ON *S*-CLUSTER SETS AND *S*-CLOSED SPACES

M. N. MUKHERJEE and ATASI DEBRAY

(Received 15 July 1996 and in revised form 3 November 1997)

ABSTRACT. A new type of cluster sets, called *S*-cluster sets, of functions and multifunctions between topological spaces is introduced, thereby providing a new technique for studying *S*-closed spaces. The deliberation includes an explicit expression of *S*-cluster set of a function. As an application, characterizations of Hausdorff and *S*-closed topological spaces are achieved via such cluster sets.

Keywords and phrases. *S*-cluster set, *S*-closedness, θ_s -closure, semi-open sets.

2000 Mathematics Subject Classification. Primary 54D20, 54D30, 54C60, 54C99.

1. Introduction. The theory of cluster sets was developed long ago, and was initially aimed at the investigations of real and complex function theory (see [15]). A comprehensive collection of works in this direction can be found in the classical book of Collingwood and Lohwater [1]. Weston [14] was the first to initiate the corresponding theory for functions between topological spaces basically for studying compactness. Many others (e.g., see [3, 4, 6]) followed suit with cluster sets, θ -cluster sets and δ -cluster sets of functions and multifunctions, ultimately implicating different covering properties, among other things.

The present paper is intended for the introduction of a new type of cluster sets, called *S*-cluster sets, which provides a new technique for the study of *S*-closedness of topological spaces. It is shown that such cluster sets of suitable function can characterize Hausdorffness. Finally, we achieve, as our prime motivation, certain characterizations of an *S*-closed space.

In what follows, *X* and *Y* denote topological spaces, and $f: X \to Y$ is a function from *X* into *Y*. By a multifunction $F: X \to Y$ we mean, as usual, a function mapping points of *X* into the nonempty subsets of *Y*. The set of all open sets of (X, τ) , each containing a given point *x* of *X*, is denoted by $\tau(x)$. A set $A \subseteq X$ is called semi-open [5] if for some open set $U, U \subseteq A \subseteq \operatorname{cl} U$, where $\operatorname{cl} U$ denotes the closure of *U* in *X*. The set of all semi-open sets of *X*, each containing a given subset *A* of *X*, is denoted by SO (*A*), in particular, if $A = \{x\}$, we write SO (*x*) instead of SO ($\{x\}$). The complements of semi-open sets are called semi-closed. For any subset *A* of *X*, the θ -closure [13] (θ -semiclosure [8]) of *A*, denoted by θ -cl *A* (respectively, θ_s -cl *A*), is the set of all points *x* of *X* such that for every $U \in \tau(x)$ (respectively, $U \in \operatorname{SO}(x)$), cl $U \cap A \neq \emptyset$. The set *A* is called θ -closed [13] (θ -semiclosed [8]) if $A = \theta$ -cl *A* (respectively, $A = \theta_s$ -cl *A*). It is known [9] that θ -cl *A* need not be θ -closed, but it is so if *A* is open. A nonvoid collection Ω of nonempty subsets of a space *X* is called a grill [12] if

(i) $A \in \Omega$ and $B \supseteq A \Rightarrow B \in \Omega$,

(ii) $A \cup B \in \Omega \Rightarrow A \in \Omega$ or $B \in \Omega$.

A filterbase \mathcal{F} on a space X is said to θ_S -adhere [11] at a point x of X, denoted as $x \in \theta_S$ -ad \mathcal{F} , if $x \in \cap \{\theta_S \text{-} \text{cl } F : F \in \mathcal{F}\}$. A grill Ω on X is said to θ_S -converge to a point x of X, if to each $U \in \text{SO}(x)$, there corresponds some $G \in \Omega$ with $G \subseteq \text{cl } U$. A set A in a space X is said to be S-closed relative to X [7] if for every cover \mathcal{U} of A by semi-open sets of X, there exists a finite subfamily \mathcal{U}_0 of \mathcal{U} such that $A \subseteq \cup \{\text{cl } U : U \in \mathcal{U}_0\}$. If, in addition, A = X, then X is called an S-closed space [11].

