ON SOME TOPOLOGICAL PROPERTIES OF GENERALIZED DIFFERENCE SEQUENCE SPACES

MIKAIL ET

(Received 22 October 1998 and in revised form 12 June 2000)

Abstract

We obtain some topological results of the sequence spaces $\Delta^{m}(X)$, where $\Delta^{m}(X)=\left\{x=\left(x_{k}\right):\left(\Delta^{m} x_{k}\right) \in X\right\},(m \in \mathbb{N})$, and X is any sequence space. We compute the $p \alpha$-, $p \beta$-, and $p \gamma$-duals of l_{∞}, c, and c_{0} and we investigate the N-(or null) dual of the sequence spaces $\Delta^{m}\left(l_{\infty}\right), \Delta^{m}(c)$, and $\Delta^{m}\left(c_{0}\right)$. Also we show that any matrix map from $\Delta^{m}\left(l_{\infty}\right)$ into a $B K$-space which does not contain any subspace isomorphic to $\Delta^{m}\left(l_{\infty}\right)$ is compact.

Keywords and phrases. Difference sequence spaces, statistical convergence, the N-dual, the $p \alpha$-, $p \beta$-, and $p \gamma$-dual.

2000 Mathematics Subject Classification. Primary 40A05, 40C05, 46A45.

1. Introduction. w denotes the space of all scalar sequences and any subspace of w is called a sequence space. The following sequence spaces will be used in what follows:
l_{∞}, the space of all bounded scalar sequences;
c, the space of all convergent scalar sequences;
c_{0}, the space of all null scalar sequences;
l_{1}, the space of all absolutely 1 -summable scalar sequences;
s, the space of all real sequences;
s_{0}, the space of all statistically convergent sequences of real numbers;
$\Delta^{m}\left(l_{\infty}\right)$, the space of all Δ^{m}-bounded scalar sequences;
$\Delta^{m}(c)$, the space of all Δ^{m}-convergent scalar sequences;
$\Delta^{m}\left(c_{0}\right)$, the space of all Δ^{m}-null scalar sequences;
$\Delta^{m}\left(s_{0}\right)$, the space of all Δ^{m}-statistically convergent sequences of real numbers.
It is known that l_{∞}, c, and c_{0} are B-spaces (Banach spaces) with their usual norm $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$, where $k \in \mathbb{N}=\{1,2, \ldots\}$. The sequence spaces $l_{\infty}\left(\Delta^{m}\right), c\left(\Delta^{m}\right)$, $c_{0}\left(\Delta^{m}\right)$ have been introduced by Et and Çolak [1]. These sequence spaces are $B K$ spaces (Banach coordinate spaces) with norm

$$
\begin{equation*}
\|x\|_{\Delta}=\sum_{i=1}^{m}\left|x_{i}\right|+\left\|\Delta^{m} x\right\|_{\infty}, \tag{1.1}
\end{equation*}
$$

where $m \in \mathbb{N}, \Delta^{\circ} x=\left(x_{k}\right), \Delta x=\left(x_{k}-x_{k+1}\right), \Delta^{m} x=\left(\Delta^{m} x_{k}\right)=\left(\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}\right)$, and so

$$
\begin{equation*}
\Delta^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k+v} \tag{1.2}
\end{equation*}
$$

For convenience we denote these spaces $\Delta^{m}\left(l_{\infty}\right), \Delta^{m}(c)$, and $\Delta^{m}\left(c_{0}\right)$ and call Δ^{m} bounded, Δ^{m}-convergent, and Δ^{m}-null sequences, respectively. The operators

$$
\begin{equation*}
\Delta^{(m)}, \quad \sum^{(m)}: w \rightarrow w \tag{1.3}
\end{equation*}
$$

are defined by

$$
\begin{align*}
\Delta^{(1)} x_{k} & =x_{k}-x_{k-1}, \quad \sum^{(1)} x_{k}=\sum_{j=0}^{k} x_{j}, \quad(k=0,1, \ldots), \tag{1.4}\\
\Delta^{(m)} & =\Delta^{(1)} 0_{0} \Delta^{(m-1)}, \quad \sum^{(m)}=\sum^{(1)}{ }_{0} \sum^{(m-1)}, \quad(m \geq 2),
\end{align*}
$$

