset M of a complete
metric space X is nonmeager (or of the second category).

Theorem 2.5. l∞∩∆m(c)= l∞∩∆m(c0).
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Proof. It is trivial that l∞∩∆m(c0)⊂ l∞∩∆m(c). Now let x ∈ l∞∩∆m(c), then x ∈
l∞ and ∆m−1xk−∆m−1xk+1→ l, (k→∞), ∆m−1xk−∆m−1xk+1 = l+εk (εk→ 0, k→∞).
This implies that

l=n−1∆m−1x1−n−1∆m−1xn+1+n−1
n∑

k=1
εk. (2.2)

This yields l= 0 and x ∈ l∞∩∆m(c0).

3. Dual spaces. In this section, we give the N-dual (null dual) of the sequence
spaces ∆m(l∞), ∆m(c), and ∆m(c0) and the pα-, pβ-, and pγ-duals of the sequence
spaces of l∞,c, and c0.

Definition 3.1. Let X be a sequence space and define

Xα =
{
a= (ak

)
:
∑
k

∣∣akxk
∣∣<∞, ∀x ∈X

}
,

Xβ =
{
a= (ak

)
:
∑
k
akxk is convergent , ∀x ∈X

}
,

Xγ =
{
a= (ak

)
: sup

n

∣∣∣∣∣
∑
k
akxk

∣∣∣∣∣<∞, ∀x ∈X
}
,

XN =
{
a= (ak

)
: lim

k
akxk = 0, ∀x ∈X

}
,

(3.1)

thenXα,Xβ,Xγ , andXN are called theα-, β-, γ-, andN-(or nul) duals ofX, respectively.
It is known that X ⊂ Y , then Yη ⊂ Xη for η = α-, β-, γ-, and N-, and c0N = l∞, l∞N =
cN = c0 [2, 3].

Lemma 3.2 (see [4]). Letm be a positive integer. Then there exist positive constants
M1 and M2 such that

M1km ≤
(
m+k

k

)
≤M2km ∀k= 0,1, . . . . (3.2)

Lemma 3.3. Let x ∈∆m(c0), then (m+kk )−1|xk| → 0, (k→∞).

Proof. The proof is trivial.

Theorem 3.4. Let m be a positive integer. Then (∆m(l∞))N = (∆m(c))N = U1

and (∆m(c0))N = U2, where U1 = {a = (an) : (nman) ∈ c0} and U2 =
{
a = (an) :(∑n

k=0
(n+m−k−1

m−1
)
an
)∈ l∞

}
.

Proof. The proof of the part (∆m(l∞))N = (∆m(c))N = U1 is easy. We show that
(∆m(c0))N = U2. It is clear that

∑n
k=0

(n+m−k−1
m−1

) = (n+m
m
) = (n+m

n
)
. Let a ∈ U2 and

x ∈∆m(c0). Then

lim
n

anxn = lim
n

( n∑
k=0

(
n+m−k−1

m−1

))
an

( n∑
k=0

(
n+m−k−1

m−1

))−1
xn = 0. (3.3)

Hence a∈ (∆m(c0))N .
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Now let a∈ (∆m(c0))N . Then limnanxn = 0 for all x ∈ ∆m(c0). On the other hand,
for each x ∈∆m(c0) there exists one and only one y = (yk)∈ c0 such that

xn =
n∑

k=1

(
n+m−k−1

m−1

)
yk =

n∑
k=0

(
n+m−k−1

m−1

)
yk, y0 = 0, (3.4)

by (1.9). Hence

lim
n

anxn = lim
n

n∑
k=0

(
n+m−k−1

m−1

)
anyk = 0 ∀y ∈ c0. (3.5)

If we take

ank =




(
n+m−k−1

m−1

)
an, 1≤ k≤n,

0, k > n,
(3.6)

then, we get

lim
n

∞∑
k=0

ankyk = lim
n

n∑
k=0

(
n+m−k−1

m−1

)
anyk = 0 ∀y ∈ c0. (3.7)

Hence A∈ (c0,c0) and so supn
∑∞

k=0 |ank| = supn
∑n

k=0
(n+m−k−1

m−1
)|an|<∞. This com-

pletes the proof.

Now we give a new kind of duals of sequence sets.

Definition 3.5. Let X be a sequence spaces, p > 0 and define

Xpα =
{
a= (ak

)
:
∑
k

∣∣akxk
∣∣p <∞, ∀x ∈X

}
,

Xpβ =
{
a= (ak

)
:
∑
k

(
akxk

)p
is convergent , ∀x ∈X

}
,

Xpγ =
{
a= (ak

)
: sup

n

∣∣∣∣∣
n∑

k=0

(
akxk

)p∣∣∣∣∣<∞, ∀x ∈X
}
,

(3.8)

then Xpα, Xpβ, Xpγ are called the pα-, pβ-, and pγ-duals of X, respectively. It can be
shown that Xpα ⊂ Xpβ ⊂ Xpγ . If we take p = 1 in this definition, then we obtain the
α-, β-, and γ-duals of X.

