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Abstract. The periodic boundary value problems of a class of nonlinear differential equa-
tions are investigated.
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1. Introduction. Let us consider the following nonlinear differential equation(
ā(t)ϕ̄p

(
x′(t)

))′ +f (t,x(t))= 0, (1.1)

where ′ = d/dt, f : R×Rn → Rn is continuous, 2π -periodic in t and f(t,·) ∈ C1
(Rn,Rn), ā(t)ϕ̄p(x)=: col(a1(t)ϕp(x1), . . . ,an(t)ϕp(xn)), ak(t) is 2π -periodic and
ak(t) ∈ C1(R,(0,∞)), ϕp : R → R be defined by ϕp(s) = |s|p−2s, with p > 1 fixed,
f(t,x)= col(f1(t,x), . . . ,fn(t,x)).
When p = 2, ak(t)≡ 1, k= 1,2, . . . ,n. Equation (1.1) is of the form

x′′(t)+f(t,x)= 0. (1.2)

Amaral and Pera [1] and recently Li [5] proved the existence and uniqueness results
of (1.2) under the following assumptions:
(L) There exist two constant symmetric n×n matrices A0 and B0 with eigenval-

ues N2k and (Nk + 1)2, (k = 1,2, . . . ,n), respectively, Nk ≥ 0 is an integer for each
k, D2f(t,x) is symmetric and there exist two time-dependent continuous symmet-
ric n×n matrices A(t) and B(t) such that Ao ≤ A(t) ≤ D2f(t,x) ≤ B(t) ≤ B0 for all
(t,x)∈R×Rn. Furthermore, N2k < λk(t)≤ µk(t) < (Nk+1)2 on a subset of [0,2π] of
positive measure, where λk(t) and µk(t) are the eigenvalues of A(t) and B(t), respec-
tively.
Inspired by the work of Li [5], we give sufficient conditions for the existence and

uniqueness of the 2π -periodic solution of (1.1) by using the initial value problem
method and homeomorphism of Rn to Rn.

2. Initial value problem and eigenvalues problem. Throughout this paper, we de-
note the interval [0,2π] and Mn denotes the set of all complex n×n matrices. We
also assume the solutions of (1.1) exist on I for any initial value (x(0),x′(0))∈R2n.
Let us consider the initial value problem

u′(t)= g(t,u(t)), u(0)=u0. (2.1)
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Lemma 2.1 [3, 4]. Assume that g ∈ C(I×Rn,Rn) and possesses continuous partial
derivatives ∂g/∂u on I×Rn. Let the solution u0(t)= u(t,t0,u0) of (2.1) exist for t ∈ I
and let

H(t,t0,u0)= ∂g
(
t,u(t,t0,u0)

)
∂u

. (2.2)

Then

φ(t,t0,u0)= ∂u(t,t0,u0)
∂u0

(2.3)

exists and is the solution of

V ′ =H(t,t0,u0)V (2.4)

such that φ(t0, t0,u0) is the unit matrix.

Lemma 2.2 [2]. Suppose A∈Mn. Then λ is an eigenvalue of the matrix A if and only
if expλ is an eigenvalue of the matrix expA.

Lemma 2.3 [2]. If A∈Mn and there exists δ > 0 such that |λ|> δ for all eigenvalues
λ of A, then ‖A−1‖ ≤ δ−n‖A‖n−1, where ‖A‖ =maxλ1/2(A∗A) [A∗ denotes the adjoint
of A, i.e., if A= (aij), A∗ = (āji)].

Lemma 2.4 [7]. If A ≥ B ≥ 0, and A and B are two real symmetric n×n matrices,
where λ1 ≤ λ2 ≤ ··· ≤ λn and µ1 ≤ µ2 ≤ ··· ≤ µn are eigenvalues of A and B, respec-
tively, then λk ≥ µk, for k= 1,2, . . . ,n.

