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THERMOELASTIC WAVES WITHOUT ENERGY DISSIPATION
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Abstract. The linear theory of thermoelasticity without energy dissipation is employed
to study waves emanating from the boundary of a spherical cavity in a homogeneous and
isotropic unbounded thermoelastic body. The waves are supposed to be spherically sym-
metric and caused by a constant step in temperature applied to the stress-free boundary
of the cavity. Small-time solutions for the displacement, temperature, and stress fields are
obtained by using the Laplace transform technique. It is found that there exist two coupled
waves, of which one is predominantly elastic and the other is predominantly thermal, both
propagating with finite speeds but with no exponential attenuation. Exact expressions for
discontinuities in the field functions that occur at the wavefronts are computed and anal-
ysed. The results are compared with those obtained earlier in the contexts of some other
models of thermoelasticity.
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1. Introduction. Thermoelasticity theories that admit finite speeds for thermal sig-
nals have aroused much interest in the last three decades. In contrast to the conven-
tional coupled thermoelasticity theory based on a parabolic heat equation [1], which
predicts an infinite speed for the propagation of heat, these theories involve hyper-
bolic heat equations and are referred to as generalized thermoelasticity theories. For
details about the physical relevance of these theories and a review of the relevant
literature, see [2].
Recently, Green and Naghdi [14] formulated a new generalized thermoelasticity the-

ory by including the so-called “thermal-displacement gradient” among the indepen-
dent constitutive variables. An important characteristic feature of this theory, which
is not present in other thermoelasticity theories, is that this theory does not accom-
modate dissipation of thermal energy. In the context of the linearized version of this
theory, theorems on uniqueness of solutions have been established in [3, 6], boundary-
initiated waves in a half-space and in unbounded body with cylindrical cavity have
been studied in [4, 9, 10, 11], and plane harmonic waves and Rayleigh waves have
been studied in [5, 7, 12].
In this paper, we employ the theory formulated in [14] (hereafter referred to as

the GN-theory) to study spherically symmetric thermoelastic waves in a linear, ho-
mogeneous and isotropic unbounded solid body containing a spherical cavity. We
suppose that the waves are generated due to the application of a constant step in
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temperature on the boundary of the cavity which is held in a stress-free state. We em-
ploy the Laplace transform technique to analyse the problem. We restrict ourselves
to the derivation of small-time solutions for the field functions. We find that there
occur two coupled waves both propagating with finite speeds, of which one is pre-
dominantly elastic and the other is predominantly thermal, and that these waves do
not experience any attenuation. We further find that the displacement field is contin-
uous whereas the thermal and stress fields are discontinuous at both the wavefronts.
We obtain exact expressions for the discontinuities and make a brief analysis thereof.
The counterparts of our problem in the contexts of the uncoupled thermoelasticity

theory, the coupled thermoelasticity theory, the Green-Lindsay theory (GL-theory) [13]
and the Lord-Shulman theory (LS-theory) [15] have been considered in [16, 17, 18, 20],
respectively. At appropriate stages of our analysis, we make a comparison of our
results with those obtained in these works. This comparison reveals that, on the whole,
the predictions of the GN-theory (as obtained here) are qualitatively similar to those of
the LS-theory. More importantly, we notice that certain physically unrealistic features
inherent in the conventional coupled thermoelasticity theory and the GL-theory are
not present in the GN-theory.

2. Formulation of the problem. In the context of the GN-theory, the field equations
for a linear, homogeneous and isotropic thermoelastic solid body, in the absence of
body forces and heat sources, are as follows [14]:

µ∇2u+(λ+µ)∇div u−γ∇θ = ρü,

cθ̈+γT0 div ü= κ∗∇2θ. (2.1)

In these equations, u is the displacement vector; θ is the temperature-change above
a uniform reference temperature T0; ρ is the mass density; c is the specific heat; λ
and µ are the Lame’ constants; γ = (3λ+2µ)β∗, β∗ being the coefficient of volume
expansion; and κ∗ is a material constant characteristic of the theory.
The stress tensor T associated with u and θ is given by [14]

T= λ(div u)I+µ
(
∇u+∇uT

)
−γθI. (2.2)