2. Main theorem and associated results. We begin by introducing *S*-cluster set of a function and of a multifunction between two topological spaces.

DEFINITION 2.1. Let $F : X \to Y$ be a multifunction and $x \in X$. Then the *S*-cluster set of *F* at *x*, denoted by S(F, x), is defined to be the set $\cap \{\theta - \operatorname{cl} F(\operatorname{cl} U) : U \in \operatorname{SO}(x)\}$. Similarly, for any function $f : X \to Y$, the *S*-cluster set S(f, x) of f at x is given by $\cap \{\theta - \operatorname{cl} f(\operatorname{cl} U) : U \in \operatorname{SO}(x)\}$.

In the next theorem, we characterize the *S*-cluster sets of functions between topological spaces.

THEOREM 2.2. For any function $f : X \to Y$, the following statements are equivalent. (a) $y \in S(f, x)$.

(b) The filterbase $f^{-1}(\operatorname{cl} \tau(y))\theta_S$ -adheres at x.

(c) There is a grill Ω on X such that $\Omega \theta_s$ -converges to x and $y \in \cap \{\theta \text{-cl } f(G) : G \in \Omega\}$.

PROOF. (a)=>(b). $y \in S(f,x) \Rightarrow$ for each $W \in SO(x)$ and each $V \in \tau(y)$, $cl V \cap f(cl W) \neq \emptyset \Rightarrow$ for each $W \in SO(x)$ and each $V \in \tau(y)$, $f^{-1}(cl V) \cap cl W \neq \emptyset$. This ensures that the collection $\{f^{-1}(cl V) : V \in \tau(y)\}$ (which can easily be seen to be a filterbase on X) θ_S -adheres at x.

(b) \Rightarrow (c). Let \mathcal{F} be the filter generated by the filterbase $f^{-1}(\operatorname{cl} \tau(\gamma))$. Then $\Omega = \{G \subseteq X : G \cap F \neq \emptyset$, for each $F \in \mathcal{F}\}$ is a grill on *X*. By the hypothesis, for each $U \in \operatorname{SO}(x)$ and each $V \in \tau(\gamma)$, $\operatorname{cl} U \cap f^{-1}(\operatorname{cl} V) \neq \emptyset$. Hence, $F \cap \operatorname{cl} U \neq \emptyset$ for each $F \in \mathcal{F}$ and each $U \in \operatorname{SO}(x)$. Consequently, $\operatorname{cl} U \in \Omega$ for all $U \in \operatorname{SO}(x)$, which proves that $\Omega \theta_s$ -converges to *x*. Now, the definition of Ω yields that $f(G) \cap \operatorname{cl} W \neq \emptyset$ for all $W \in \tau(\gamma)$ and all $G \in \Omega$, i.e., $\gamma \in \theta$ -cl f(G) for all $G \in \Omega$. Hence, $\gamma \in \cap \{\theta$ -cl $f(G) : G \in \Omega\}$.

(c) \Rightarrow (a). Let Ω be a grill on X such that $\Omega \theta_s$ -converges to x, and $y \in \cap \{\theta \text{-cl } f(G) : G \in \Omega\}$. Then $\{\text{cl } U : U \in \text{SO}(x)\} \subseteq \Omega$ and $y \in \theta \text{-cl } f(G)$ for each $G \in \Omega$. Hence, in particular, $y \in \theta \text{-cl } f(\text{cl } U)$ for all $U \in \text{SO}(x)$. So, $y \in \cap \{\theta \text{-cl } f(\text{cl } U) : U \in \text{SO}(x)\} = S(f, x)$.

In what follows, we show that *S*-cluster sets of a function may be used to ascertain the Hausdorffness of the codomain space.

THEOREM 2.3. Let $f : X \to Y$ be a function on a topological space X onto a topological space Y. Then Y is Hausdorff if S(f, x) is degenerate for each $x \in X$.

