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COOLING OF A PLATE WITH GENERAL
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Abstract. We consider steady state temperature distribution in a homogeneous rectangu-
lar infinite plate the lower part of which is cooled by a fluid flowing at a constant velocity
while the upper part satisfies the general mixed boundary conditions. The Wiener-Hopf
method has been used to obtain the solution in the infinite series form and some special
cases have been discussed.
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1. Introduction. The problem of heat conduction and cooling of plates and rods
are important due to their industrial applications. The simplest problem is that of the
one-dimensional heat conduction or linear heat flow. Carslaw and Jaeger [4] have dis-
cussed different aspects of linear heat flow in plates and rods having homogeneous or
composite structure. In such problems, the boundary of the body under consideration
is either assumed to be insulated or kept at a constant temperature. Some problems
of practical interest however, require imposition of mixed boundary conditions. The
classical transform or Fourier series techniques are then no longer applicable. An in-
genious method of dealing with such problems is use of the Wiener-Hopf technique.
One of the early studies in this regard is by Caflisch and Keller [3] who have studied

the problem of steady state heat conduction in a sufficiently hot plate being cooled
by water flowing over its upper surface while its lower surface is insulated. The water
adjacent to the hotter part is converted to steam, while the water adjacent to the cooler
part is still in the liquid form. This situation results in themixed boundary condition as
the part which is covered by liquid satisfies the cooling condition while the remaining
part may be treated as being insulated. The solution in terms of an infinite product
involving the roots of a certain transcendental equation is then obtained using the
Wiener-Hopf technique. More details about this technique may be found in the treatise
by Noble [8].
Levine [7] also considered the same problem, but assumed a simpler representation

of the sputtering temperature. In both cases, the authors first obtain an appropriate
Green’s function for the problem, thus reducing the problem to a singular integral
equation which is then solved using the Wiener-Hopf technique.
Evans [5] considered the problem of lowering a long circular cylinder.
In this paper, we study a more general model of the steady state cooling problem

by assuming general mixed boundary conditions over the upper surface of an infinite
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rectangular plate. We suppose that half of the upper surface is kept at a prescribed
temperature while the other half is allowed a heat flux at a variable but prescribed
rate. The lower surface of the plate is cooled by a fluid moving with a uniform speed.
Some cases of practical interest can be obtained as a limiting case from this general
situation.

2. Formulation of the problem. We consider an infinite rectangular plate of uni-
form thickness h, composed of uniform and homogeneous material possessing con-
stant thermal diffusivity k with the lower surface of the plate coinciding with y = 0.
We suppose that half of the upper surface (y = h, −∞ < x < 0) has been prescribed
temperature f(x), while the remaining half (y = h, 0≤ x <∞) has heat flux given by
g(x). The lower surface of the plate is cooled by fluid moving with a uniform speed
v having a constant rate of cooling λ. Moreover temperature as (x→±∞) is assumed
to have a particular level of difference (see [1, 6]). The physical considerations lead to
the following mixed boundary value problem:

∂2u
∂x2

+ ∂
2u
∂y2

= 2s ∂u
∂x
, 0≤y ≤ h, −∞<x <∞, (2.1)

where s = v/2k.
(i) On the lower surface y = 0,

∂u
∂y

+λu= 0, on y = 0, −∞<x <∞. (2.2)

(ii) On the upper surface y = h,
u(x,y)= f(x), on y = h, 0≤ x <∞,
∂u
∂y

= g(x), on y = h, −∞<x < 0. (2.3)

(iii) In addition, we assume

u �→ 1, x �→∞,
u �→ 0, x �→−∞, (2.4)

u∼O(1), x �→+0,
∂u
∂y

∼O(1), x �→−0. (2.5)

The boundary data is assumed to be of exponential order, i.e.,

|f(x)|< c1 exp(τ−x), x �→∞,
|g(x)|< c2 exp(τ+x), x �→−∞, (2.6)

where c1, c2, τ−, and τ+ are constants and −s < τ− < τ+ < s.
The above boundary value problem can be reduced to amore suitable formby setting

u(x,y)=φ(x,y)exp(sx). (2.7)
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This yields,

∂2φ
∂x2

+ ∂
2φ
∂y2

−s2φ= 0. (2.8)

The boundary conditions now take the form

∂φ
∂y

+λφ= 0, on y = 0, −∞<x <∞, (2.9)

φ(x,y)= f(x)exp(−sx), on y = h, 0≤ x <∞, (2.10)

∂φ
∂y

= g(x)exp(−sx), on y = h, −∞<x < 0. (2.11)