In all the above equations, the direct vector/tensor notation [8] is employed. Also,
an over dot denotes partial derivative with respect to the time variable t. Some of our
symbols and the notation are slightly different from those employed in [14].
For spherically symmetric interactions, the displacement vector possesses only the

radial component u=u(r ,t), where r is the radial distance measured from the origin
(point of symmetry), and the stress tensor is determined by the radial stressσr and the
circumferential stress (hoop stress) σφ. In this case, equations (2.1) yield the following
governing equations for u and θ:

(λ+2µ)
[

∂
∂r

(
∂u
∂r
+ 2

r
u
)]
−γ

∂θ
∂r

= ρ
∂2u
∂t2

,

c
∂2θ
∂t2

+γT0
∂2

∂t2

(
∂
∂r
+ 2

r

)
u= κ∗

(
∂2

∂r 2
+ 2

r
∂
∂r

)
θ.

(2.3)
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Also, the relation (2.2) yields

σr = (λ+2µ)∂u
∂r
+2λu

r
−γθ,

σφ = λ
∂u
∂r
+2(λ+µ)

u
r
−γθ.

(2.4)

For a mathematical analysis, it is convenient to have (2.3) and (2.4) rewritten in
non-dimensional form. For this purpose, we consider the transformations

r ′ = r
L
, t′ = V

L
t, u′ = (λ+2µ)

LγT0
u,

θ′ = θ
T0

, σ ′
r =

σr

γT0
, σ ′

φ =
σφ

γT0
,

(2.5)

where L is a standard length and V is a standard speed. Using these transformations
in (2.3) and (2.4) and suppressing primes for simplicity in the notation, we obtain the
following equations/relations which are in non-dimensional form:

C2p

[
∂
∂r

(
∂u
∂r
+ 2

r
u
)
− ∂θ

∂r

]
= ∂2u

∂t2
,

C2T
(
∂2θ
∂r 2

+ 2
r

∂θ
∂r

)
= ∂2θ

∂t2
+ε

∂2

∂t2

(
∂u
∂r
+ 2

r
u
)
,

(2.6)

σr = ∂u
∂r
+2ηu

r
−θ, (2.7)

σφ = η
∂u
∂r
+(1+η)

u
r
−θ. (2.8)

Here,

C2P =
(λ+2µ)

ρV 2
, C2T =

κ∗

cV 2
, ε = γ2T0

c(λ+2µ) , η= λ
λ+2µ . (2.9)

We note that CP and CT respectively represent the non-dimensional speeds of purely
elastic dilatational wave and purely thermal wave, and ε is the usual thermoelastic
coupling factor.
The body being considered for our analysis here is an unbounded thermoelastic

solid with a spherical cavity. We choose the origin at the centre of the cavity and
denote the dimensionless radius of the cavity by a. If initially the body is at rest in
an undeformed state and has its temperature-change and temperature-rate equal to
zero, then the following initial conditions hold:

u= ∂u
∂t
= θ = ∂θ

∂t
= 0 at t = 0 for r ≥ a. (2.10)

If the thermoelastic interactions are caused by a uniform step in temperature applied
to the boundary of the cavity which is held in the stress-free state, then the following
boundary conditions hold:

θ = χH(t), σr = 0 for r = a, t > 0, (2.11)
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where χ is a positive constant and H(t) is the Heaviside unit step function. With the
aid of (2.7), these boundary conditions can be rewritten as

∂u
∂r
+2ηu

r
= χH(t) for r = a, t > 0. (2.12)

Thus, for our problem here, (2.6) are the governing differential equations, (2.10)
are the initial conditions, and (2.12) is the boundary condition. Once u and θ are
determined by solving this initial-boundary value problem, then σr and σφ can be
computed by using (2.7) and (2.8).