and

$$
\begin{equation*}
\sum^{(m)}{ }_{0} \Delta^{(m)}=\Delta^{(m)}{ }_{0} \sum^{(m)}=\mathrm{id}, \tag{1.5}
\end{equation*}
$$

the identity on w (see [4]).
For any subset X of w let

$$
\begin{equation*}
\Delta^{m}(X)=\left\{x=\left(x_{k}\right):\left(\Delta^{m} x_{k}\right) \in X\right\} . \tag{1.6}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
\Delta^{(m)} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k-v} . \tag{1.7}
\end{equation*}
$$

It is trivial that $\left(\Delta^{m} x_{k}\right) \in X$ if and only if $\left(\Delta^{(m)} x_{k}\right) \in X$, for $X=l_{\infty}, c$ or c_{0}. In [4], Malkowsky and Parashar also showed that the sequence spaces $\Delta^{m}\left(l_{\infty}\right), \Delta^{m}(c)$, and $\Delta^{m}\left(c_{0}\right)$ are also $B K$-spaces with norm

$$
\begin{equation*}
\|x\|_{\Delta 1}=\sup _{k}\left|\Delta^{(m)} x_{k}\right| . \tag{1.8}
\end{equation*}
$$

It is trivial that the norms (1.1) and (1.8) are equivalent. Obviously

$$
\begin{align*}
\Delta^{(m)}: \Delta^{(m)}(X) \rightarrow X, \quad \Delta^{(m)} x=y=\left(\Delta^{(m)} x_{k}\right), \\
\sum^{(m)}: X \rightarrow \Delta^{(m)}(X), \quad \sum^{(m)} x=y=\left(\sum^{(m)} x_{k}\right) \tag{1.9}
\end{align*}
$$

are isometric isomorphism, for $X=l_{\infty}, c$ or c_{0}.
Hence $\Delta^{m}\left(l_{\infty}\right), \Delta^{m}(c)$, and $\Delta^{m}\left(c_{0}\right)$ are isometrically isomorphic to l_{∞}, c, and c_{0}, respectively. Thus l_{1} is continuous dual of $\Delta^{m}(c)$ and $\Delta^{m}\left(c_{0}\right)$.

Throughout the paper, we write \sum_{k} for $\sum_{k=1}^{\infty}$ and $\lim _{n}$ for $\lim _{n \rightarrow \infty}$.
Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers. Let E and F be $B K$-spaces. We write $A x=\left(A_{n}(x)\right)$ if $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for each $n \in \mathbb{N}$. If $A x=$ $\left(A_{n}(x)\right) \in E$ for each $x=\left(x_{k}\right) \in F$, then we say that A defines a matrix map from F into E and we denote it by $A: F \rightarrow E$. By (F, E) we mean the class of matrices A such that $A: F \rightarrow E$. We denote the set $\{x \in w: A x$ exists and $A x \in E\}$ by E_{A}. Note that A is a matrix map from F into E if and only if $F \subseteq E_{A}$. From now on, E unless specified shall denote a $B K$-space.

In B-space E, the following statements are equivalent (see [5]).
(i) $\sum_{n} x_{n}$ is unconditionally convergent.
(ii) $\sum_{n} x_{n}$ is weakly subseries convergent; that is, weak $\lim _{n} \sum_{j=1}^{n} x_{k_{j}}$ exists for each increasing sequence (k_{n}) of positive integers.
(iii) $\sum_{n} x_{n}$ is subseries convergent; that is, norm $\lim _{n} \sum_{j=1}^{n} x_{k_{j}}$ exists with (k_{n}) above.
(iv) $\sum_{n} x_{n}$ is bounded multiplier convergent; that is, $\sum_{n} x_{n} t_{n}$ exists for each sequence $t=\left(t_{n}\right)$ of bounded scalars.
2. Some properties of $\Delta^{m}(X)$. In this section, we will give some properties of $\Delta^{m}(X)$.