PROOF. Let $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. As f is a surjection, there are $x_1, x_2 \in X$ such that $f(x_i) = y_i$ for i = 1, 2. Now, since S(f, x) is degenerate for each $x \in X$, $y_2 = f(x_2) \notin S(f, x_1)$. Thus, there are $V \in \tau(y_2)$ and $U \in SO(x_1)$ such that $cl V \cap f(cl U) = f(cl U)$

 \emptyset , i.e., $f(\operatorname{cl} U) \subseteq Y - \operatorname{cl} V$. Then the open sets $Y - \operatorname{cl} V$ and V strongly separate y_1 and y_2 in Y, which proves that Y is Hausdorff.

REMARK 2.4. We note that the converse of the above theorem is false. For example, consider the identity map $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$, where τ and σ , respectively, denote the cofinite topology and the usual topology on the set \mathbb{R} of real numbers. Then $S(f, x) = \mathbb{R}$, for each $x \in \mathbb{R}$, though (\mathbb{R}, σ) is a T_5 -space.

In order to obtain the converse, we introduce the following class of functions.

DEFINITION 2.5. A function $f : X \to Y$ is called θ_s -irresolute on X if for each $x \in X$ and each semi-open set V containing f(x), there is a semi-open set U containing x such that $f(\operatorname{cl} U) \subseteq V$.

THEOREM 2.6. Let $f : X \to Y$ be a θ_s -irresolute function with Y a Hausdorff space. Then S(f, x) is degenerate for each $x \in X$.

PROOF. Let $x \in X$. As f is θ_s -irresolute on X, for any $V \in SO(f(x))$, there is $U \in SO(x)$ such that $f(\operatorname{cl} U) \subseteq V$. Then $S(f, x) = \cap \{\theta - \operatorname{cl} f(\operatorname{cl} U) : U \in SO(x)\} \subseteq \cap \{\theta - \operatorname{cl} V : V \in SO(f(x))\}$. Let $y \in Y$ with $y \neq f(x)$. As Y is Hausdorff, there are disjoint open sets U, W with $y \in U$, $f(x) \in W$. Obviously, as $U \cap \operatorname{cl} W = \emptyset$, $y \notin \operatorname{cl} W = \theta - \operatorname{cl} W$. As $W \in \tau(f(x)) \subseteq SO(f(x))$, $y \notin \cap \{\theta - \operatorname{cl} V : V \in SO(f(x))\}$ and hence $y \notin S(f, x)$. Thus, $S(f, x) = \{f(x)\}$.

Combining the last two results, we get the following characterization for the Hausdorffness of the codomain space of a kind of function in terms of the degeneracy of its *S*-cluster set.

COROLLARY 2.7. Let $f : X \to Y$ be a θ_s -irresolute function on X onto Y. Then the space Y is Hausdorff if and only if S(f, x) is degenerate for each x of X.

We have just seen that degeneracy of the *S*-cluster set of an arbitrary function is a sufficient condition for the Hausdorffness of the codomain space. We thus like to examine some other situations when the *S*-cluster sets are degenerate, thereby ensuring the Hausdorffness of the codomain space of the function concerned. To this end, we recall that a topological space (X, τ) is almost regular [10] if for every regular closed set *A* in *X* and for each $x \notin A$, there exist disjoint open sets *U* and *V* such that $x \in U$ and $A \subseteq V$. It is known that in an almost regular space *X*, θ -cl *A* is θ -closed for each $A \subseteq X$. A function $f : X \to Y$ carrying θ -closed sets of *X* into θ -closed sets of *Y* is called a θ -closed function [2].

THEOREM 2.8. Let $f : X \to Y$ be a θ -closed map from an almost regular space into a space Y. If $f^{-1}(y)$ is θ -closed in X for all $y \in Y$, then S(f,x) is degenerate for each $x \in X$.

