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A NOTE ON CENTRALIZERS
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Abstract. For prime rings R, we characterize the set U ∩CR([U,U]), where U is a right
ideal of R; and we apply our result to obtain a commutativity-or-finiteness theorem. We
include extensions to semiprime rings.
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Let R be an arbitrary ring with center Z . For x,y ∈ R, denote by [x,y] the com-
mutator xy −yx; and for an arbitrary nonempty subset S of R, denote by [S,S]
the set {[x,y] | x,y ∈ S}. Denote by CR(S) the centralizer of S in R—i.e., the set
{x ∈ R | [x,s]= 0 for all s ∈ S}.
It is proved in [2] that ifR is semiprime and I is a nonzero ideal ofR, then CR([I,I])⊆

CR(I). It follows that C([I,I])∩ I ⊆ Z , since in a semiprime ring R the center of a
nonzero right ideal is contained in the center of R. The first goal of this note is to study
the subring H = CR([U,U])∩U , where R is prime or semiprime and U is a nonzero
right ideal. The information obtained is used to prove commutativity-or-finiteness
results extending [1, Theorem 3].

1. Preliminaries. We shall use standard notation for annihilators—that is, for a
nonempty subset S of R, Al(S) and A(S) will be the left and two-sided annihilators
of S. A subring S will be said to have finite index in R if (S,+) is of finite index in
(R,+). We shall use without explicit mention the commutator identities [xy,z] =
x[y,z]+[x,z]y and [x,yz]=y[x,z]+[x,y]z.
We begin with a revealing example.

Example 1.1. Let F be an arbitrary field, let R be the ring of 2×2 matrices over
F , and let U = e11R. Then R is prime, U is a right ideal, and [U,U] = Fe12 . Note that
CR([U,U])∩U = Fe12 = A([U,U])∩U , and note that this set does not centralize U .
Thus, the result in [2] for two-sided ideals does not hold for one-sided ideals, even in
the case of prime rings.

2. The case of R prime

Theorem 2.1. Let R be a prime ring, U a right ideal of R, and H = CR([U,U])∩U .
Then either H = U∩Z , or H is a zero ring and H = A([U,U])∩U . In any case, H is a
commutative subring of R.
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Proof. We begin as in the proof of [2, Lemma 1]. Let z ∈ CR([U,U]). Then for all
x,y ∈ U , z[x,xy] = [x,xy]z; hence zx[x,y] = x[x,y]z = xz[x,y] and therefore
[z,x][x,y] = 0. Replacing y by yz, we get [z,x]U[z,x] = {0} for all x ∈ U ; and
since [z,x]U is a nilpotent right ideal, we have [z,x]U = {0} for all z ∈ CR([U,U])
and x ∈U . Taking z ∈H, we obtain [z,x]z = 0= z[z,x] for all z ∈H and x ∈U ; and
replacing x by xr for arbitrary r ∈ R yields zU[z,r]= {0}, hence

zUR[z,r]= {0} for all z ∈H and r ∈ R. (2.1)

Since R is prime, (2.1) shows that either z ∈ Z or zU = {0}; hence H = (H∩Z)∪
(H∩Al(U)). Since the abelian group H cannot be the union of two proper subgroups,
we have H = H∩Z or H = H∩Al(U), so that H ⊆ Z or H ⊆ Al(U). In the first case,
H is clearly equal to U∩Z , so suppose H ⊆ Al(U). Since H ⊆ U , H2 = {0}; moreover,
H ⊆Al([U,U])∩CR([U,U]), so H ⊆A([U,U]) and hence H =A([U,U])∩U .
We now proceed to a commutativity-or-finiteness result.

Theorem 2.2. Let R be a prime ring and U a right ideal of finite index in R. If [U,U]
is finite, then R is either finite or commutative.

Proof. Suppose that [U,U] = {x1,x2, . . . ,xm}. For each i = 1,2, . . . ,m define Φi :
U → U by Φi(x) = [xi,x] for all x ∈ U . Then Φi(U) is finite, hence KerΦi is of finite
index in U . Letting H = ⋂m

i=1KerΦi, we see that H = U ∩CR([U,U]) and that H is of
finite index in U . Now U is of finite index in R, so H is of finite index in R. It follows
by a theorem of Lewin [3] that H contains an ideal I of R which is also of finite index
in R. If I = {0}, then R is finite; if I ≠ {0}, Theorem 2.1 implies that R has a nonzero
commutative ideal and hence R is commutative.

3. The case of R semiprime. Let R be semiprime, U a right ideal, and H = U ∩
CR([U,U]). Let {Pα |α∈Λ} be a collection of prime ideals such that ∩Pα = {0}. Now
(2.1) holds in R, hence for each α ∈ Λ and each z ∈H, either [z,R] ⊆ Pα or zU ⊆ Pα.
Since each of these conditions defines an additive subgroup ofH, we see that [H,R]⊆
Pα or HU ⊆ Pα; therefore [H,H]⊆ Pα for all α∈Λ. Thus [H,H]= {0}—that is, H is a
commutative subring of R.
Revisiting the proof of Theorem 2.2, we see that in the semiprime case, either R

is finite or R contains a nonzero commutative ideal I. But in a semiprime ring, a
commutative ideal is central; hence we have the following extension of Theorem 2.2.

Theorem 3.1. Let R be a semiprime ring and U a right ideal of finite index in R. If
[U,U] is finite, then either R is finite or R contains a nonzero central ideal.
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