Lemma 2.5 [6]. Assume that F : Rn → Rn is continuously differentiable on Rn and
‖[F ′(x)]−1‖ ≤M <+∞ for all x ∈Rn. Then F is a homeomorphism of Rn onto Rn.

Lemma 2.6. Assume A,B are n×n matrices, then the eigenvalues of the 2n×2n
matrix (

0 Ā
−B̄ 0

)
(2.5)

are the roots of det(λ2In+BA)= 0.
Proof. From the following matrices equality

(
λIn 0
−B̄ λIn

)(
λIn −Ā
B̄ λIn

)
=
(
λ2In −λĀ
0 λ2In+BA

)
(2.6)

we obtain the result of Lemma 2.6 immediately.

3. Main results. Rewrite (1.1) as follows

x′ =ϕq
(
b(t)y

)
, y ′ = −f(t,x), (3.1)

where b(t)y =: col(b1(t)y1(t), . . . ,bn(t)yn(t)), bk(t)= a−1k (t), and (1/p)+(1/q)= 1,
(q = p/(p−1)), yk(t)= ak(t)ϕp(x′k), hence x

′
k(t)=ϕq(bk(t)yk(t)), k= 1,2, . . . ,n.
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Let u = col(x,y) ∈ R2n, g(t,u) = col(ϕq(b(t)y), −f(t,x)) ∈ R2n, v = col(α,β) =
col(x(0),y(0))= col(x(0),a(0)ϕp(x′(0)))∈R2n, then (3.1) is of the form

u′(t)= g(t,u(t)), u(0)= v. (3.2)

Consider the variation equation of (3.2) with respect to u

ξ′ = ∂g(t,u)
∂u

ξ, (3.3)

where

∂g(t,u)
∂u

=




0
∂ϕq

(
b(t)y

)
∂y

−∂f(t,x)
∂x

0


=:

(
0 A
−B 0

)
(3.4)

with

A= (q−1)diag(b1(t)|y1(t)|q−2, . . . ,bn(t)|yn(t)|q−2),
B = ∂f

(
t,x(t)

)
∂x

=∇f (t,x(t)). (3.5)

Let

Z(t)= exp
∫ t
0

∂g
(
s,u(s,v)

)
∂u

ds. (3.6)

Then Z(t) is a fundamental solution matrix of (3.3) and Z(0) = I2n. Meanwhile, by
Lemma 2.1 we know that

∂u
∂v

=



∂x(t,v)
∂α

∂x(t,v)
∂β

∂y(t,v)
∂α

∂y(t,v)
∂β


 (3.7)

is also a fundamental solution matrix of (3.3). Therefore

Z(t)= ∂u(t,v)
∂v

, t ∈ [0,2π]. (3.8)

Define: h,H :R2n→R2n, h(v)= col(x(2π,v),y(2π,v)),

H(v)= v−h(v). (3.9)

By Lemma 2.1, h(v) is C1-differentiable and so is H(v). Therefore, solving periodic
solution of (1.1) is equivalent to finding the fixed points of h(v) or the zero points of
H(v). From (3.8) and (3.9)

H′(v)= I2n−h′(v)= I2n− ∂u(2π,v)
∂v

= I2n−Z(2π)

= I2n−exp
∫ 2π
0

∂g
(
t,u(t,v)

)
∂u

dt.
(3.10)
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Theorem 3.1. Let Āv = (q − 1)diag(∫ 2π0 b1(t)|β1 −
∫ t
0 f1(τ,x(τ))dτ|q−2dt, . . . ,∫ 2π

0 bn(t)|βn −
∫ t
0 fn(x,x(τ))dτ|q−2dt), B̄v =

∫ 2π
0 ∇f(t,x(t))dt, where x(t) is any

solution of (1.1) satisfying initial conditions (x(0),y(0)) = v = (α,β) ∈ R2n. If there
exist v ∈ R2n and integers Nk ≥ 0, k = 1,2, . . . ,n, such that the matrix B̄vĀv is similar
to a diagonal matrix Cv = diag(λ1, . . . ,λn) with (2πNk)2 < λk < [2π(Nk+1)]2, k =
1,2, . . . ,n. Then (1.1) has a unique 2π -periodic solution x(t) satisfying the initial con-
dition (x(0),y(0))= v .