PROOF. We have $S(f,x) = \cap \{\theta \text{-cl } f(\operatorname{cl } U) : U \in \operatorname{SO}(x)\} \subseteq \cap \{\theta \text{-cl } f(\theta \text{-cl } U) : U \in \operatorname{SO}(x)\}$. As *X* is almost regular, $\theta \text{-cl } U$ is $\theta \text{-closed}$ for all $U \in \operatorname{SO}(x)$. Now, since *f* is a $\theta \text{-closed}$ map, $\theta \text{-cl} f(\theta \text{-cl } U) = f(\theta \text{-cl } U)$ for each $U \in \operatorname{SO}(x)$. Thus, $S(f,x) \subseteq \cap \{f(\theta \text{-cl } U) : U \in \operatorname{SO}(x)\}$. Now, let $y \in Y$ such that $y \neq f(x)$. Then since $f^{-1}(y)$ is $\theta \text{-closed}$ and $x \notin f^{-1}(y)$, there is some $P \in \tau(x)$ such that $\operatorname{cl} P \cap f^{-1}(y) = \emptyset$. So,

 $y \notin f(\operatorname{cl} P) = f(\theta \operatorname{-cl} P)$ (as *P* is an open set) and, hence, $y \notin \cap \{f(\theta \operatorname{-cl} U) : U \in \operatorname{SO}(x)\}$. In view of what we have deduced above, we conclude that $y \notin S(f,x)$, which proves that S(f,x) is degenerate.

THEOREM 2.9. Let $f : X \to X$ be a θ -closed injection on an almost regular Hausdorff space X into Y. Then S(f, x) is degenerate for each $x \in X$.

PROOF. As *X* is almost regular and *f* is a θ -closed map, we have θ -cl $f(\theta$ -cl $U) = f(\theta$ -clU) for any $U \in SO(x)$ and, hence,

$$S(f,x) = \cap \{\theta - \operatorname{cl} f(\operatorname{cl} U) : U \in \operatorname{SO}(x)\} \subseteq \cap \{\theta - \operatorname{cl} f(\theta - \operatorname{cl} U) : U \in \operatorname{SO}(x)\}$$

= \cap \{f(\theta - \operatorname{cl} U) : U \in \SO(x)\}. (2.1)

For $x, x_1 \in X$ with $x \neq x_1, f(x) \neq f(x_1)$ as f is injective. By the Hausdorffness of X, there are disjoint open sets U, V in X with $x \in U, x_1 \in V$. Obviously, $U \cap \operatorname{cl} V = \emptyset$. SO, $x_1 \notin \theta$ -cl U and hence $f(x_1) \notin f(\theta$ -cl U). Since $U \in \tau(x) \subseteq \operatorname{SO}(x)$, equation (2.1) yields $f(x_1) \notin S(f, x)$. Thus, S(f, x) is degenerate for each $x \in X$.

The above theorem is equivalent to the following apparently weaker result when *X* is regular.

THEOREM 2.10. If $f : X \to Y$ is a θ -closed injection on a T_3 space X into a space Y, then S(f, x) is degenerate for each $x \in X$.

PROOF. It is known that in a regular space X, θ -cl U =cl U for any $U \subseteq X$. Since X is T_3 and f is a θ -closed injection, $\{f(x)\} \subseteq S(f, x) = \cap\{f(\text{cl } U) : U \in SO(x)\} \subseteq \cap\{f(\text{cl } U) : U \in \tau(x)\} = \{f(x)\}.$

Note that the above result is indeed equivalent to that of Theorem 2.9 follows from the following considerations: for any subset *A* of a topological space (X, τ) , θ -closure of *A* in (X, τ) is the same as that in (X, τ_s) , where (X, τ_s) denotes the semiregularization space [9] of (X, τ) . Moreover, it is known [9] that (X, τ) is Hausdorff (almost regular) if and only if (X, τ_s) is Hausdorff (respectively, regular). Now, since SO $(X, \tau_s) \subseteq$ SO (X, τ) , it follows that $S(f, x) = S(f : (X, \tau) \to Y, x) \subseteq S(f : (X, \tau_s) \to Y, x)$. So, S(f, x) is degenerate for each $x \in X$ if (X, τ) is an almost regular Hausdorff space and $f : X \to Y$ is a θ -closed injection.

A sort of degeneracy condition for the *S*-cluster set of a multifunction with θ -closed graph is now obtained.

THEOREM 2.11. For a multifunction $F : X \to Y$, if F has a θ -closed graph, then S(F, x) = F(x).