The behavior of the solution at ±∞ is now given by
φ∼ exp−sx, as x �→∞,

φ∼ εexp−sx �→ 0, as x �→−∞, (2.12)

where ε is an arbitrary small real number. This condition can be derived from the
behavior of the general solution of (2.8) as x→−∞ (see [2]).
The edge conditions at the point of separation of the two parts of the upper surface

are

φ,
∂φ
∂y

∼O(1), as x �→ 0 on y = h. (2.13)

3. Reduction to the Wiener-Hopf equation. We define Fourier transform in x and
its inverse as

f∗(α)=
∫∞
−∞
f(x)exp(iαx)dx, (3.1)

f(x)= 1
2π

∫∞+id
−∞+id

f∗(α)exp(−iαx)dα, (3.2)

where d is a constant chosen in the domain of analyticity of f∗(α) in the region
τ− ≤ Im(α)≤ τ+.
The half-range Fourier transforms are defined by

f∗+ (α)=
∫∞
0
f(x)exp(iαx)dx,

f∗− (α)=
∫ 0
−∞
f(x)exp(iαx)dx,

(3.3)

so that

f∗(α)= f∗+ (α)+f∗− (α). (3.4)

It may be noted that if f(x) = 0(eτ−x) as x → ∞ and f(x) = 0(eτ+x) as x → −∞,
then f∗+ (α) is an analytic function of α in the upper half-plane Im(α) > τ−, while
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f∗− (α) is thus in the lower half-plane Im(α) < τ+. From (2.9), f∗(α) is then analytic
in τ− < Im(α) < τ+ (Noble [8])
With these preliminaries, we apply the Fourier transform to the boundary value

problem (2.8), (2.9), (2.10), and (2.11) to obtain

d2φ∗(α,y)
dy2

−γ2φ∗(α,y)= 0, (3.5)

where γ(α)=√s2+α2. The branch cuts of γ are chosen such that γ(0)=+s.

φ∗
′
(α,0)+λφ∗(α,0)= 0, (3.6)

φ∗+(α,h)= f∗+ (α+is), Im(α) > τ−−s, (3.7)

φ∗
′

− (α,h)= g∗−(α+is), Im(α) < τ+−s. (3.8)

The solution of the differential equation (3.5) that satisfies condition (3.6) is

φ∗(α,y)=A(α)(γ coshγy−λsinhγy). (3.9)

Eliminating the unknown A(α) and using the decomposition (3.4) and the boundary
conditions (3.7) and (3.8), we get, after some manipulation,

φ∗−(α,h)+f∗+ (α+is)=K(α)
(
φ∗

′
+ (α,h)+g∗−(α+is)

)
, (3.10)

where

K(α)= coshγh−λ(sinhγh/γ)
γ sinhγh−λcoshγh = G1(α)

G2(α)
. (3.11)

4. Solution of the Wiener-Hopf equation. Since G1(α) and G2(α) are entire func-
tions of α having infinite number of zeros, K(α) being free of any branch points, we
may use Weirstrass theorem to write K(α)=K+(α)K−(α), where

K±(α)=A1/2
∞∏
n=1

(
α±iαn
α±iβn

)
, (4.1)

where

A=
∞∏
n=1

(
β2n
α2n

)(
coshsh−λ(sinhsh/s)
s sinhsh−λcoshsh

)
, (4.2)

where ±iαn, ±iβn, n = 1,2,3, . . . are the simple zeros of G1(α) and G2(α), respec-
tively. K+(α) is free from zeros and poles in the upper half-plane and K−(α) is free
from zeros and poles in the lower half-plane.
Thus the Wiener-Hopf equation can be written as

J(α)= φ
∗−(α,h)
K−(α)

−L−(α)=K+(α)φ∗′+ (α)+L+(α), (4.3)

where

L(α)= L+(α)+L−(α)=K+(α)g∗−(α+is)−
f∗+ (α+is)
K−(α)

. (4.4)
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The explicit expressions for L±(α) can be obtained by using the factorization theo-
rem, Noble [8] as

L+(α)= +1
2πi

∫∞+ic
−∞+ic

(
K+(η)g∗−(η+is)−

f∗+ (η+is)
K−(η)

)
dη
η−α,

L−(α)= −1
2πi

∫∞+ic
−∞+ic

(
K+(η)g∗−(η+is)−

f∗+ (η+is)
K−(η)

)
dη
η−α,

(4.5)

We can argue that equation (4.3) defines an entire function since left-hand side is
analytic in the lower have plane while right-hand side is analytic in the upper half
plane, both sides being equal on the common strip of analyticity, are analytic contin-
uation of each other. Using the asymptotic behavior of the functions and the infinite
products, we can show that J(α)= 0. Hence

φ∗−(α,h)=K−(α)L−(α), (4.6)

