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Abstract. This paper is mainly concerned with the motion of an incompressible fluid in
a slowly rotating rectangular basin. The equations of motion of such a problem with its
boundary conditions are reduced to a system of nonlinear equations, which is to be solved
by applying the shallow water approximation theory. Each unknown of the problem is
expanded asymptotically in terms of the small parameter ε which generally depends on
some intrinsic quantities of the problem of study. For each order of approximation, the
nonlinear system of equations is presented successively. It is worthy to note that such a
study has useful applications in the oceanography.
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1. Introduction. Rotating fluids is an important topic in both fluid mechanics and
oceanography, which attracted numerous scientists and researchers to investigate
internal waves, surface waves, tidal waves, and pulses. Oceanographers discovered
the importance of coriolis forces and so it must be included in the mathematical
model.
Rotating fluids in closed basins simulate many natural free surface flow problems

like those of closed seas and lakes. Rotating fluid problems have often been tackled for
cylindrical basins using the linear mathematical models (e.g., Brillon and Coulomb [1],
Miles [15], Saint-Guily [21]) and rarely by the nonlinear model (cf. Helal and Badawi [9]).
On the contrary, rotating fluids in open seas have merited a lot of attention in the

literature since the physical nature of the problem greatly simplifies the solution due
to the absence of the side boundaries (cf. LeBlond and Mysak [13], Mei [14]).
To the best of the author’s knowledge, the problem of rotating fluids in a paral-

lelepiped basin has been seldom treated, and then only for the linear mathematical
model. Consequently, the object of this work is to propose a general framework for
the nonlinear analysis of rotating fluids inside a parallelepiped basin, and suggest a
mathematical treatment.
However, since the problem is difficult, only the case of shallow water will be con-

sidered. Moreover, the powerful perturbation technique will be further adopted. The
special case corresponding to the progressive waves will be throughly analyzed.
In the following paragraph a historical background for treatment of rotating fluid

problems will be highlighted. A special focus for the pioneering work will be given.
The author believes that the first solutions of the problem of free oscillations in
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rotating rectangular basin of uniform depth were derived by Rayleigh [18, 19]. His
study was restricted to slow rotation. Taylor [22] gave the first complete solution
for any arbitrary rotation of that rectangular basin. Nevertheless, Lamb [12] gave an
approximation for the same problem. The work of Grace [6] represents the first mile-
stone for the rotating rectangular basin where he studied the linear problem and gave
solutions for free and forced oscillations, in a rectangular basin. Corkan and Dood-
son [4] investigated the problem of a square sea by direct numerical integration of
the dynamic equations and obtained some interesting results on the so-called sym-
metric and antisymmetric modes. Moreover, van Dantzig and Lauwerier [23] solved
the problem of free oscillation in a rotating rectangular basin for any speed of rota-
tion and they gave also an approximate solution for slow rotation. Rao [17] extended
work may be considered to be the second milestone in the analysis of flow in a ro-
tating rectangular basin. Rao showed that the free oscillations consist of symmetric
and axisymmetric modes as shown before by Taylor [22]. Moreover, there are modes
propagating in the positive and negative direction of the basin. Greenspan [7] gave a
detailed and excellent study for the rotating fluids in his famous book. This book is
considered as the best reference where the linear and nonlinear problems are given. In
his thesis, Suberville [2, 3] presented the linear study for surface and internal waves in
rotating circular and rectangular basin. A parallel experimental and theoretical stud-
ies were given by Chabert d’Hieres and Suberville [2, 3] for the same problem. In their
books, LeBlond and Mysak [13] and Mei [14] have paid considerable attention to ro-
tating fluids and oceans. Pedlosky [16] focused on large-scale flows in the oceans and
atmosphere. Renouard, Chabert d’Hieres, and Zhang [20] gave an illustrated experi-
mental study for the strongly nonlinear waves in a rotating system. A theoretical study
for the nonlinear gravity waves in a rotating open sea has been presented by Germain
and Renouard [5]. Different formulations are discussed for weak, medium, and strong
rotations.
It should be underlined however, that most of the above papers were far from the

present work, and it is indispensable to give the following work. The present work can
be considered as a step for an analytical study for the nonlinear waves in a rotating
rectangular basin. Further work including more analytical and numerical study will be
reported in a forthcoming work.