Theorem 2.1. Let X be a vector space and let $A \subset X$. If A is a convex set, then $\Delta^{m}(A)$ is a convex set in $\Delta^{m}(X)$,

Proof. Let $x, y \in \Delta^{m}(A)$, then $\Delta^{m} x, \Delta^{m} y \in A$. Since Δ^{m} is linear, we have

$$
\begin{equation*}
\lambda \Delta^{m} x+(1-\lambda) \Delta^{m} y=\Delta^{m}(\lambda x+(1-\lambda) y), \quad(0 \leq \lambda \leq 1) . \tag{2.1}
\end{equation*}
$$

Since A is convex $\left(\lambda \Delta^{m} x+(1-\lambda) \Delta^{m} y\right) \in A$ and so $(\lambda x+(1-\lambda) y) \in \Delta^{m}(A)$, ($0 \leq \lambda \leq 1$).

Lemma 2.2. Let m be a positive integer. Then
(i) $\Delta^{m}\left(\cup_{n=1}^{\infty} A_{n}\right)=\bigcup_{n=1}^{\infty} \Delta^{m}\left(A_{n}\right)$,
(ii) $\Delta^{m}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\bigcap_{n=1}^{\infty} \Delta^{m}\left(A_{n}\right)$.

The proof is clear.
Lemma 2.3. Let X be a Banach space and let $A \subset X$. Then
(i) If A is nowhere dense in X, then $\Delta^{m}(A)$ is nowhere dense in $\Delta^{m}(X)$.
(ii) If A is dense in X, then $\Delta^{m}(A)$ is dense in $\Delta^{m}(X)$.
(iii) $\Delta^{m}(w)=w$, where m is a positive integer.

Proof. (i) Suppose that $\overline{\bar{A}}=\varnothing$, but $\frac{\circ}{\Delta^{m}(A)} \neq \varnothing$. Then \bar{A} contains no neighborhood and $B(a) \subset \overline{\Delta^{m}(A)}$, where $B(a)$ is a neighborhood (or open ball) of center a and radius r. Hence $a \in B(a) \subset \overline{\Delta^{m}(A)}=\Delta^{m}(\bar{A})$. This implies that $\Delta^{m}(a) \in \bar{A}$. So $B\left(\Delta^{m}(a)\right) \cap A \neq \varnothing$. On the other hand, $B\left(\Delta^{m}(a)\right) \cap A \subset \bar{A}$. This contradicts to $\overline{\bar{A}}=\varnothing$. Hence $\overline{\Delta^{m}(A)}=\varnothing$.
(ii) and (iii) are trivial.

Theorem 2.4. (i) The set $\Delta^{m}\left(s_{0}\right)$ is dense in the space s.
(ii) The set $\Delta^{m}\left(s_{0}\right)$ is a set of the first Baire category in the space s.
(iii) The set $s-\Delta^{m}\left(s_{0}\right)$ is a set of the second Baire category in the space s.

Proof. The proof follows from [6, Theorem 3.1], Lemmas 2.2, and 2.3, we recall that the complement M^{c} of a meager (or of the first category) subset M of a complete metric space X is nonmeager (or of the second category).

THEOREM 2.5. $l_{\infty} \cap \Delta^{m}(c)=l_{\infty} \cap \Delta^{m}\left(c_{0}\right)$.

Proof. It is trivial that $l_{\infty} \cap \Delta^{m}\left(c_{0}\right) \subset l_{\infty} \cap \Delta^{m}(c)$. Now let $x \in l_{\infty} \cap \Delta^{m}(c)$, then $x \in$ l_{∞} and $\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1} \rightarrow l,(k \rightarrow \infty), \Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}=l+\varepsilon_{k}\left(\varepsilon_{k} \rightarrow 0, k \rightarrow \infty\right)$. This implies that

$$
\begin{equation*}
l=n^{-1} \Delta^{m-1} x_{1}-n^{-1} \Delta^{m-1} x_{n+1}+n^{-1} \sum_{k=1}^{n} \varepsilon_{k} . \tag{2.2}
\end{equation*}
$$

