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Abstract. The linear stability of plane Poiseuille flow at low Reynolds number of a con-
ducting Oldroyd fluid in the presence of a transverse magnetic field has been investigated
numerically. Spectral tau method with expansions in Chebyshev polynomials is used to
solve the Orr-Sommerfeld equation. It is found that viscoelastic parameters have destabi-
lizing effect and magnetic field has a stabilizing effect in the field of flow. But no instabil-
ities are found.
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1. Introduction. TheOrr-Sommerfeld equation has been studied in details for small
values of Reynolds number by Southwell and Chitty [9] for the particular case of plane
Couette flow. A more general discussion was given later by Pekeris [8] who also gave
detailed results for both plane Couette and plane Poiseuille flow. The problem has
been considered again independently by Birikh, Gershuni, and Zhuokhovitskii [1]. Ho
and Denn [2] studied low Reynolds number stability for plane Poiseuille flow by using
a numerical scheme based on the shooting method. They found that at low Reynolds
numbers no instabilities occur, but the numerical method led to artificial instabilities.
Lee and Finlayson [3] used a similar numerical method to study both Poiseuille and
Couette flow, and confirmed the absence of instabilities at low Reynolds number. In
this paper, we study the linear stability of plane Poiseuille flow at small Reynolds num-
ber of a conducting Oldroyd fluid in the presence of magnetic field. The fourth-order
Orr-Sommerfeld equation governing the stability analysis is solved numerically by
spectral taumethodwith expansions in Chebyshev’s polynomials following Orszag [7].
We employ Mathematica (Windows Version) in all our numerical computations to find
eigenvalues.

2. Basic equations. Oldroyd model for viscoelastic fluid is described by the consti-
tutive equations (Oldroyd [5, 6])

T∗ij =−Πδij+sij,
(
1+λ1 ddt

)
sij = 2η

(
1+λ2 ddt

)
eij, eij = 12 (vi,j+vj,i), (2.1)

where T∗ij , sij , eij , Π, η, λ1, λ2 (λ1 > λ2 > 0) are, respectively, total stress tensor,
deviatoric stress tensor, rate of strain tensor, pressure, coefficient of viscosity, stress
relaxation time, and strain retardation time, respectively.
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The stress equation of motion and the induction equation are

ρ(vi,t+vi,jvj)=−Π,i+sij,j , (2.2)

H∗i,t+vkH∗i,k =H∗k vi,k+
(
1
µσ

)
H∗i,kk, (2.3)

where H∗ is the magnetic field intensity.
Let 2l be the distance between the parallel plates. The origin is taken at a point

midway between the plates. The steady primary flow is taken parallel to the x-axis
with y-axis normal to the plates. We apply a transverse magnetic field perpendicular
to the plates in the direction of y-axis. Then the velocity field vi and the magnetic
field Hi are given by

(U,0,0) and (H∗1 ,H
∗
0 ,0). (2.4)

Then the equation of motion (2.2) becomes

ρ
(
vi,t+vkvi,k

)=−Π∗,i+sik,k+µH∗k H∗i,k, (2.5)

where Π∗ =Π+(µH∗2/2).
We use the following nondimensional quantities:

x = x
l
, y = y

l
, vi = viU0 , t = tU0

l
, Π∗ = Π∗

pU20
,

sij = sij
ρU20

, H∗i =
H∗i
H∗0
, α1 = λ1U0l , α2 = λ2U0l ,

(2.6)

where the central line velocity is taken as the characteristic velocity U0.
Dropping the bar over the symbols, (2.3) and (2.5) become

vi,t+vkvi,k =−Π∗,i+sik,k+SH∗k H∗i,k,

H∗i,t+vkH∗i,k =H∗k vi,k+
(
1
Rm

)
H∗i,kk,

(2.7)

where R = ρU0l/η is the Reynolds number, Rm = µσlU0 is the magnetic Reynolds
number, and S = µH∗20 /ρU20 is the magnetic pressure number.