2. The problem. Consider an incompressible perfect fluid in a rectangular basin.
The domain occupied by the fluid is defined as:

0≤ z ≤ ζ, −a≤ x ≤ a, −b ≤y ≤ b. (2.1)

The basin rotates around its z-axis with angular velocity Ωc .
The present work concentrates on providing the governing equations for the free

surface. Throughout this paper the following notation represent the given definitions
(cf. Figure 2.1).
M(x,y,z): the rectangular coordinates of the point M
H: thickness at rest of the fluid
ρ: constant density of the fluid
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Figure 2.1.

p: pressure of the fluid
V= (Vx,Vy,Vz): the velocity vector
z = ζ(x,y,t): free surface equation
Ωc : the angular velocity of the system
g: the acceleration of gravity.

3. Basic equations

3.1. Hydrodynamic equations. As we are dealing with a rectangular basin, the
equations can be expressed in vector form as follows (using rectangular coordinates):
The dynamic equations

ρ
[
∂V
∂t
+(V·�)V+2Ωc∧V+Ωc∧

(
Ωc∧ �����������������������������������������������������→OM

)+�gz
]
=−�p. (3.1)

The continuity equation

divV= 0, (3.2)

where

V= Vxi+Vy j+Vzk,
�����������������������������������������������������→OM = xi+yj+zk, Ωc =Ωck, (3.3)

and {i, j,k} are the unit vectors in a rectangular coordinate system.
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Equations (3.1) and (3.2) can be rewritten in their scalar form as:

∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
= 0,

∂Vx

∂t
+
(
Vx

∂Vx

∂x
+Vy

∂Vx

∂y
+Vz

∂Vx

∂z

)
−2ΩcVy−2xΩc

2 =− 1
ρ
∂p
∂x

,

∂Vy

∂t
+
(
Vx

∂Vy

∂x
+Vy

∂Vy

∂y
+Vz

∂Vy

∂z

)
+2ΩcVx−2yΩc

2 =− 1
ρ
∂p
∂y

,

∂Vz

∂t
+
(
Vx

∂Vz

∂x
+Vy

∂Vz

∂y
+Vz

∂Vz

∂z

)
+g =− 1

ρ
∂p
∂z

.

(3.4)

3.2. Boundary conditions. We assume that all the boundaries of the domain are
impermeable, including the free surface which is unknown.

(i) At the bottom:

Vz = 0 for z = 0. (3.5)

(ii) On the vertical boundaries of the basin:

Vx = 0 for x =±a, Vy = 0 for y =±b. (3.6)

(iii) On the free surface z = ζ(x,y,t) we have two conditions. The first describes
the impermeability

[
Vz− ∂ζ

∂t
−Vx

∂ζ
∂x

−Vy
∂ζ
∂y

]
z=ζ

= 0. (3.7)

The second condition describes its isoparity

p(x,y,z = ζ,t)= pat = constant, (3.8)

where pat represents the atmospheric pressure which can be taken as zero without
any loss of generality.
Equations (3.4), (3.5), (3.6), (3.7), and (3.8) describe completely the governing equa-

tions for the nonlinear problem.

4. The shallow water theory. From now on, we consider the case of rectangular
basin with very large horizontal dimensions (x and y) compared with its vertical
height (z). Applying the shallow water approximation theory (see Helal [8] and Helal
and Badawi [9]), which designates the following new distorted parameters:

x̄ = εx, ȳ = εy, z̄ = z, τ = εt, (4.1)
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where ε is a small parameter which can depend on the ratio between the vertical height
and (a+b)/2. Moreover, we are interested in the case of slow rotation, that is,

Ωc = εΩ. (4.2)

For simplicity, hereafter, we use u, v , w instead of Vx , Vy , Vz.
The system of equations (3.4), (3.5), (3.6), (3.7), and (3.8) (after using the distorted

parameters) can be written as

ε
(
∂u
∂τ

+u∂u
∂x̄

+v ∂u
∂ȳ

−2Ωv− x̄Ω2
)
+w∂u

∂z̄
=− ε

ρ
∂p
∂x̄

,

ε
(
∂v
∂τ
+u∂v

∂x̄
+v ∂v

∂ȳ
+2Ωu−ȳΩ2

)
+w∂v

∂z̄
=− ε

ρ
∂p
∂ȳ

,

ε
(
∂w
∂τ

+u∂w
∂x̄

+v ∂w
∂ȳ

)
+w∂w

∂z
+g =− 1

ρ
∂p
∂z̄

,

ε
(
∂u
∂x̄

+ ∂v
∂ȳ

)
+ ∂w

∂z̄
= 0,

(w)z̄=0 = 0,
(u)x̄=±A = 0, (v)ȳ=±B = 0, where A= εa, B = εb,

[
p(x̄,ȳ, z̄,τ)

]
z̄=ζ = 0,

[
w−ε

(
∂ζ
∂τ
+u∂ζ

∂x̄
+v ∂ζ

∂ȳ

)]
z̄=ζ

= 0.