This yields $l=0$ and $x \in l_{\infty} \cap \Delta^{m}\left(c_{0}\right)$.
3. Dual spaces. In this section, we give the N-dual (null dual) of the sequence spaces $\Delta^{m}\left(l_{\infty}\right), \Delta^{m}(c)$, and $\Delta^{m}\left(c_{0}\right)$ and the $p \alpha$-, $p \beta$-, and $p \gamma$-duals of the sequence spaces of l_{∞}, c, and c_{0}.

Definition 3.1. Let X be a sequence space and define

$$
\begin{align*}
& X^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k}\left|a_{k} x_{k}\right|<\infty, \forall x \in X\right\}, \\
& X^{\beta}=\left\{a=\left(a_{k}\right): \sum_{k} a_{k} x_{k} \text { is convergent }, \forall x \in X\right\}, \\
& X^{\gamma}=\left\{a=\left(a_{k}\right): \sup _{n}\left|\sum_{k} a_{k} x_{k}\right|<\infty, \forall x \in X\right\}, \tag{3.1}\\
& X^{N}=\left\{a=\left(a_{k}\right): \lim _{k} a_{k} x_{k}=0, \forall x \in X\right\},
\end{align*}
$$

then $X^{\alpha}, X^{\beta}, X^{\gamma}$, and X^{N} are called the $\alpha-, \beta-, \gamma-$, and N-(or nul) duals of X, respectively. It is known that $X \subset Y$, then $Y^{\eta} \subset X^{\eta}$ for $\eta=\alpha$-, β-, γ-, and N-, and $c_{0}{ }^{N}=l_{\infty}, l_{\infty}{ }^{N}=$ $c^{N}=c_{0}[2,3]$.

Lemma 3.2 (see [4]). Let m be a positive integer. Then there exist positive constants M_{1} and M_{2} such that

$$
\begin{equation*}
M_{1} k^{m} \leq\binom{ m+k}{k} \leq M_{2} k^{m} \quad \forall k=0,1, \ldots \tag{3.2}
\end{equation*}
$$

LemmA 3.3. Let $x \in \Delta^{m}\left(c_{0}\right)$, then $(\underset{k}{m+k})^{-1}\left|x_{k}\right| \rightarrow 0,(k \rightarrow \infty)$.
Proof. The proof is trivial.
Theorem 3.4. Let m be a positive integer. Then $\left(\Delta^{m}\left(l_{\infty}\right)\right)^{N}=\left(\Delta^{m}(c)\right)^{N}=U_{1}$ and $\left(\Delta^{m}\left(c_{0}\right)\right)^{N}=U_{2}$, where $U_{1}=\left\{a=\left(a_{n}\right):\left(n^{m} a_{n}\right) \in c_{0}\right\}$ and $U_{2}=\left\{a=\left(a_{n}\right)\right.$: $\left.\left(\sum_{k=0}^{n}\binom{n+m-k-1}{m-1} a_{n}\right) \in l_{\infty}\right\}$.
Proof. The proof of the part $\left(\Delta^{m}\left(l_{\infty}\right)\right)^{N}=\left(\Delta^{m}(c)\right)^{N}=U_{1}$ is easy. We show that $\left(\Delta^{m}\left(c_{0}\right)\right)^{N}=U_{2}$. It is clear that $\sum_{k=0}^{n}\binom{n+m-k-1}{m-1}=\binom{n+m}{m}=\binom{n+m}{n}$. Let $a \in U_{2}$ and $x \in \Delta^{m}\left(c_{0}\right)$. Then

$$
\begin{equation*}
\lim _{n} a_{n} x_{n}=\lim _{n}\left(\sum_{k=0}^{n}\binom{n+m-k-1}{m-1}\right) a_{n}\left(\sum_{k=0}^{n}\binom{n+m-k-1}{m-1}\right)^{-1} x_{n}=0 . \tag{3.3}
\end{equation*}
$$

Hence $a \in\left(\Delta^{m}\left(c_{0}\right)\right)^{N}$.