3. Solution of the basic flow. The basic flow is steady and unidirectional and is
given by

U(y)= coshM−coshMy
coshM−1 , (3.1)

where M = µlH∗0
√
σ/η0 is the Hartmann number and the induced magnetic field is

H1(y)= Rm sinhMy−y sinhMM(coshM−1) . (3.2)
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4. Stability analysis. Following the usual terminology of linear stability analysis,
let the disturbed flow be written as a steady basic flow plus a time dependent distur-
bance, assumed small,

vi =Ui+ui, Π∗ = P∗+p∗, sij = Tij+τij, H∗i =Hi+hi. (4.1)

In our stability analysis we assume the validity of Squire’s theorem, namely the 2-
dimensional disturbances are more unstable than 3-dimensional ones, and therefore
consider a 2-dimensional disturbance.
Now, we assume that the disturbances are periodic in the x-direction and write

uj = ûj(y)exp
(
ik(x−ct)), hj = ĥj(y)exp

(
ik(x−ct)),

p∗ = p̂∗(y)exp(ik(x−ct)), τij = τ̂ij(y)exp
(
ik(x−ct)), (4.2)

where k is the wave number of the disturbances, c = cr+ici is the complex wave speed
and quantities with the carret (

∧
) are complex amplitudes. The motion is stable or

unstable according as ci < 0 or ci > 0.
Writing (2.2) in component form and substituting the stress components in equa-

tions of motion and induction and then, using (3.2) we get the three stress equations.
Substituting these stress amplitudes in the two components of the equation of mo-

tion, after a tedious algebra we have,

ikRω1
[−(U−c)v′ +vU ′]

= k2Rω1p̂∗−
[
ω2

(
v′′′ −k2v′)+(2ω′

1−ω′
2

)
v′′ +(ω′′

1 +ω′′
2

)
v′ +2ω′

1

(
ω′
1−ω′

2

)
v′
]

+k2ω′
2v+

(
ω′
1

ω1

)[
ω2

(
v′′−k2v)+2(ω′

1−ω′
2

)
v′ +(ω′′

1 −ω′′
2

)
v+2vω′

1

(
ω′
1−ω′

2

)]
+2(ω′′

1 /ω1
)
ω2v′ −

(
ω′′′
1 −ω′′′

2 )v+2
(
ω′′
1 /ω1

)(
ω′
1−ω′

2

)
v

−SRω1
(
ikH1ĥ2+ ĥ′′2 −ikĥ2H′1

)
,

(4.3)

ikRω1(U−c)v =−ω1Rp̂∗′+ω2
(
v′′ −k2v)+2(ω′

1−ω′
2)v

′ +(ω′′
1 −ω′′

2

)
v

+2vω′
1

(
ω′
1−ω′

2

)+SRω1
(
ikH1ĥ2+ ĥ′2

)
,

(4.4)

where (′) denotes the derivative with respect to y and

ω1(y)= 1+ikα1(U−c), ω2(y)= 1+ikα2(U−c), (4.5)

û1 =u, û2 = v , also v′ = −iku by equation of continuity.
Eliminating p̂∗ from (4.3) and (4.4) and neglecting the terms of second order in α1

and α2, we get

ikRω1
[
(U−c)(v′′ −k2v)−vU ′′]
=ω2v′′′′ −2ω2k2v′′ +

[
ω2k4+

(
ω′′′′
1 −ω′′′′

2

)]
v

+SRω1
[
ikĥ2H′′1 −ikH1ĥ′′2 +ik3H1ĥ2+k2ĥ′2− ĥ′′′2

]
.

(4.6)
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The equation of induction becomes

ikĥ2(U−c)= ikH1v+v′ +
(
1
Rm

)(
ĥ′′2 −k2ĥ2

)
. (4.7)

A further simplification of (4.6) and (4.7) can be effected by the fact that for most
conducting fluids the ratio Rm/R = v/λ is extremely small (Lock [4]). We can thus
neglect all terms involving H1 in (4.6) and (4.7) and also the term ikĥ2(U−c) on the
left-hand side of (4.7). Then, we eliminate ĥ2 from these two equations and finally get
the fourth-order Orr-Sommerfeld equation for the present problem as

ω2v′′′′ +
(
M2ω1−2ω2k2

)
v′′ +(ω2k4+ω′′′′

1 −ω′′′′
2

)
v

−ikRω1
[
(U−c)(v′′ −k2v)−vU ′′]= 0. (4.8)

The boundary conditions are

v = v′ = 0 at y =±1. (4.9)