(4.3)

Expanding the dependent variables in the neighborhood of the undisturbed uniform
state in general asymptotic series, will lead to two sets of identical equations, and due
to the parity of the system of equations, we take the more suitable expansions for the
dependent variables in the form (cf. Helal and Badawi [9]):

Vx =u=
∞∑

n=1
ε2nu2n

(
x̄, ȳ, z̄,τ

)
,

Vy = v =
∞∑

n=1
ε2nv2n

(
x̄, ȳ, z̄,τ

)
,

Vz =w =
∞∑

n=0
ε2n+1w2n+1

(
x̄, ȳ, z̄,τ

)
,

p =
∞∑

n=0
ε2np2n

(
x̄, ȳ, z̄,τ

)
,

ζ =
∞∑

n=0
ε2nζ2n

(
x̄, ȳ,τ

)
,

(4.4)

where the values of ζ0 and p0 have the forms (from studying the stationary state [9]):

ζ0 =H+ Ω
2
c

4g
(
x2+y2), p0 =−ρg

(
z̄−ζ). (4.5)
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For simplicity, we omit the bar sign throughout the rest of the paper.
The boundary conditions on the free surface and on the interface can be expanded

in the form:

[F]z=z0+εD = [F]z0+εD
[
∂F
∂z

]
z=z0

+ (εD)2

2!

[
∂2F
∂z2

]
z=z0

+··· . (4.6)

Expanding all the boundary conditions in a similar manner to that of (4.6) and making
use of (4.4) and (4.5) in the system of (3.4), (3.5), (3.6), (3.7), and (3.8); this will lead to
an ordered set of equations to be solved in the sequel.

5. Orders of approximations

5.1. First order approximation. The equation

∂w1

∂z
= 0 with the boundary condition

[
w1
]
z=0 = 0 (5.1)

leads to

w1 = 0. (5.2)

5.2. Second order approximation. For this approximation, we have

− 1
ρ
∂p2
∂z

= 0, (5.3)

and from the conditions of isoparity on free surface we get

[
p2−ρgζ2

]
z=ζ0 = 0, (5.4)

which implies that

p2 = ρgζ2. (5.5)

5.3. Third order approximation. This approximation gives

∂u2
∂τ

−2Ωv2 =− 1ρ
∂p2
∂x

, (5.6)

∂v2
∂τ

+2Ωu2 =− 1ρ
∂p2
∂y

, (5.7)

∂u2
∂x

+ ∂v2
∂y

+ ∂w3

∂z
= 0, (5.8)

with the following boundary conditions:

[
w3
]
z=0 = 0,

[
w3−

(
∂ζ2
∂τ

+u2 ∂ζ0∂x
+v2 ∂ζ0∂y

)]
z=ζ0

= 0. (5.9)



SHALLOW WATER WAVES IN A ROTATING RECTANGULAR BASIN 655

After some calculations, we can deduce that u2 and v2 are functions of x,y , and
τ only.
From (5.8) and the boundary conditions (5.9), we get

w3 =−z
(
∂u2
∂x

+ ∂v2
∂y

)
. (5.10)

After extensive manipulation, we get the following partial differential equation for p2:

[
Ω2

2

(
x2+y2)+Hg

]
∂
∂τ
�2p2

+Ω2
[
∂
∂τ

(
x
∂p2
∂x

+y ∂p2
∂y

)
+2Ω

(
x
∂p2
∂y

−y ∂p2
∂x

)]
=
(
∂3

∂τ3
+4Ω2 ∂

∂τ

)
p2.

(5.11)

The following system of equations gives the relation between p2 and u2 and v2:

(
4Ω2+ ∂2

∂τ2

)
u2 =− 1ρ

(
∂2p2
∂x∂τ

+2Ω∂p2
∂y

)
,

(
4Ω2+ ∂2

∂τ2

)
v2 =− 1ρ

(
∂2p2
∂y∂τ

−2Ω∂p2
∂x

)
.

(5.12)

Solving the partial differential equation (5.11) gives p2 and consequently by using the
last system of (5.12) we can deduce u2 and v2. We must notice that the solution of
the partial differential equation (5.11) governing the unknown p2 is very complicated
and needs further research.