Theorem 3.6. Let X stand for l∞,c, and c0 and 0 < p < ∞. Then Xpη = U , for
η=α,β or γ, where U = {a= (ak) :

∑
k |ak|p <∞}= lp .

Proof. We give the proof for the case X = c0 and η=α. If a∈U , then

∑
k

∣∣akxk
∣∣p ≤ sup

k

∣∣xk
∣∣p∑

k

∣∣ak
∣∣p <∞ (3.9)

for each x ∈ c0. Hence a∈ (c0)pα.
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Now suppose that a∈ (c0)pα and a �∈U . Then there is a strictly increasing sequence
(ni) of positive integers ni such that

k=ni+1∑
k=ni+1

∣∣ak
∣∣p > ip. (3.10)

Define x ∈ c0 by xk = sgnak/i for ni < k ≤ ni+1 and xk = 0 for 1 ≤ k ≤ n1. Then we
may write

∑
k

∣∣akxk
∣∣p = k=n2∑

k=n1+1

∣∣akxk
∣∣p+···+

k=ni+1∑
k=ni+1

∣∣akxk
∣∣p+···

=
k=n2∑

k=n1+1

∣∣ak
∣∣p+···+ 1

ip

k=ni+1∑
k=ni+1

∣∣ak
∣∣p+···

> 1+1+··· =
∑
k
1=∞.

(3.11)

This contradicts to a∈ (c0)pα. Hence a∈ U . The proof for the cases X = l∞ or c and
η= β or γ is similar.

The proofs of Lemmas 3.7 and 3.8 and Theorem 3.10 are easily obtained by using
the same techniques of Mishra [5, Lemmas 1 and 2 and Theorem 1], therefore we give
them without proofs.

Lemma 3.7. Let A :∆m(l∞)→ E defines a matrix map. If A is weakly compact, then∑
kak is unconditionally convergent in E.

Lemma 3.8. If
∑

kak is unconditionally convergent in E, then A :∆m(l∞)→ E defines
a matrix map, and A(α)=∑kakαk for every α= (αk)∈∆m(l∞).

Corollary 3.9. If
∑

kak is unconditionally convergent in E, then ∆m(l∞)⊆ EA.

Theorem 3.10. If A : ∆m(l∞)→ E is a weakly compact matrix map, then A is com-
pact map.

Corollary 3.11. Let E be a BK-space such that it contains no subspace isomorphic
to ∆m(l∞). If A :∆m(l∞)→ E defines a matrix map, then A is compact map.
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References

[1] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21
(1995), no. 4, 377–386. MR 97b:40009. Zbl 841.46006.

[2] D. J. H. Garling, The β- and γ-duality of sequence spaces, Proc. Cambridge Philos. Soc. 63
(1967), 963–981. MR 36#1965. Zbl 161.10401.

[3] H. Kızmaz, On certain sequence spaces. II, Int. J. Math. Math. Sci. 18 (1995), no. 4, 721–724.
MR 96j:46005. Zbl 832.40002.

[4] E. Malkowsky and S. D. Parashar, Matrix transformations in spaces of bounded and
convergent difference sequences of order m, Analysis 17 (1997), no. 1, 87–97.
MR 98f:40009. Zbl 872.40002.

http://www.ams.org/mathscinet-getitem?mr=97b:40009
http://www.emis.de/cgi-bin/MATH-item?841.46006
http://www.ams.org/mathscinet-getitem?mr=36:1965
http://www.emis.de/cgi-bin/MATH-item?161.10401
http://www.ams.org/mathscinet-getitem?mr=96j:46005
http://www.emis.de/cgi-bin/MATH-item?832.40002
http://www.ams.org/mathscinet-getitem?mr=98f:40009
http://www.emis.de/cgi-bin/MATH-item?872.40002


ON SOME TOPOLOGICAL PROPERTIES OF GENERALIZED . . . 791

[5] S. K. Mishra, Matrix maps involving certain sequence spaces, Indian J. Pure Appl. Math. 24
(1993), no. 2, 125–132. MR 94e:46019. Zbl 804.47030.

[6] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980),
no. 2, 139–150. MR 81k:40002. Zbl 437.40003.

Mikail Et: Department of Mathematics, Firat University, 23119-Elazig, Turkey
E-mail address: mikailet@hotmail.com

http://www.ams.org/mathscinet-getitem?mr=94e:46019
http://www.emis.de/cgi-bin/MATH-item?804.47030
http://www.ams.org/mathscinet-getitem?mr=81k:40002
http://www.emis.de/cgi-bin/MATH-item?437.40003
mailto:mikailet@hotmail.com