PROOF. For any $y \in S(F, x)$, cl $W \cap F(\operatorname{cl} U) \neq \emptyset$ and hence $F^-(\operatorname{cl} W) \cap \operatorname{cl} U \neq \emptyset$ for each $U \in \operatorname{SO}(x)$ and each $W \in \tau(y)$, where, as usual, $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$ for any subset *B* of *Y*. Then for any basic open set $M \times N$ in $X \times Y$ containing $(x, y), F^-(\operatorname{cl} N) \cap \operatorname{cl} M \neq \emptyset$. So, $(\operatorname{cl} M \times \operatorname{cl} N) \cap G(F) \neq \emptyset$ and hence $\operatorname{cl}(M \times N) \cap G(F) \neq \emptyset$, where $G(F) = \{(x, y) \in X \times Y : y \in F(x)\}$ denotes the graph of *F*. So, $(x, y) \in \theta$ -clG(F) = G(F) (as G(F) is θ -closed). Hence, $(x, y) \in [G(F) \cap (\{x\} \times Y)]$ so that $y \in p_2[(\{x\} \times Y) \cap G(F)] = F(x)$, where $p_2 : X \times Y \to Y$ is the second projection map.

600

It is obvious that $F(x) \subseteq S(F,x)$ for each $x \in X$. Hence, S(F,x) = F(x) holds for all $x \in X$.

The next result serves as a partial converse of the above one.

THEOREM 2.12. For a multifunction $F : X \to Y$, if S(F, x) = F(x) for each $x \in X$, then the graph G(F) of F is θ -semiclosed (and hence semi-closed).

PROOF. Let $(x, y) \in X \times Y - G(F)$. Now, $y \notin F(x) = S(F, x) \Rightarrow$ there exist some $W \in SO(x)$ and some $V \in \tau(y)$ such that $\operatorname{cl} V \cap F(\operatorname{cl} W) = \emptyset \Rightarrow (\operatorname{cl} W \times \operatorname{cl} V) \cap G(F) = \emptyset \Rightarrow \operatorname{cl} (W \times V) \cap G(F) = \emptyset$. As $W \times V$ is a semi-open set in $X \times Y$ containing (x, y), $(x, y) \notin \theta_s$ -cl G(F). Hence, G(F) is θ -semi-closed.

We now turn our attention to the characterizations of *S*-closedness via *S*-cluster sets. We need the following lemmas for this purpose.

LEMMA 2.13. A set A in a topological space X is an S-closed set relative to X if and only if for every filterbase \mathcal{F} on X with $F \cap C \neq \emptyset$ for all $F \in \mathcal{F}$ and for all $C \in SO(A)$, $A \cap \theta_S$ -ad $\mathcal{F} \neq \emptyset$.

PROOF. Let *A* be an *S*-closed set relative to *X* and let \mathscr{F} be a filterbase on *X* with the stated property. If possible, suppose that $A \cap \theta_S$ -ad $\mathscr{F} = \emptyset$. Then for each $x \in A$, there is a semi-open set V(x) in *X* containing *x* such that $\operatorname{cl}(V(x)) \cap F(x) = \emptyset$ for some $F(x) \in \mathscr{F}$. Now, $\{V(x) : x \in A\}$ is a cover of *A* by semi-open sets of *X*. By the *S*-closedness of *A* relative to *X*, there is a finite subset A^* of *A* such that $A \subseteq \bigcup \{\operatorname{cl} V(x) : x \in A^*\}$. Choose $F^* \in \mathscr{F}$ such that $F^* \subseteq \cap \{F(x) : x \in A^*\}$. Then $F^* \cap (\bigcup \{\operatorname{cl} V(x) : x \in A^*\}) = \emptyset$, i.e., $F^* \cap \operatorname{cl}(\bigcup \{V(x) : x \in A^*\}) = \emptyset$. Now, as $\cup \{V(x) : x \in A^*\}$ is a semi-open set in $X, \cup \{\operatorname{cl} V(x) : x \in A^*\} \in \operatorname{SO}(A)$, a contradiction.