φ∗
′

+ (α)=−
L+(α)
K+(α)

. (4.7)

Using the factorization theorem of Noble [8], explicit forms for L±(α) can be ob-
tained as

L+(α)=−f
∗+
(
α+is)

K−(α)
+

∞∑
j=1
aj
g∗−
(−iβj+is)
−iβj−α +

∞∑
j=1
a′j
f∗+
(
iαj+is

)
iαj−α ,

L−(α)=K+(α)g∗−
(
α+is)− ∞∑

j=1
aj
g∗−
(−iβj+is)
−iβj−α −

∞∑
j=1
a′j
f∗+
(
iαj+is

)
iαj−α ,

(4.8)

where

aj =A1/2i
(
βj−αj

) ∞∏
n=1,n≠j

(
βj−αn
βj−βn

)
,

a′j =A−1/2i
(
αj−βj

) ∞∏
n=1,n≠j

(
αj−βn
αj−αn

)
.

(4.9)

5. Fourier transform inversion. The solution of the heat problem in the (x,y)-
plane can be obtained by using the inversion formula (3.2) as

φ(x,y)= 1
2π

∫∞+id
−∞+id

(
φ∗−(α,h)+f∗+ (α+is)
coshγh−λ(sinhγh/γ)

)(
coshγy−λsinhγy

γ

)
exp(−iαx)dα,

(5.1)

whered is chosen such that the contour of integration lie in the domain of convergence
of the transform integral.
Noting that coshγy−λ(sinhγy/γ) has no branch points and so using its infinite

product representation, we may write
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coshγy−λ(sinhγy/γ)
coshγh−λ(sinhγh/γ) =DN(y)

∞∏
n=1

(
α2+ρ2n
α2+α2n

)
, (5.2)

where

D =
∞∏
n=1

(
α2n
ρ2n

)
, (5.3)

N(y)= coshsy−λ(sinhsy/s)
coshsh−λ(sinhsh/s) , (5.4)

where ±iρn are the simple zeros of coshγy−λ(sinhγy/γ). Thus

φ(x,y)= 1
2π

DN(y)
∫∞+id
−∞+id

(
φ∗−(α,h)+f∗+ (α+is)

) ∞∏
n=1

(α2+ρ2n
α2+α2n

)
exp(−iαx)dα

= D
2π

N(y)
(
I1(x)+I2(x)

)
,

(5.5)

where

I1(x)=
∫∞+id
−∞+id

f∗+ (α+is)
∞∏
n=1

(
α2+ρ2n
α2+α2n

)
exp(−iαx)dα,

I2(x)=
∫∞+id
−∞+id

K−(α)H−(α)
∞∏
n=1

(
α2+ρ2n
α2+α2n

)
exp(−iαx)dα.

(5.6)

If x < 0, we close the contour of integration in the upper half-plane and for x ≥ 0,
the contour is chosen to be closed in the lower half-plane so that the above integrals
are defined. This gives

I3(x)=




2π−
∞∑
j=1
bjf∗+

(−iαj+is)exp(−αjx)

+the contribution of the poles of f∗+ (α+is) if any , x ≥ 0,

2π−
∞∑
j=1
bjf∗+

(
iαj+is

)
exp

(
αjx

)
, x < 0,

I4(x)=




2π−
∞∑
j=1
bjK−

(−iαj)L−(−iαj)exp(−αjx), x ≥ 0,

2π−
∞∑
j=1
bjK−

(
iαj

)
L−
(
iαj

)

+ the contribution of the poles of K−
(
α
)
H−

(
α
)
, x < 0,

(5.7)

where

bj =
(
α2j −ρ2j

)
2αj

∞∏
n=1,n≠j

(
α2j −ρ2n

(αj+αn)(αj−αn)

)
. (5.8)
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6. Discussion and limiting cases. The temperature distribution in the plate can be
obtained using (2.7) and (5.5). In a similar way the heat flux at the upper surface of
the plate, which is of interest in many situations, can be obtained using expressions
for φ∗′+ (α) obtainable from (4.7).
(a) Let us assume that the left half of the upper surface of the plate is insulated, i.e.,

g(x)= 0, thus

φ(x,y)=




DN(y)
∞∑
j=1

[
−bjf∗+ (−iαj+is)+

∞∑
l=1
alcjdjlf∗+ (iαl+is)

]
exp(−αjx)

+the contribution of the poles of f∗+ (α+is) if any, x ≥ 0,

DN(y)
∞∑
j=1

[
−bjf∗+ (iαj+is)+

∞∑
l=1
alc′jd

′
jlf

∗
+ (iαl+is)

]
exp(αjx)

+
∞∑
j=1
ejf∗+ (iβj+is)exp(βjx), x < 0,

(6.1)

where

cj = bjK−(−iαi), c′j = bjK−(iαi)+
∞∏

n=1,n≠j

α2j −ρ2n
(αl+βn)(αl−αn) ,

djl = 1
i(αj+αl) , d′jl =

1
i(αl−αj) ,

ej =
∞∏

n=1,n≠j

β2j −ρ2n
(βl+αn)(βl−βn) .