6. Progressive waves. In this section, we pay attention to the study of progressive
waves (see Helal and Badawi [9]). It has been shown that all unknowns p2,u2, and v2
are functions of x, y , and τ only. In the present case, we introduce the parameter
Θ= θ(x,y)−ωτ , where ω is the pulse angular frequency.
The unknowns p2 can be expanded as a Fourier series in Θ as follows:

p2 =
∞∑

n=0

[
an(x,y)cosnΘ+bn(x,y)sinnΘ

]
. (6.1)

After substitution of p2 into the system of equations (5.12), and manipulation, we
obtain two partial differential equations for u2 and v2; the general solution of which
are given by

u2 =
∞∑

n=0

[
αn(x,y)cosnΘ+βn(x,y)sinnΘ

]
,

v2 =
∞∑

n=0

[
γn(x,y)cosnΘ+δn(x,y)sinnΘ

]
,

(6.2)
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where

αn =− 1
ρ
(
4Ω2−n2ω2

)
(
−ωn

∂bn
∂x

+2Ω∂an

∂y
+ωn2an

∂Θ
∂x

+2Ωnbn ∂Θ∂y
)
,

βn =− 1
ρ
(
4Ω2−n2ω2

)
(
ωn

∂an

∂x
+2Ω∂bn

∂y
+ωn2bn

∂Θ
∂x

−2Ωnan
∂Θ
∂y

)
,

γn =− 1
ρ
(
4Ω2−n2ω2

)
(
−ωn

∂bn
∂y

−2Ω∂an

∂x
+ωn2an

∂Θ
∂y

−2Ωnbn ∂Θ∂x
)
,

δn =− 1
ρ
(
4Ω2−n2ω2

)
(
ωn

∂an

∂y
−2Ω∂bn

∂x
+ωn2bn

∂Θ
∂y

+2Ωnan
∂Θ
∂x

)
,

(6.3)

where

∂Θ
∂x

=− y
x2+y2

,
∂Θ
∂y

= x
x2+y2

. (6.4)

It is to be noted that due to the periodicity of solutions of (5.6) and (5.7), the quan-
tity (4Ω2−n2ω2) never vanishes. If we substitute from (6.1) into (5.11) we get the
following ordinary differential equation which determines the unknown coefficients
an(x,y) and bn(x,y):

(
Ω2

2

(
x2+y2)+Hg

)(
nω�2an+ n3ω

x2+y2
an

)
+Ω2nω

(
x
∂an

∂x
+y ∂an

∂y

)

−2nΩ3an−
(
(−nω)3+4Ω2nω)an

=−
(
Ω2

2

(
x2+y2)+Hg

)
2n2ω

(−y(∂bn/∂x)+x(∂bn/∂y))
x2+y2

−2Ω3
(
x
∂bn
∂y

−y ∂bn
∂x

)
,

(
Ω2

2

(
x2+y2)+Hg

)(
−nω�2bn+ n3ω

x2+y2
bn
)
−Ω2nω

(
x
∂bn
∂x

+y ∂bn
∂y

)

+2nΩ3bn+
[
(−nω)3+4Ω2nω]bn

=−
(
Ω2

2

(
x2+y2)+Hg

)
2n2ω

(−y(∂an/∂x
)+x(∂an/∂y

))
x2+y2

−2Ω3
(
x
∂an

∂y
−y ∂an

∂x

)
.

(6.5)

Also, since the basin’s vertical walls, x = ±a and y = ±b, are impermeable so the
functions u2 and v2 must vanish at these walls, that is,

[
u2
]
x=±a = 0,

[
v2
]
y=±b = 0, (6.6)
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which gives:

[
−ωn

∂bn
∂x

+2Ω∂an

∂y
−anωn2

(
y

x2+y2

)
+2Ωnbn

(
x

x2+y2

)]
x=±a

= 0,

[
ωn

∂an

∂x
+2Ω∂bn

∂y
−bnωn2

(
y

x2+y2

)
−2Ωnan

(
x

x2+y2

)]
x=±a

= 0,

[
−ωn

∂bn
∂y

−2Ω∂an

∂x
+anωn2

(
x

x2+y2

)
+2Ωnbn

(
y

x2+y2

)]
y=±b

= 0,

[
ωn

∂an

∂y
−2Ω∂bn

∂x
+bnωn2

(
x

x2+y2

)
−2Ωnan

(
y

x2+y2

)]
y=±b

= 0.

