THE COXETER GROUP D_{n}

M. A. ALBAR and NORAH AL-SALEH

(Received 3 September 1998 and in revised form 16 November 1998)

Abstract. We show that the Coxeter group D_{n} is the split extension of $n-1$ copies of Z_{2} by S_{n} for a given action of S_{n} described in the paper. We also find the centre of D_{n} and some of its other important subgroups.

Keywords and phrases. Coxeter group, split extension.
2000 Mathematics Subject Classification. Primary 20 F05.

1. Introduction. The Coxeter group D_{n} [5] has the presentation

$$
\begin{align*}
D_{n}=\langle & x_{1}, x_{2}, \ldots, x_{n} \mid x_{i}^{2}=e, 1 \leq i \leq n ;\left(x_{i} x_{i+1}\right)^{3}=e, 2 \leq i \leq n-1 \\
& \left.\left(x_{i} x_{j}\right)^{2}=e,|i-j| \neq 1 \text { and }(i, j) \neq(1,3) ;\left(x_{1} x_{2}\right)^{2}=\left(x_{1} x_{3}\right)^{3}=e\right\rangle . \tag{1.1}
\end{align*}
$$

and the graph given in Figure 1.1.

Figure 1.1.
In [1], we have shown that D_{4} is solvable with derived length 4 and that its order is 192. In this paper, we explain the algebraic structure of D_{n} and find its centre. We also find the derived series; and the growth series of D_{n} for $4 \leq n \leq 8$.
2. The structure of D_{n}. In [4], we have shown that the Coxeter group B_{n} whose graph is given in Figure 2.1

Figure 2.1.
is the wreath product of Z_{2} by S_{n}, that is, B_{n} is the split extension of Z_{2}^{n} by S_{n}. Let Z_{2}^{n} have the presentation

$$
\begin{equation*}
H=Z_{2}^{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid a_{i}^{2}=e, 1 \leq i \leq n ;\left(a_{i} a_{j}\right)^{2}=e, 1 \leq i<j \leq n\right\rangle \tag{2.1}
\end{equation*}
$$

Let K be the even subgroup of H, that is, the subgroup consisting of even words in H. It is easy to find the following presentation for K :

$$
\begin{equation*}
K=\left\langle b_{2}, b_{3}, \ldots, b_{n} \mid b_{i}^{2}=e, 2 \leq i \leq n ;\left(b_{i} b_{j}\right)^{2}=e, 2 \leq i<j \leq n\right\rangle, \tag{2.2}
\end{equation*}
$$

where $b_{i}=a_{1} a_{i}, 2 \leq i \leq n$. Thus K is Z_{2}^{n-1}. In the extension $B_{n} \cong Z_{2}^{n} \rtimes S_{n}$, the action of S_{n} on Z_{2}^{n} is a natural one that can be explained as follows. Let S_{n} have the presentation

$$
\begin{align*}
S_{n}= & \left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right| x_{i}^{2}=e, 1 \leq i \leq n-1 ;\left(x_{i} x_{i+1}\right)^{3}=e, 1 \leq i \leq n-2 ; \tag{2.3}\\
& \left.\left(x_{i} x_{j}\right)^{2}=e, 1 \leq i<j-1 \leq n-2\right\rangle,
\end{align*}
$$

where x_{i} is the transposition ($i i+1$). The action of S_{n} on H is given by

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n}\right)^{x_{i}}=\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, a_{i}, \ldots, a_{n}\right) \tag{2.4}
\end{equation*}
$$