Conversely, assume that *A* is not *S*-closed relative to *X*. Then for some cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of *A* by semi-open sets of *X*, $A \not\subset \bigcup_{\alpha \in \Lambda_0} \operatorname{cl} U_{\alpha}$ for each finite subset Λ_0 of Λ . So, $\mathcal{F} = \{A - \bigcup_{\alpha \in \Lambda_0} \operatorname{cl} U_{\alpha} : \Lambda_0$ is a finite subset of $\Lambda\}$ is filterbase on *X*, with $F \cap C \neq \emptyset$, for each $F \in \mathcal{F}$ and each $C \in \operatorname{SO}(A)$. But $A \cap \theta_S$ -ad $\mathcal{F} = \emptyset$.

LEMMA 2.14 [8, 11]. (a) A topological space X is S-closed if and only if every filterbase θ_S -adheres in X.

(b) Any θ -semiclosed subset of an S-closed space X is S-closed relative to X.

DEFINITION 2.15. For a function or a multifunction $F : X \to Y$ and a set $A \subseteq X$, the notation S(F,A) stands for the set $\cup \{S(F,x) : x \in A\}$.

THEOREM 2.16. For any topological space *X*, the following statements are equivalent.

(a) X is S-closed.

(b) $S(F,A) \supseteq \cap \{\theta \text{-cl} F(U) : U \in SO(A)\}$ for each θ -semiclosed subset A of X, for each topological space Y and each multifunction $F : X \to Y$.

(c) $S(F,A) \supseteq \cap \{\theta_s \text{-cl } F(U) : U \in SO(A)\}$ for each θ -semiclosed subset A of X, for each topological space Y and each multifunction $F : X \to Y$.

PROOF. (a) \Rightarrow (b). Let *A* be any θ -semiclosed subset of *X*, where *X* is *S*-closed. Then by Lemma 2.14(b), *A* is *S*-closed relative to *X*. Now, let $z \in \cap \{\theta \text{-} \operatorname{cl} F(W) : W \in \operatorname{SO}(A)\}$.

Then for all $W \in \tau(z)$ and for each $U \in SO(A)$, cl $W \cap F(U) \neq \emptyset$, i.e., $F^-(cl W) \cap U \neq \emptyset$. Thus, $\mathcal{F} = \{F^-(cl W) : W \in \tau(z)\}$ is clearly a filterbase on X, satisfying the condition of Lemma 2.13. Hence, $x \in A \cap \theta_S$ -ad \mathcal{F} . Then $x \in A$, and for all $U \in SO(x)$ and each $W \in \tau(z)$, cl $U \cap F^-(cl W) \neq \emptyset$, i.e., $F(cl U) \cap cl W \neq \emptyset \Rightarrow z \in S(F, x) \subseteq S(F, A)$. (b) \Longrightarrow (c). Obvious.

 $(c) \Rightarrow (a)$. In order to show that X is S-closed, it is enough to show, by virtue of Lemma 2.14(a), that every filterbase \mathcal{F} on $X \theta_S$ -adheres at some $x \in X$. Let \mathcal{F} be a filterbase on X. Take $y_0 \notin X$, and construct $Y = X \cup \{y_0\}$. Define, $\tau_Y = \{U \subseteq Y : y_0 \notin U \in Y\}$ $U \} \cup \{U \subseteq Y : y_0 \in U, F \subseteq U \text{ for some } F \in \mathcal{F}\}$. Then τ_Y is a topology on Y. Consider the function $\alpha : X \to Y$ by $\alpha(x) = x$. In order to avoid possible confusion, let us denote the closure and θ_s -closure of a set *A* in *X*(*Y*), respectively, by cl_{*X*}*A*(cl_{*Y*}*A*) and θ_s -cl_XA (respectively, θ_s -cl_YA). As X is θ -semiclosed in X, by the given condition, $S(\alpha, X) \supseteq \cap \{\theta_s \text{-} \operatorname{cl}_Y \alpha(U) : U \in \operatorname{SO}(X)\} = \cap \{\theta_s \text{-} \operatorname{cl}_Y U : U \in \operatorname{SO}(X)\} = \theta_s \text{-} \operatorname{cl}_Y X.$ We consider $y_0 \in Y$ and $P_0 \in SO(y_0)$. There is some $W \in \tau_Y$ such that $W \subseteq P_0 \subseteq cl_Y W$. If $y_0 \notin W$, then $W \subseteq X$ and hence $\operatorname{cl}_Y W \cap X \neq \emptyset$. If on the other hand, $y_0 \in W$, then there is some $F \in \mathcal{F}$ such that $F \subseteq W$, i.e., $cl_Y F \subseteq cl_Y W$. So, $X \cap cl_Y W \neq \emptyset$. So, in any case, $X \cap \operatorname{cl}_Y W \neq \emptyset$ and, consequently, as $\operatorname{cl}_Y W = \operatorname{cl}_Y P_0$, $X \cap \operatorname{cl}_Y P_0 \neq \emptyset$. Thus, $y_0 \in \theta_s$ -cl_{*Y*} *X*. So, $y_0 \in S(\alpha, x)$ for some $x \in X$. Consider any $V \in SO(x)$ and $F \in \mathcal{F}$. Then $F \cup \{y_0\} \in \tau_Y$. Again, $Y - (F \cup \{y_0\})$ is a subset of *Y* not containing y_0 . Thus, $Y - (F \cup \{y_0\})$ is open in Y, which proves that $cl_Y(F \cup \{y_0\}) = F \cup \{y_0\}$. Now, $\operatorname{cl}_X V \cap F = \alpha(\operatorname{cl}_X V) \cap \operatorname{cl}_Y (F \cup \{\gamma_0\}) \neq \emptyset$. Thus, $x \in \theta_S$ -ad \mathcal{F} .