5. Numerical computation. To solve the Orr-Sommerfeld equation (4.8) “spectral
method” with expansions of velocity in terms of Chebyshev polynomials is used.
We write

v(y)=
∞∑
n=0
anTn(y), v′′(y)=

∞∑
n=0
a(2)n Tn(y), v′′′′(y)=

∞∑
n=0
a(4)n Tn(y), (5.1)

where

a(2)n =
(
1
qn

) ∞∑
p=n+2;2

p
(
p2−n2)ap, n > 0,

a(4)n =
(

1
24qn

) ∞∑
p=n+4;2

p
[
p2
(
p2−4)2−3n2p4+3n4p2−n2(n2−4)2]ap,

(5.2)

where q0 = 2 and qn = 1 for n> 0.
Again, we write the basic flow U(y) in terms of Chebyshev polynomials as

U(y)=
∞∑
m=0

bmTm(y) (5.3)

and its derivatives in the same way as (5.2).
Then after some involved calculations and using the identity

TnTm =
(
Tn+m+Tn−m

)
2

, Tk = T−k for k > 0, (5.4)
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we get

N∑
n=0



[(
A1
qn

) N∑
p=n+4;2

p
(
p2
(
p2−4)2−3n2p4+3n4p2−n2(n2−4)2)ap

+
(
A2
qn

) N∑
p=n+2;2

p
(
p2−n2)ap+A3an

]
Tn

+
(
A4
qn

) N∑
m=0;2

bm


 N∑
p=n+4;2

p
(
p2
(
p2−4)2−3n2p4

+3n4p2−n2(n2−4)2)ap

(Tn+m+Tn−m)

2

+
(
A5
qn

) N∑
m=0;2

bm


 N∑
p=n+2;2

p
(
p2−n2)ap


(Tn+m+Tn−m)

2

+A6an
N∑

m=0;2
bm

(
Tn+m+Tn−m

)
2

+A7
N∑

m=0;2

(
1
qm

) N∑
p=m+4;2

p
(
p2
(
p2−4)2−3n2p4

+3n4p2−n2(n2−4)2)bp
(
Tn+m+Tn−m

)
2

+A8
N∑

m=0;2

(
1
qm

) N∑
p=m+2;2

p
(
p2−n2)bp


 (Tn+m+Tn−m)

2

+A9
N∑

m=0;2

(
gm
qm

) N∑
p=m+2;2

p
(
p2−n2)bp


 (Tn+m+Tn−m)

2

−A9
N∑

m=0;2

(
k2gm+dm

)(Tn+m+Tn−m)
2


= 0,

(5.5)

where

UU ′′ =
∞∑
m=0

dmTm(y), U2 =
∞∑
m=0

gmTm(y), (5.6)

and

A1 = (1−ikα2c)24
,

A2 =M2−2k2+ikRc+k2Rα1c2−ikM2α1c+2ik3α2c,
A3 = k4−k4Rα1c2−ik3Rc−ik5α2c,

A4 = ikα224
,

A5 = ik
(
M2α1−R−2k2α2

)−2k2Rα1c,
A6 = ik3R+ik5α2+2k4Rα1c,
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A7 = ik
(
α1−α2

)
24

,

A8 = ikR+k2Rα1c,
A9 = k2Rα1. (5.7)

By analysing the possible combination of Tn, Tn+m, Tn−m, we can write (5.5) in a
simple form as

N∑
n=0
Gn
(
a0,a1,a2, . . . ,aN,R,k,c,α1,α2,M

)
Tn = 0. (5.8)

Equating different coefficients of Tn to zero, we get a system of N+1 linear simul-
taneous equations involving the N+1 unknown coefficients a0,a1,a2, . . . ,aN , which
can be written in the matrix form as




Ḡ0
Ḡ1
Ḡ2
...

ḠN







a0
a1
a2
...

aN



= 0 or Ḡ(N+1)×(N+1)A(N+1)×1 = 0, (5.9)

where ḠN contains R, c, α1, α2, k, and M .
The system of equations has a nontrivial solution if

det
(
Ḡ(N+1)×(N+1)

)= 0. (5.10)

Using the following properties of Chebyshev polynomials:

Tn(±1)= (±1)n and T ′n(±1)= (±1)n−1n2, (5.11)

the boundary conditions can be written as

N∑
n=0
an = 0,

N∑
n=0
(−1)nan = 0,

N∑
n=0
n2an = 0,

N∑
n=0
n2(−1)n−1an = 0.