Using this action we compute the action of S_{n} on K as follows:

$$
\begin{align*}
\left(b_{2}, b_{3}, \ldots, b_{n}\right)^{x_{1}} & =\left(a_{1} a_{2}, a_{1} a_{3}, \ldots, a_{1} a_{n}\right)^{x_{1}} \\
& =\left(a_{2} a_{1}, a_{2} a_{3}, \ldots, a_{2} a_{n}\right) \\
& =\left(b_{2}^{-1}, b_{2}^{-1} b_{3}, \ldots, b_{2}^{-1} b_{n}\right), \\
\left(b_{2}, b_{3}, \ldots, b_{i}, b_{i+1}, \ldots, b_{n}\right)^{x_{i}} & =\left(a_{1} a_{2}, \ldots, a_{1} a_{i}, a_{1} a_{i+1}, \ldots, a_{1} a_{n}\right)^{x_{i}} \tag{2.5}\\
& =\left(a_{1} a_{2}, \ldots, a_{1} a_{i+1}, a_{1} a_{i}, \ldots, a_{1} a_{n}\right) \\
& =\left(b_{2}, \ldots, b_{i+1}, b_{i}, \ldots, b_{n}\right), \quad 2 \leq i \leq n-1 .
\end{align*}
$$

We use this action to construct a split extension E of $K=Z_{2}^{n-1}$ by S_{n}. A presentation for this extension is given by the method in [2], $E=$ 〈generators of K, generators of $S_{n} \mid$ relations of K, relations of S_{n}, the action of S_{n} on $\left.K\right\rangle$.

We change the action of S_{n} on K to the following relations:

$$
\begin{gather*}
b_{2}^{x_{1}}=b_{2}^{-1}, \tag{2.6}\\
b_{i}^{x_{1}}=b_{2}^{-1} b_{i}, \quad 3 \leq i \leq n, \tag{2.7}\\
b_{i}^{x_{i}}=b_{i+1}, \quad 2 \leq i \leq n-1, \tag{2.8}\\
b_{i+1}^{x_{i}}=b_{i}, \quad 2 \leq i \leq n-1, \tag{2.9}\\
b_{j}^{x_{i}}=b_{j}, \quad 2 \leq j \leq n, 2 \leq i \leq n-1, j \neq i, j \neq i+1 . \tag{2.10}
\end{gather*}
$$

We will use Tietze transformations to show that E is isomorphic to D_{n}. But before that we observe the following. The relation (2.8) implies that $b_{i}=b_{2}^{x_{2} x_{3} \cdots x_{i-1}}, 3 \leq i \leq n$. Let $u_{i}=x_{2} x_{3} \cdots x_{i}$.

Lemma 2.1. The following identities hold in the group S_{n-1} :
(i) $u_{k} x_{i}=x_{i+1} u_{k}$, if $2 \leq i \leq k$,
(ii) $u_{k} x_{i}=u_{k-1}$, if $i=k$,
(iii) $u_{k} x_{i}=u_{k+1}$, if $i=k+1$,
(iv) $u_{k} x_{i}=x_{i} u_{k}$, if $i>k+1$,
(v) $u_{k} u_{i}=\left(x_{3} x_{4} \cdots x_{i+1}\right) u_{k}$, if $2 \leq i<k$,
(vi) $u_{k} u_{i}=\left(x_{3} x_{4} \cdots x_{i}\right) u_{k-1}$, if $i \geq k$.

Proof. We will make use of the relations of S_{n-1}.
(i)

$$
\begin{align*}
u_{k} x_{i} & =\left(x_{2} x_{3} \cdots x_{i} x_{i+1} \cdots x_{k}\right) x_{i} \\
& =x_{2} x_{3} \cdots x_{i} x_{i+1} x_{i} \cdots x_{k} \\
& =x_{2} x_{3} \cdots x_{i+1} x_{i} x_{i+1} \cdots x_{k} \tag{2.11}\\
& =x_{i+1} x_{2} x_{3} \cdots x_{i} x_{k}=x_{i+1} u_{k} .
\end{align*}
$$

(ii), (iii), and (iv) are clear, while (v) and (vi) are applications of (i) to (iv).