(6.7)

Since the solution must be bounded at the origin, an(0) and bn(0) should be
bounded. Now we are left with a system of partial differential equations with vari-
able coefficients, namely, equations (6.5), to be solved. Our purpose is to obtain a
bounded solution for this system of partial differential equations (6.5) which satisfy
the boundary conditions (6.7). The solution gives the unknowns an and bn which rep-
resent the Fourier coefficients of the function p2 and consequently we can deduce the
other unknowns u2 and v2. This completes the solution at this stage of approxima-
tion. However, the analytical solution of the system of partial differential equation is
very complicated, so we think that the numerical solution of this system of partial
differential equations with the boundary condition will be necessary.

7. Algorithm for the numerical solution of the above system. The coupled system
of partial differential equations (6.5) for the unknowns an(x,y) and bn(x,y) and
conditions (6.7) can be approximately replaced by a corresponding system of algebraic
equations using the following procedure:
(1) divide the finite interval (−a< x < a) into a finite number N of equal subinter-

vals x with length 2a/N,
(2) divide the finite interval (−b < y < b) into a finite number M of equal subin-

tervals y with length 2b/M,
(3) replace each partial derivative of the unknown functions an(x,y) and bn(x,y)

by a suitable finite differences (see Isaacson and Keller [10]), thus leading to a
system of algebraic equations,

(4) insert the discretised boundary conditions into the algebraic system of equa-
tions,

(5) use any appropriate technique to get the numerical solution of the resulting
linear algebraic system of equations.

8. Numerical applications. In this section, we give a numerical solution to the
above problem, for some particular case of a square basin (a = b). We use the fol-
lowing nondimensional parameters:
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Ω̃ = Ω
Ω0

, w̃ = w
Ω0

, ã= aΩ0√
gH

, x̃ = xΩ0√
gH

, ỹ = yΩ0√
gH

, ρ̃ = ρ
ρ0

, τ̃ =Ω0τ,
(8.1)

where Ω0, ρ0, and H are the characteristic angular velocity, density, and height, re-
spectively.
In our application, we considered the principal harmonics (n= 1).
The numerical solution is obtained for the following two sets of numerical data:
(1) Ω̃ = 1, ã= 1, ρ̃ = 1, and w̃ = 0.5,
(2) Ω̃ = 1, ã= 1, ρ̃ = 1, and w̃ =−0.5.

The first set of data corresponds to the P mode (which describe waves traveling with
the flow) (cf. Yih [24]), while the second one represents the N mode (which describe
waves traveling against the flow).
Here, Figures 8.1a, 8.1b, 8.1c, 8.1d illustrate the pattern of ζ2 for the P mode at

different instants of time, whilst Figures 8.2a, 8.2b, 8.2c, 8.2d give the N mode at the
same different instants of time.
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Figure 8.1.
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Figure 8.2.

9. Discussions and conclusions. Numerous works are available which handle the
application of linear shallow water waves in the oceanography and fluid mechanics
topics. It is well known that there are two types of waves, one is a family of the so-called
Poincaré waves and the other is the Kelvin waves (cf. Pedlosky [16] and Kundu [11]).
The free surface attains a parabolic shape due to the balance between the centrifugal
force and the gravity force. However, the nonlinear treatment of these problems is
seldom found. For this reason, the present work introduces a mathematical model
for the nonlinear shallow water equations. It is difficult to obtain an analytic solution
for such problems, while the numerical treatment is possible. Although this problem
for the square basin seems to have many difficulties, it may be more suitable for
oceanographical applications.
The mathematical model handles ideal fluid as a reasonable approximation for the

actual fluid in physical oceanography. It is worthy to search for a simple physical
oceanography and to formulate the corresponding mathematical model. The closed
seas and lakes distributed all over the world represent good examples for applica-
tions. These include the Caspian and Aral seas in Asia, Winnipeg and Ontario in North
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America, Lago de Nicaragua in South America, as well as the lakes of Chad and Victoria
in Africa.
Thus it can be concluded that the proposed mathematical model can be employed

for handling such real lakes and/or closed seas. As a first approximation, each of
these cases can be approximated by a rectangular form having its real dimensions
and locations. Next, a numerical solution for the proposed mathematical model could
be attained as explained before. Moreover, these results can be further compared to
other computational models and/or experimental data. This comparison resembles
an important verification and testimony to this mathematical model.
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