3. Transform solution. Taking the Laplace transforms of (2.6) under the homoge-
neous initial conditions (2.10), we obtain the following equations:

[
C2pDD1−s2

]
u= C2PDθ, (3.1)[

C2TD1D−s2
]
θ = εs2D1u. (3.2)

Here, an over bar denotes the Laplace transform of the corresponding function, s is
the transform parameter, and

D = d
dr

, D1 =D+ 2
r
. (3.3)

The coupled (3.1) and (3.2) can be decoupled by eliminating θ or u, and put in the
form (

DD1−m2
1

)(
DD1−m2

2

)
u= 0,(

D1D−m2
1

)(
D1D−m2

2

)
θ = 0, (3.4)

wherem2
1 andm2

2 satisfy the quadratic equation

C2pC
2
Tx2−

[
C2T +(1+ε)C2P

]
s2x+s4 = 0. (3.5)

Under the regularity conditions that u and θ→ 0 as r →∞, the general solutions of
(3.4) are given by

u=
2∑

α=1
Aα

(
1
r
+ 1

mαr 2

)
e−mαr , (3.6)

θ = 1
r

2∑
α=1

Bαe−mαr , (3.7)

where Aα and Bα, α = 1,2, are functions of s, of which only Aα or Bα are arbitrary,
and mα is the square root, with positive real part, of m2

α. By solving (3.5), we obtain
the following exact expressions formα:

mα = s
Vα

, (3.8)

where

Vα = 1√
2

[
C2T +(1+ε)C2P +(−1)α+1∆]1/2 (3.9)
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with

∆= {[C2T −(1+ε)C2P
]2+4εC2PC2T }1/2. (3.10)

Here and in the expressions that follow, the suffix α takes values 1 and 2.
Substituting for u and θ from (3.6) and (3.7) in (3.2) and equating the corresponding

coefficients, we get

Bα = εs2mα

s2−C2Tm
2
α
Aα. (3.11)

Next, taking the Laplace transform of the boundary condition (2.12) and substituting
for u from (3.6) in the resulting expression, we obtain

Aα = (−1)α+1Ωα

Γ
, (3.12)

where

Ωα = aχ
mα

(
C2Tm2

α−s2
)[
εs2a2m2

1m
2
2−
(
C2Tm

2
3−α−s2

)
Λα
]
em
αa,

Γ = εs3
[(
C2Tm

2
2−s2

)
Λ1−

(
C2Tm

2
1−s2

)
Λ2
]
,

Λα =m2
α
[
m2
3−αa

2+2(1−η)m3−αa+2(1−η)
]
.

(3.13)

Substituting formα, Aα and Bα from (3.8) and (3.11), (3.12), and (3.13) in (3.6) and
(3.7), we obtain expressions for u and θ in terms of r and s. The forms of these ex-
pressions indicate that each of the displacement and thermal fields (and consequently
the stress field) consists of two parts and that each part corresponds to a wave prop-
agating with a finite speed, the wave corresponding to the first part having its speed
equal to V1 and that corresponding to the second part equal to V2. We find that the
expressions giving these speeds, namely, (3.9) and (3.10), are identical with the expres-
sions giving the speeds of boundary-initiated plane waves in a half-space [4]. As in [4],
it can be shown that V1 > V2 and that the faster wave is predominantly elastic or pre-
dominantly thermal and the slower wave is predominantly thermal or predominantly
elastic according as CP > CT or CT > CP .

4. Small-time solution. We notice that Aα, given by (3.12) and (3.13), and there-
fore Bα, given by (3.11), are complicated functions of s. Consequently, the Laplace
transform inversion of the expressions (3.6) and (3.7) for all s is a formidable task.
We confine ourselves to the derivation of small-time solutions for the field functions.
This is done by taking s to be large (as in [16, 17, 18], for example).
When s is large, the results (3.8) and (3.11), (3.12), and (3.13) yield the following

approximate expressions for Aα and Bα (after some straightforward but lengthy cal-
culations):

Aα ≈ (−1)α+1χVα

[
Lα

s2
+Mα

s3

]
exp

(
sa
Vα

)
,

Bα ≈ (−1)α+1χ
[
Nα

s
+ Pα

s2

]
exp

(
sa
Vα

)
,

(4.1)
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where

Lα = a
εC2T

(
V 21 −V 22

)(V 2α−C2T
)[
C2T −(1+ε)V 23−α

]
,

Mα = 2(1−η)
εC2T

(
V 21 −V 22

)(C2T −V 2α
){

V3−α
(
V 23−α−C2T

)−
(
V1V2+C2T

)
C2T
(
V1+V2

)[(1+ε)V 23−α−C2T
]}

,

(Nα,Pα)= εV 2α(
V 2α−C2T

)(Lα,Mα
)
.