(6.2)

(b) If the right half of the upper surface was heated uniformly from the point x = 0
to ∞, then

f(x)= aH(x), (6.3)

where a is a constant and H(x) is the Heaviside unit function. With this choice

f∗+ (α+is)=
ai

α+is . (6.4)

f∗+ (α+is) has a simple pole at α=−is in the lower half-plane, then for s ≠αn,n=
1,2, . . . we get

φ(x,y)=




aDN(y)
∞∑
j=1

[
bi

αj−s +
∞∑
l=1

alcjdjl
αl+s

]
exp(−αjx)

+
∞∏
n=1

s2−ρ2n
s2−α2n exp(−sx), x ≥ 0,

aDN(y)
∞∑
j=1

[ −bj
αj+s +

∞∑
l=1

alc′jd
′
jl

αl+s

]
exp(αjx)

+
∞∑
j=1

ej
βj+s exp(βjx), x < 0.

(6.5)
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(c) If the right upper-half (y = h, 0≤ x <∞) was heated by an exponentially decaying
behavior, i.e.,

f(x)= bexp(−ax), (6.6)

where a> 0 and b are constants.
Then

f∗+ (α+is)=
ib

α+i(s+a) . (6.7)

Thus f∗+ (α+ is) has simple pole at α = −i(s+a) on the lower half-plane, then for
s+a≠αn,n= 1,2, . . . , we get

φ(x,y)=




bDN(y)
∞∑
j=1

[
bi

αj−(s+a) +
∞∑
l=1

alcjdjl
αl+(s+a)

]
exp(−αjx)

+
∞∏
n=1

s2−ρ2n
s2−α2n exp(−sx), x ≥ 0,

bDN(y)
∞∑
j=1

[ −bj
αj+(s+a) +

∞∑
l=1

alc′jd
′
jl

αl+(s+a)

]
exp(αjx)

+
∞∑
j=1

ei
βj+s exp(βjx), x < 0.

(6.8)

In a similar way, we may consider different forms of f(x) and g(x) to fit many
physically interesting situations and obtain the solution in the infinite series form.

7. Numerical results. The numerical results of (6.5) and (6.8) for the temperature
u(0,y) at the midpoint x = 0 are tabulated in Tables 7.1, 7.2, and 7.3. u0 was cal-
culated for suitable choices of the parameters Ω, s1, and h1 where Ω = λy , s1 = sy ,
h1 = y/h. Table 7.1 shows that for fixed s1 and h1, the temperature u0 of the uni-
formly heated plate with a = 1, increase with increase of Ω. Also for fixed Ω and
h1, u0 decreases with increase of s1. If we increase Ω more than 0.6, the tempera-
ture u0 begins to decrease until it reaches a constant value for example at s1 = 0.02,
h1 = 0.8, we find that u0 has nearly the same value (u0 = 0.398) for large values of Ω
(Ω = 300,400,500).

Table 7.1.

s1 = 0.001, h1 = 0.8
Ω 0.00 0.04 0.08 0.2 0.4 0.6

u0(y) 0.4998 0.5050 0.5109 0.5331 0.5996 0.7993

s1 = 0.2, h1 = 0.8
u0(y) 0.4577 0.4584 0.4628 0.4801 0.5218 0.6540

Tables 7.2 and 7.3 shows that the temperature of the exponentially heated plate
with b = 1 depends on the exponent a. The temperature u0 decreases with increase
of a which is clear from comparison of the two tables.
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Table 7.2.

s1 = 0.001, h1 = 0.8, a= 0.6
Ω 0.00 0.04 0.08 0.2 0.4 0.6

u0(y) 0.3206 0.3225 0.3249 0.3347 0.3433 0.4087

s1 = 0.02, h1 = 0.8, a= 0.6
u0(y) 0.3192 0.3210 0.3234 0.3332 0.3415 0.4063

Table 7.3.

s1 = 0.001, h1 = 0.8, a= 1.0
Ω 0.00 0.04 0.08 0.2 0.4 0.6

u0(y) 0.2638 0.2651 0.2670 0.2747 0.2771 0.3252

s1 = 0.02, h1 = 0.8, a= 1.0
u0(y) 0.2629 0.2642 0.2660 0.2737 0.2760 0.3238
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