Proof. By Lemma 2.5, we need only to show thatH′(V) is invertible and that there
exists a constant M > 0 such that ‖[H′(v)]−1‖ ≤M .
In fact, from (3.1) and (3.5), A = (q−1)diag(b1(t)|y1(t)|q−2, . . . ,bn(t)|yn(t)|q−2),

since

yk(t)=yk(0)−
∫ t
0
fk
(
τ,x(τ)

)
dτ = βk−

∫ t
0
fk
(
τ,x(τ)

)
dτ, k= 1,2, . . . ,n (3.11)

we have

Āv =
∫ 2π
0

Adt = (q−1)diag
(∫ 2π

0
b1(t)

∣∣∣∣β1−
∫ t
0
f1
(
τ,x(τ)

)
dτ
∣∣∣∣
q−2

dt, . . . ,

×
∫ 2π
0

bn(t)
∣∣∣∣βn−

∫ t
0
fn
(
τ,x(τ)

)
dτ
∣∣∣∣
q−2

dt
)
.

(3.12)

From Lemma 2.6, the eigenvalues of the matrix
(

0 Āv
−B̄v 0

)
are ±√λ1i,±√λ2i, . . . ,±√λni.

By (3.5), (3.10), and Lemma 2.2 the eigenvalues of H′(v) are

µk = 1−exp
(
±
√
λki

)
= 1−cos

√
λk∓isin

√
λk, k= 1,2, . . . ,n. (3.13)

From the assumption of λk and

|µk| =
√
2−2cos

√
λk = 2

∣∣∣∣sin
√
λk
2

∣∣∣∣ (3.14)

it follows that

|µk| ≥ 2 min
1≤k≤n

(∣∣∣∣sin
√
λk
2

∣∣∣∣
)
> 0 (3.15)

because Nkπ <
√
λk/2< (Nk+1)π, k= 1,2, . . . ,n,

∥∥[H′(v)]−1
∥∥≤ 1+exp

(
4max1≤k≤n(Nk+1)2π2

)
(
2min

{∣∣sin√λk/2∣∣})n =M. (3.16)

Now, from Lemma 2.5, H′(v) is invertible, since by Lemma 2.3, H′(v) is homeomor-
phism of Rn onto Rn, hence there exists a unique v0 ∈ Rn such that H(v0) = 0, that
is, h(v0)= v0. Theorem 3.1 is proved.

Corollary 3.2. Let p = 2, ak(t)≡ 1, k= 1,2, . . . ,n in (1.1), and suppose (L) holds,
then (1.1) has a unique 2π -periodic solution.
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Proof. In this case, q = 2, hence Ā= 2πIn, then eigenvalues of
(
0 Ā
−B̄ 0

)
are

±
√
2πλki, k= 1,2, . . . ,n (3.17)

with

2πN2k < λk < 2π(Nk+1)2, (3.18)

therefore

∥∥[H′(v)]−1
∥∥≤ 1+exp(2max1≤k≤N(Nk+1)2π

)
(
2min1≤k≤N

{
sin

∣∣√2πak/2∣∣,sin∣∣√2πbk/2∣∣})2 =M, (3.19)

where

2πN2k < ak =
∫ 2π
0

λk(t)dt ≤
∫ 2π
0

µk(t)dt = bk < 2π(Nk+1)2. (3.20)

FromLemma 2.3 again, (1.1) has a unique 2π-periodic solution. Corollary 3.2 is proved.

Remark 3.3. Corollary 3.2 is the result of [1] and [5].
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