(5.12)

Following spectral method (Orszag [7]), we replace the last four rows in Ḡ by these
four boundary conditions (5.12). We use computer software to evaluate the deter-
minant Ḡ and employ the relation (5.10) to find the eigenvalue c = cr + ici for the
problem. We take N = 30, that is, we have computed a 31× 31 matrix so that the
eigenvalues are correct up to six places of decimals (Orszag [7, page 697]).

6. Discussion. To find the eigenvalues, we apply the relation (5.10) and use the IBM
software Mathematica (Windows Version) to find the eigenvalues.
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Table 6.1. Eigenvalues with lowest imaginary part for k= 1.0, α1 = 0.0, and
α2 = 0.0.

R cr ci
10000 1.64959 +0.02257
200 0.664695 −0.03244
100 0.901812 −0.09284
10 0.988223 −0.92691
1 0.989536 −9.32212

Table 6.2. Eigenvalues with lowest imaginary part for R = 1.0, α1 = 0.02,
and α2 = 0.01.

k cr ci
1 0.989381 −10.60120
2 0.954316 −5.91207
3 0.932722 −6.0101016
4 −1.81369 −7.51125
5 −3.1986 −6.43929
7 −4.05393 −5.44365
10 −4.24607 −5.08422
20 −4.16816 −4.539
30 0.864829 −4.03067

Nonmagnetic case (M = 0). Orszag [7] studied extensively this problem for a
Newtonian fluid. We begin with the one given by Orszag [7] for Reynolds number
R = 10000, and wave number k = 1. Results displayed in Table 6.1 show that this
eigenvalue is highly stable at low-Reynolds number, as noted by the negative value of
the imaginary part ci of the eigenvalue and its large absolute value.
When α1 = 0.02 and α2 = 0.01 the eigenvalues with smallest imaginary parts are

shown in Table 6.2 for different values of wave number k with fixed R = 1. From
Table 6.2 we see that the magnitude of imaginary part of the eigenvalue (|ci|) de-
creases with the increase of wave number k up to a certain value of k = 2 and then
it increases up to a certain value of k (here k = 4). Thereafter the value of |ci| again
decreases gradually with k. The value of ci remain negative and is nowhere near zero.
Thus the problem is stable.
When α1 = 0.2 and α2 = 0.1 for fixed R = 1.0, the results are tabulated in Table 6.3.

Comparing these results with the values shown in Table 6.2, we see that the change in
ci becomes quite small near k= 5. We also observe that the value of |ci| decreases with
the increase of viscoelastic parameters. This shows that the presence of viscoelastic
parameters have destabilizing effect.
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Table 6.3. Eigenvalues with lowest imaginary part for R = 1.0, α1 = 0.2, and
α2 = 0.1.

k cr ci
1 5.91287 −4.82685
2 3.64626 −2.51653
4 2.8191 −1.89419
5 0.110322 −1.9288
7 0.179105 −1.35964
10 0.596842 −0.7665096
20 1.01726 −0.3395
30 0.194654 −0.108458

Table 6.4. Eigenvalues with lowest imaginary part for R = 1.0, α1 = 0.2,
α2 = 0.1, and M = 1.0.

k cr ci
1 5.88929 −4.44235
2 3.65236 −2.40604
4 2.83414 −1.87385
5 2.610322 −1.72964
7 0.137379 −1.5922
10 0.609962 −0.771475
20 1.04896 −0.356781
30 0.823551 −0.148213

Table 6.5. Eigenvalues with lowest imaginary part for R = 1.0, α1 = 0.2,
α2 = 0.1, and k= 10.0.

M cr ci
0.0 0.596842 −0.765096
1.0 0.609962 −0.771475
2.0 1.57649 −1.40931
3.0 1.52753 −1.42581

Hydromagnetic case. The eigenvalues with lowest imaginary parts are tabulated
in Table 6.4 for fixedR = 1,α1 = 0.2,α2 = 0.1, andM = 1.0 for different k. We see from
Table 6.4 that the absolute value of the imaginary part of the eigenvalue |ci| decreases
gradually with the increase of wave number k, but no oscillation is observed. Com-
paring the results with the results in Table 6.3, we see that after k = 7 the magnetic
field has a stabilizing effect.
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For different values of Hartmann number M the eigenvalues with lowest imaginary
parts in magnitude are shown in Table 6.5 with fixed R = 1.0, k= 10.0, α1 = 0.2, and
α2 = 0.1. We observe that |ci| increases with the increase ofM . Thus themagnetic field
has a stabilizing effect in the flow field. Hence, we conclude that the flow is stable.
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