We reduce relation (2.6) to (2.10) as follows. Relation (2.6) easily becomes

$$
\begin{equation*}
\left(x_{1} b_{2}\right)^{2}=e \tag{2.12}
\end{equation*}
$$

Using Lemma 2.1, (2.7) becomes

$$
\begin{equation*}
\left(b_{2} x_{1} x_{2}\right)^{3}=e \tag{2.13}
\end{equation*}
$$

Using $b_{i}=b_{2}^{x_{2} x_{3} \cdots x_{i-1}}$, (2.8) becomes redundant. Relation (2.9), using Lemma 2.1, becomes redundant. Using Lemma 2.1, (2.10) becomes

$$
\begin{equation*}
\left(x_{i} b_{2}\right)^{2}=e, \quad 3 \leq i \leq n . \tag{2.14}
\end{equation*}
$$

The relation $b_{i}^{2}=e=\left(b_{i} b_{j}\right)^{2}$ become redundant for $i \geq 3$. Let $c=x_{1} b_{2}$. Then (2.12) becomes $c^{2}=e$. Relation (2.13) becomes $\left(c x_{2}\right)^{3}=e$. Relation (2.14) becomes $\left(c x_{i}\right)^{2}=e$ for $i \geq 3$. The relation $b_{2}^{2}=e$ becomes $\left(c x_{1}\right)^{2}=e$. Therefore a presentation for E is

$$
\begin{align*}
E= & \left\langle x_{1}, x_{2}, \ldots, x_{n-1}, c\right| x_{i}^{2}=e, 1 \leq i \leq n-1 ; c^{2}=e ; \\
& \left(x_{i} x_{j}\right)^{2}=e, 1 \leq i<j-1 \leq n-2 ;\left(x_{i} x_{i+1}\right)^{3}=e, 1 \leq i \leq n-2 ; \tag{2.15}\\
& \left.\left(c x_{2}\right)^{3}=e ;\left(c x_{i}\right)^{2}=e, 1 \leq i \leq n-1 \text { and } i \neq 2\right\rangle .
\end{align*}
$$

Consequently, we have proved the following theorem.
Theorem 2.2. The group D_{n} is the split extension of $n-1$ copies of Z_{2} by S_{n}.
Remark 2.3. Let us describe the relation between the Coxeter groups B_{n} and D_{n}. It is easy to show that D_{n} is the subgroup of B_{n} consisting of all elements of even length in B_{n}. Thus D_{n} is a subgroup of B_{n} of index 2 . On the other hand, let S_{n} be the symmetric group of degree n generated by $y_{i}, 1 \leq i \leq n-1$. We consider the map $\theta: D_{n} \rightarrow S_{n}$ defined by $\theta\left(x_{1}\right)=y_{2}, \theta\left(x_{2}\right)=y_{2}$, and $\theta\left(x_{i}\right)=y_{i-1}, 3 \leq i \leq n$. Using the Reidemeister-Schreier process, it is possible to show that $\theta^{-1}\left(S_{n-1}\right) \cong B_{n-1}$. Hence B_{n-1} is a subgroup of D_{n} of index n. We observe the graph given in Figure 2.2.

The orders of B_{n} and D_{n} are $\left|B_{n}\right|=2^{n} n!$ and $\left|D_{n}\right|=2^{n-1} n!$, respectively. It is also easy to see that $B_{n}^{\prime} \cong D_{n}^{\prime}$.

Figure 2.2.
3. The derived series of D_{n}. In [1], we showed that D_{4} is solvable of derived length 4. For $n>4$ we use the Reidemeister-Shreier process to find the following presentation for D_{n}^{\prime} :

$$
\begin{align*}
D_{n}^{\prime}=\langle & \left\langle b_{2}, b_{3}, \ldots, b_{n}\right| b_{2}^{2}=b_{3}^{3}=b_{i}^{2}=e, 4 \leq i \leq n ; \\
& \left.\left(b_{i} b_{i+1}\right)^{3}=e, 2 \leq i \leq n-1 ;\left(b_{i} b_{j}\right)^{2}=e, 2 \leq i<j-1 \leq n-1\right\rangle . \tag{3.1}
\end{align*}
$$

The group $D_{n}^{\prime} / D_{n}^{\prime \prime}$ is trivial. Hence D_{n}^{\prime} is a complete group. We thus have the following theorem.