Now let $a \in\left(\Delta^{m}\left(c_{0}\right)\right)^{N}$. Then $\lim _{n} a_{n} x_{n}=0$ for all $x \in \Delta^{m}\left(c_{0}\right)$. On the other hand, for each $x \in \Delta^{m}\left(c_{0}\right)$ there exists one and only one $y=\left(y_{k}\right) \in c_{0}$ such that

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{n}\binom{n+m-k-1}{m-1} y_{k}=\sum_{k=0}^{n}\binom{n+m-k-1}{m-1} y_{k}, \quad y_{0}=0 \tag{3.4}
\end{equation*}
$$

by (1.9). Hence

$$
\begin{equation*}
\lim _{n} a_{n} x_{n}=\lim _{n} \sum_{k=0}^{n}\binom{n+m-k-1}{m-1} a_{n} y_{k}=0 \quad \forall y \in c_{0} \tag{3.5}
\end{equation*}
$$

If we take

$$
a_{n k}= \begin{cases}\binom{n+m-k-1}{m-1} a_{n}, & 1 \leq k \leq n \tag{3.6}\\ 0, & k>n\end{cases}
$$

then, we get

$$
\begin{equation*}
\lim _{n} \sum_{k=0}^{\infty} a_{n k} y_{k}=\lim _{n} \sum_{k=0}^{n}\binom{n+m-k-1}{m-1} a_{n} y_{k}=0 \quad \forall y \in c_{0} . \tag{3.7}
\end{equation*}
$$

Hence $A \in\left(c_{0}, c_{0}\right)$ and so $\sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right|=\sup _{n} \sum_{k=0}^{n}\binom{n+m-k-1}{m-1}\left|a_{n}\right|<\infty$. This completes the proof.

Now we give a new kind of duals of sequence sets.
Definition 3.5. Let X be a sequence spaces, $p>0$ and define

$$
\begin{align*}
& X^{p \alpha}=\left\{a=\left(a_{k}\right): \sum_{k}\left|a_{k} x_{k}\right|^{p}<\infty, \forall x \in X\right\}, \\
& X^{p \beta}=\left\{a=\left(a_{k}\right): \sum_{k}\left(a_{k} x_{k}\right)^{p} \text { is convergent }, \forall x \in X\right\}, \tag{3.8}\\
& X^{p \gamma}=\left\{a=\left(a_{k}\right): \sup _{n}\left|\sum_{k=0}^{n}\left(a_{k} x_{k}\right)^{p}\right|<\infty, \forall x \in X\right\},
\end{align*}
$$

then $X^{p \alpha}, X^{p \beta}, X^{p \gamma}$ are called the $p \alpha$-, $p \beta$-, and $p \gamma$-duals of X, respectively. It can be shown that $X^{p \alpha} \subset X^{p \beta} \subset X^{p \gamma}$. If we take $p=1$ in this definition, then we obtain the α-, β-, and γ-duals of X.

Theorem 3.6. Let X stand for l_{∞}, c, and c_{0} and $0<p<\infty$. Then $X^{p \eta}=U$, for $\eta=\alpha, \beta$ or γ, where $U=\left\{a=\left(a_{k}\right): \sum_{k}\left|a_{k}\right|^{p}<\infty\right\}=l_{p}$.
Proof. We give the proof for the case $X=c_{0}$ and $\eta=\alpha$. If $a \in U$, then

$$
\begin{equation*}
\sum_{k}\left|a_{k} x_{k}\right|^{p} \leq \sup _{k}\left|x_{k}\right|^{p} \sum_{k}\left|a_{k}\right|^{p}<\infty \tag{3.9}
\end{equation*}
$$

for each $x \in c_{0}$. Hence $a \in\left(c_{0}\right)^{p \alpha}$.