(4.2)

Now, using (3.8) and (4.1) in (3.6) and (3.7), and inverting the resulting expressions
with the aid of standard formulas of the Laplace transform theory [19], we obtain the
following solutions for u and θ valid for small values of t:

u= χ
r

2∑
α=1

(−1)α+1Vα

[
Lατα+ 12

(
1
r
VαLα+Mα

)
τ2α
]
H(τα),

θ = χ
r

2∑
α=1

(−1)α+1(Nα+Pατα
)
H(τα).

(4.3)

Here,

τα =
(
t− r −a

Vα

)
. (4.4)

Substituting the above solutions foru and θ in the relations (2.7) and (2.8), we obtain
the following small-time solutions for σr and σφ:

σr = χ
r

2∑
α=1

(−1)α
{(

Lα+Nα
)+[Mα+Pα+ 2r (1−η)VαLα

]
τα

}
H(τα), (4.5)

σφ = χ
r

2∑
α=1

(−1)α
{
ηLα+Nα+

[
ηMα+Pα+ 1r (η−1)VαLα

]
τα

}
H(τα). (4.6)

The forms of the solutions (4.3), (4.5), and (4.6) confirm the existence of two cou-
pled waves emanating from the boundary of the cavity and propagating outward with
constant speeds Vα, and having τα = 0 as wavefronts. Bearing in mind that V1 > V2,
we check that these solutions are identically zero for r > a+ tV1. This means that
the effects of the waves are localized at a given instant of time t∗ > 0, the points
of the body that are beyond the faster wavefront (r = a+V1t∗) do not experience
any disturbance. This observation verifies that the GN-theory is indeed a generalized
thermoelasticity theory.
As mentioned earlier, the counterparts of our problem in the contexts of the con-

ventional coupled thermoelasticity theory, the GL-theory and the LS-theory have been
considered in [16, 18, 17]. In these works also, like in our analysis here, only small-time
solutions have been derived. By comparing the solutions obtained in these works with
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our solutions, we find that whereas the solutions in the contexts of the three theories
just mentioned decay exponentially with increasing r , our solutions do not exhibit
such an exponential decay. This is due to the fact that the GN-theory does not admit
dissipation of thermal energy. In this connection, it may be mentioned that in the
context of the uncoupled thermoelasticity theory also, the exponential decay is not
observed [20].

5. Analysis of discontinuities. By direct inspection of solutions (4.3), (4.5), and
(4.6) we can determine the discontinuities experienced by the field functions across
the wavefronts. These discontinuities are

[u]α = 0, (5.1)

[θ]α = χ
r
(−1)α+1Nα,

[σr ]α = χ
r
(−1)α(Lα+Nα),

[σφ]α = χ
r
(−1)α(ηLα+Nα).

(5.2)

Here, [···]α denotes the discontinuity of the function across the wavefront τα = 0.
It should be noted that, since the discontinuities in the field functions are precisely

the coefficients of H(τα) that do not contain τα in the corresponding solutions, the
discontinuities documented above are exact, although they are derived from small-
time solutions.
Expression (5.1) shows that the displacement is continuous across both the wave-

fronts. This is the situation in the context of the LS-theory also [16]. But in the contexts
of the conventional coupled theory and the GL-theory, the displacement has been
found to be discontinuous at the wavefronts [18]. A discontinuity in displacement
implies that one portion of matter penetrates into another, and this phenomenon
violates the continuum hypothesis [8]. Thus, as far as the behaviour of the displace-
ment near the wavefronts is concerned, the predictions of the conventional coupled
thermoelasticity theory and the GL-theory are physically absurd.
Expressions (5.2) show that the temperature and the radial and circumferential

stresses are all discontinuous at both wavefronts and that the magnitudes of discon-
tinuities are finite. The same situation arises in the context of the LS-theory also [16].
But the case with the GL-theory is different according to this theory, the stresses suf-
fer delta function singularities at both wavefronts. This predictions of the GL-theory
is also not physically realistic.
Thus, as far as the discontinuities across the wavefronts are concerned, the pre-

dictions of the GN-theory (as obtained here) are qualitatively similar to those of the
LS-theory. Furthermore, like the LS-theory, the GN-theory also does not possess physi-
cally unrealistic features inherent in the conventional coupled thermoelasticity theory
and the GL-theory (as described above).
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