Theorem 3.1. D_{n} is solvable of derived length 4 if $n=4$. If $n>4$, then D_{n} is not solvable.
4. The centre of D_{n}. We use the structure of D_{n} explained in Section 2 to prove the following theorem.

Theorem 4.1. The centre of D_{n} is Z_{2} if n is even and trivial if n is odd.
Proof. In Section 2, we showed that D_{n} is the split extension of Z_{2}^{n-1} by S_{n}. This means the existence of an epimorphism $\theta: D_{n} \rightarrow S_{n}$, where $\operatorname{ker} \theta=Z_{2}^{n-1}$. It follows that $\theta\left(Z\left(D_{n}\right)\right) \subseteq Z\left(\theta\left(D_{n}\right)\right)=Z\left(S_{n}\right)=\{e\}$. Hence $Z\left(D_{n}\right) \subseteq \operatorname{ker} \theta=z_{2}^{n-1}$. We use the previous notation where $S_{n}=\left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right\rangle$ and $Z_{2}^{n-1}=\left\langle b_{2}, b_{3}, \ldots, b_{n}\right\rangle$ and the previous action. We let $w \in Z\left(D_{n}\right) \Rightarrow w \in Z_{2}^{n-1}$ and $w^{x_{i}}=w$ for $1 \leq i \leq n-1$. Also $w=b_{2}^{\epsilon_{2}} b_{3}^{\epsilon_{3}} \cdots b_{n}^{\epsilon_{n}}$, where $\epsilon_{i}=0$ or 1 since $b_{i}^{2}=e$. Using the action of S_{n} on Z_{2}^{n-1}, we get

$$
\begin{equation*}
\left(b_{2}^{\epsilon_{2}} b_{3}^{\epsilon_{3}} \cdots b_{i}^{\epsilon_{i}} b_{i+1}^{\epsilon_{i+1}} \cdots b_{n}^{\epsilon_{n}}\right)^{x_{i}}=b_{2}^{\epsilon_{2}} b_{3}^{\epsilon_{3}} \cdots b_{i}^{\epsilon_{i}} b_{i+1}^{\epsilon_{i+1}} \cdots b_{n}^{\epsilon_{n}} \tag{4.1}
\end{equation*}
$$

Letting $2 \leq i \leq n-1$, we get

$$
\begin{equation*}
b_{2}^{\epsilon_{2}} b_{3}^{\epsilon_{3}} \cdots b_{i+1}^{\epsilon_{i}} b_{i}^{\epsilon_{i+1}} \cdots b_{n}^{\epsilon_{n}}=b_{2}^{\epsilon_{2}} b_{3}^{\epsilon_{3}} \cdots b_{i}^{\epsilon_{i}} b_{i+1}^{\epsilon_{i+1}} \cdots b_{n}^{\epsilon_{n}} \tag{4.2}
\end{equation*}
$$

and so $b_{i+1}^{\epsilon_{i}} b_{i}^{\epsilon_{i+1}}=b_{i}^{\epsilon_{i}} b_{i+1}^{\epsilon_{i+1}}$. This implies $\epsilon_{i}=\epsilon_{i+1}$ and so $\epsilon_{2}=\epsilon_{3}=\cdots=\epsilon_{n}$. Hence $w=b_{2} b_{3} \cdots b_{n}$ or $w=b_{2}^{0} b_{3}^{0} \cdots b_{n}^{0}=e$. Now, we consider the action of x_{1} on w in the following two cases:
(a) If n is even, we get $\left(b_{2} b_{3} \cdots b_{n}\right)^{x_{1}}=b_{2}^{n-2} b_{2} b_{3} \cdots b_{n}=b_{2} b_{3} \cdots b_{n}$ since $b_{2}^{2}=e$. Hence $b_{2} b_{3} \cdots b_{n}$ is in the centre of D_{n}. Since $\left(b_{2} b_{3} \cdots b_{n}\right)^{2}=e$, we get $Z\left(D_{n}\right)=Z_{2}$.
(b) If n is odd, $\left(b_{2} b_{3} \cdots b_{n}\right)^{x_{1}}=b_{3} b_{4} \cdots b_{n}$ and $b_{2} b_{3} \cdots b_{n}$ does not commute with x_{1}. Thus w is $b_{2}^{0} b_{3}^{0} \cdots b_{n}^{0}=e$ and $Z\left(D_{n}\right)=\{e\}$.
5. The growth series. The growth series, in the sense of Milnor and Gromov, of D_{n} for $4 \leq n \leq 8$ were computed as follows [3]:

$$
\begin{align*}
\gamma\left(D_{4}\right)= & (1+t)^{4}\left(1+t^{2}\right)^{2}\left(1-t+t^{2}\right)\left(1+t+t^{2}\right), \tag{5.1}\\
\gamma\left(D_{5}\right)= & (1+t)^{4}\left(1+t^{2}\right)^{2}\left(1+t^{4}\right)\left(1-t+t^{2}\right)\left(1+t+t^{2}\right)\left(1+t+t^{2}+t^{3}+t^{4}\right), \tag{5.2}\\
\gamma\left(D_{6}\right)= & (1+t)^{6}\left(1+t^{2}\right)^{2}\left(1+t^{4}\right)\left(1-t+t^{2}\right)^{2}\left(1+t+t^{2}\right)^{2} \\
& \times\left(1-t+t^{2}-t^{3}+t^{4}\right)\left(1+t+t^{2}+t^{3}+t^{4}\right), \tag{5.3}\\
\gamma\left(D_{7}\right)= & (1+t)^{6}\left(1+t^{2}\right)^{3}\left(1+t^{4}\right)\left(1-t+t^{2}\right)^{2}\left(1+t+t^{2}\right)^{2}\left(1-t^{2}+t^{4}\right) \tag{5.4}\\
& \times\left(1-t+t^{2}-t^{3}+t^{4}\right)\left(1+t+t^{2}+t^{3}+t^{4}\right)\left(1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}\right), \\
\gamma\left(D_{8}\right)= & (1+t)^{8}\left(1+t^{2}\right)^{4}\left(1+t^{4}\right)^{2}\left(1-t+t^{2}\right)^{2}\left(1+t+t^{2}\right)^{2} \\
& \times\left(1-t^{2}+t^{4}\right)\left(1-t+t^{2}-t^{3}+t^{4}\right)\left(1+t+t^{2}+t^{3}+t^{4}\right) \tag{5.5}\\
& \times\left(1-t+t^{2}-t^{3}+t^{4}-t^{5}+t^{6}\right)\left(1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}\right) .
\end{align*}
$$

We make two observations about these growth polynomials. First, each growth series is a product of cyclotomic polynomials. Second, the value of the series at 1 is the order of the corresponding group and the degree of the growth series equals the length of the element of maximal length.
We have not yet succeeded in finding the growth series of D_{n} for general n.
Acknowledgement. The first author (MAA) acknowledges KFUPM's support.

References

[1] M. A. Albar, Analogues of the braid group and their corresponding Coxeter groups, Comm. Algebra 12 (1984), no. 23-24, 2977-2984. MR 86g:20041. Zbl 591.20046.
[2] __ On presentation of group extensions, Comm. Algebra 12 (1984), no. 23-24, 29672975. MR 86g:20040. Zbl 551.20017.
[3] M. A. Albar, M. A. Al-Hamed, and N. A. Al-Saleh, The growth of Coxeter groups, Math. Japon. 47 (1998), no. 3, 417-428. MR 99f:20066. Zbl 912.20032.
[4] M. A. Albar and N. A. Al-Saleh, On the affine Weyl group of type B_{n}, Math. Japon. 35 (1990), no. 4, 599-602. MR 91d:20030. Zbl 790.20048.
[5] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin, 1980. MR 81a:20001. Zbl 422.20001.
M. A. Albar: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Norah Al-Saleh: Department of Mathematics, College of Girls, Dammam, Saudi ARABIA