ACKNOWLEDGEMENT. The authors are grateful to the referee for his sincere evaluation and some constructive comments which improved the paper considerably.

REFERENCES

- [1] E. F. Collingwood and A. J. Lohwater, *The Theory of Cluster Sets*, Cambridge University Press, Cambridge, 1966. MR 38#325. Zbl 149.03003.
- [2] A. J. D'Aristotile, On θ-perfect mappings, Boll. Un. Mat. Ital. (4) 9 (1974), 655–661. MR 51#1710.
- [3] T. R. Hamlett, *Cluster sets in general topology*, J. London Math. Soc. (2) **12** (1975/76), no. 2, 192-198. MR 52#9148. Zbl 317.54010.
- [4] J. E. Joseph, *Multifunctions and cluster sets*, Proc. Amer. Math. Soc. 74 (1979), no. 2, 329– 337. MR 80f:54011. Zbl 405.54014.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 54-61. MR 29#4025. Zbl 113.16304.
- [6] M. N. Mukherjee and S. Raychaudhuri, A new type of cluster sets and its applications, Tamkang J. Math. 26 (1995), no. 4, 327–336. MR 97g:54033. Zbl 869.54022.
- [7] T. Noiri, On S-closed spaces, Ann. Soc. Sci. Bruxelles Sér. I 91 (1977), no. 4, 189–194. MR 57#13851. Zbl 408.54017.
- [8] _____, On S-closed spaces and S-perfect functions, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 120 (1986), no. 3-4, 71-79 (1987). MR 89g:54058. Zbl 794.54028.
- J. R. Porter and R. G. Woods, *Extensions and Absolutes of Hausdorff Spaces*, Springer-Verlag, New York, 1988. MR 89b:54003. Zbl 652.54016.
- [10] M. K. Singal and S. Prabha Arya, On almost-regular spaces, Glasnik Mat. Ser. III 4 (24) (1969), 89–99. MR 39#4804. Zbl 169.24902.
- T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335–338. MR 54#13849.
 Zbl 339.54020.

- W. J. Thron, *Proximity structures and grills*, Math. Ann. 206 (1973), 35-62. MR 49#1483. Zbl 256.54015.
- [13] N. V. Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. **78** (1968), 103–118.
- [14] J. D. Weston, Some theorems on cluster sets, J. London Math. Soc. 33 (1958), 435-441. MR 20#7109. Zbl 089.17501.
- W. H. Young, La Syme'tric de structure des fonctions de variables reelles, Bull. Sci. Math. 52 (1928), no. 2, 265–280.

MUNKHERJEE AND DEBRAY: DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA, 35, BALLYGUNGE CIRCULAR ROAD, CALCUTTA-700 019, INDIA