Now suppose that $a \in\left(c_{0}\right)^{p \alpha}$ and $a \notin U$. Then there is a strictly increasing sequence (n_{i}) of positive integers n_{i} such that

$$
\begin{equation*}
\sum_{k=n_{i}+1}^{k=n_{i+1}}\left|a_{k}\right|^{p}>i^{p} . \tag{3.10}
\end{equation*}
$$

Define $x \in c_{0}$ by $x_{k}=\operatorname{sgn} a_{k} / i$ for $n_{i}<k \leq n_{i+1}$ and $x_{k}=0$ for $1 \leq k \leq n_{1}$. Then we may write

$$
\begin{align*}
\sum_{k}\left|a_{k} x_{k}\right|^{p} & =\sum_{k=n_{1}+1}^{k=n_{2}}\left|a_{k} x_{k}\right|^{p}+\cdots+\sum_{k=n_{i}+1}^{k=n_{i+1}}\left|a_{k} x_{k}\right|^{p}+\cdots \\
& =\sum_{k=n_{1}+1}^{k=n_{2}}\left|a_{k}\right|^{p}+\cdots+\frac{1}{i^{p}} \sum_{k=n_{i}+1}^{k=n_{i+1}}\left|a_{k}\right|^{p}+\cdots \tag{3.11}\\
& >1+1+\cdots=\sum_{k} 1=\infty .
\end{align*}
$$

This contradicts to $a \in\left(c_{0}\right)^{p \alpha}$. Hence $a \in U$. The proof for the cases $X=l_{\infty}$ or c and $\eta=\beta$ or γ is similar.

The proofs of Lemmas 3.7 and 3.8 and Theorem 3.10 are easily obtained by using the same techniques of Mishra [5, Lemmas 1 and 2 and Theorem 1], therefore we give them without proofs.

Lemma 3.7. Let $A: \Delta^{m}\left(l_{\infty}\right) \rightarrow E$ defines a matrix map. If A is weakly compact, then $\sum_{k} a_{k}$ is unconditionally convergent in E.

Lemma 3.8. If $\sum_{k} a_{k}$ is unconditionally convergent in E, then $A: \Delta^{m}\left(l_{\infty}\right) \rightarrow E$ defines a matrix map, and $A(\alpha)=\sum_{k} a_{k} \alpha_{k}$ for every $\alpha=\left(\alpha_{k}\right) \in \Delta^{m}\left(l_{\infty}\right)$.
Corollary 3.9. If $\sum_{k} a_{k}$ is unconditionally convergent in E, then $\Delta^{m}\left(l_{\infty}\right) \subseteq E_{A}$.
Theorem 3.10. If $A: \Delta^{m}\left(l_{\infty}\right) \rightarrow E$ is a weakly compact matrix map, then A is compact map.

Corollary 3.11. Let E be a BK-space such that it contains no subspace isomorphic to $\Delta^{m}\left(l_{\infty}\right)$. If $A: \Delta^{m}\left(l_{\infty}\right) \rightarrow E$ defines a matrix map, then A is compact map.

Acknowledgement. The author wishes to thank Prof. Dr Rifat Çolak for his valuable comments on the manuscript.

References

[1] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995), no. 4, 377-386. MR 97b:40009. Zbl 841.46006.
[2] D. J. H. Garling, The β-and γ-duality of sequence spaces, Proc. Cambridge Philos. Soc. 63 (1967), 963-981. MR 36\#1965. Zbl 161.10401.
[3] H. Kızmaz, On certain sequence spaces. II, Int. J. Math. Math. Sci. 18 (1995), no. 4, 721-724. MR 96j:46005. Zbl 832.40002.
[4] E. Malkowsky and S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis 17 (1997), no. 1, 87-97. MR 98f:40009. Zbl 872.40002.
[5] S. K. Mishra, Matrix maps involving certain sequence spaces, Indian J. Pure Appl. Math. 24 (1993), no. 2, 125-132. MR 94e:46019. Zbl 804.47030.
[6] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139-150. MR 81k:40002. Zbl 437.40003.

Mikail Et: Department of Mathematics, Firat University, 23119-Elazig, Turkey
E-mail address: mikailet@hotmai1.com

