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Abstract. We prove some results on maximal elements using the KKM-map principle.
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The well-known KKM-map principle has various applications in nonlinear analysis,
mathematical economics, applied mathematics, game theory, and minimax theory.
The aim of this paper is to prove some results on maximal elements by using the
KKM-map principle.
Recall that a binary relation F on a set C is a subset of C×C or a mapping of C into

itself. The notation yFx or y ∈ Fx means y stands in relation F to x. A maximal
element of F is a point x such that no point y satisfies y ∈ Fx, i.e., Fx =∅. Thus the
set of maximal elements is

{x ∈ C : Fx =∅}=
⋂

x∈C

(
C\F−1x), (1)

where

F−1x = {y ∈ C : x ∈ Fy}. (2)

The following well-known theorem is due to Sonnenschein [7] proved by using the
KKM-principle.

Theorem 1. Let C be a compact convex subset of Rn and F a binary relation on C
satisfying

(i) x ∉ coFx for all x ∈ C (co stands for convex hull),
(ii) if y ∈ F−1x, then there exists some x1 ∈ C (possibly x1 = x) such that y ∈

int F−1x1.
Then F has a maximal element.

In [1], Bergstrom proved the following by using selection theorem and fixed point
theorem.

Theorem 2. Let C be a nonempty, compact convex subset of Rn and F : C → 2C a
preference map satisfying

(i) x ∉ coFx for each x ∈ C ,
(ii) F is lower semicontinuous on C .

Then F has a maximal element.
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We note that the results on maximal elements are useful in fixed point theory, vari-
ational inequalities and complementarity problems (see [2]).

Definition 3. Let C be a nonempty subset of a topological vector space X. A map
F : C → 2X is said to be a KKM-map if co(x1,x2, . . . ,xn)⊆∪ni=1Fxi for each finite subset
{x1,x2, . . . ,xn} of C .

Theorem 4 [3]. Let C be a subset of a Hausdorff topological vector space X and
F : C → 2X a closed-valued map. If Fx0 is compact for at least one x0 ∈ C , then
∩x∈CFx ∉∅.

Theorem 5 [5]. Let C be a subset of a Hausdorff topological vector space X and
F : C → 2X an open-valued KKM-map. Then ∩ni=1Fxi ≠∅.

Ky Fan’s lemma [3]. Let C be a nonempty compact convex subset of Rn and F : C →
2C a multifunction such that

(i) Fx is convex for each x ∈ C ,
(ii) F has open graph,
(iii) x ∉ Fx for each x ∈ C .

Then F has a maximal element.

We prove the following theorem for maximal element.

Theorem 6. Let C be a nonempty closed convex subset of a Hausdorff topological
vector space X and F : C → 2C satisfy

(i) x ∉ Fx for each x ∈ C ,
(ii) Fx is closed for each x ∈ C ,
(iii) F−1(y)= {x ∈ C :y ∈ Fx} is convex for each y ∈ C ,
(iv) C can be covered by some finite number of closed sets Fx1, Fx2, . . . , Fxn.

Then F has a maximal element.

Proof. Let Fx ≠∅ for eachx ∈ C . DefineG(x)= C\Fx, thenG(x) is open for each
x ∈ C since Fx is closed. By (iv) C = ∪ni=1Fxi, so ∩Gxi = ∩(C\Fxi)c = (∪Fxi)c = ∅.
Therefore G is not a KKM-map. Hence, there exists a finite set {x1,x2, . . . ,xk} of C
such that

z =
k∑

i=1
λixi �

k⋃

1

Gxi, (3)

where λi ≥ 0 and
∑
λi = 1. So z ∈ ∩ni=1Fxi and xi ∈ F−1z, i = 1,2, . . . ,k. Since F−1z is

convex so

z =
k∑

i=1
λixi ∈ F−1z, (4)

implying that z ∈ Fz, this contradicts hypothesis (i). So Fx =∅.
Corollary 7. Let C be a nonempty closed convex subset of a topological vector

space X and F : C → 2C an upper semicontinuous convex-valued map. Further, assume
that there is some finite subset B of C such that Fx∩B ≠∅ for every x ∈ C , and x ∉ Fx
for each x ∈ C . Then F has a maximal element.
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Proof. Let G : C → 2C be defined by

Gx = F−1x = {y ∈ C : x ∈ Fy}. (5)

Since F is upper semicontinuous, each G(x) is closed. Now, G−1(y) = (F−1y)−1 =
Fy is convex. Also C can be covered by {G(x) : x ∈ B}, finitely many closed sets. By
hypothesis x ∉ Fx For x ∈ C . So, by Theorem 5, we get that F has a maximal element.

In the following, closed-valued KKM-map is applied [6].

Theorem 8. Let C be a nonempty convex subset of a topological vector space X,
and F : C → 2C satisfy

(i) x ∉ coFx for each x ∈ C ,
(ii) ify∈F−1x, then there exists somex1∈C (possiblyx1=x) such thaty∈ intF−1x1,
(iii) C has a nonempty compact convex subset D such that the set

B = {x ∈ C :y ∉ Fx for all y ∈D} (6)

is compact.
Then F has a maximal element.

Proof. Define G(x) = C\ intF−1(x) for each x ∈ C . Then G(x) is closed for each
x ∈ C . We claim that G is a KKM-map. Let z ∈ co(x1,x2, . . . ,xn). If z ∉ ∪ni=1Gxi, then
z ∉ Gxi, i = 1,2, . . . ,n, that is, z ∈ F−1xi, i = 1,2, . . . ,n. Thus xi ∈ Fz and z ∈ coFz,
this contradicts (i). Hence G is a KKM-map.
Now,

B = {x ∈ C :y ∉ Fx for all y ∈D}

= {x ∈ C : x ∉ F−1y for all y ∈D}

= {x ∈ C : x ∈Gy for all y ∈D}

=
⋂

y∈D
Gy =∅,

(7)

i.e., x0 ∈
⋂
y∈DGy . Thus x0 ∉ F−1y for all y ∈ C , that is, y ∉ Fx0 for all y ∈ C and

Fx0 =∅.

Corollary 9. Let C be a nonempty convex subset of a topological vector space E
and F : C → 2C satisfy

(i) x ∉ Fx,
(ii) Fx is convex for each x ∈ C ,
(iii) F−1(y)= {x ∈ C :y ∈ Fx} is open in C for each y ∈ C ,
(iv) C has a nonempty compact convex subset D such that the set

B = {x ∈ C :y ∉ Fx for all y ∈D} (8)

is compact.
Then F has a maximal element.
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Corollary 10 (see [6]). Let C be a nonempty convex subset of a topological vector
space X and F : C → 2C satisfy

(i) x ∉ coF(x) for each x ∈ C ,
(ii) F−1(y)= {x ∈ C :y ∈ Fx} is open for each y ∈ C ,
(iii) C has a nonempty compact convex subset D such that the set

B = {x ∈ C :y ∉ Fx for all y ∈D} (9)

is compact.
Then F has a maximal element.

In case C is a nonempty compact convex subset of a topological vector space X and
F : C → 2C satisfy

(i) x ∉ coF(x) for each x ∈ C ,
(ii) F−1(y)= {x ∈ C :y ∈ Fx} is open for each y ∈ C ,

then F has a maximal element.
We conclude by giving a couple of applications of maximal elements.

Theorem 11 (Ky Fan best approximation theorem [4]). Let C be a compact, convex
subset of Rn and f : C → Rn a continuous function. Then there is an x0 ∈ C such that

‖fx0−x0‖ ≤ ‖fx0−y‖ for all y ∈ C. (10)

Proof. Define F by yFx if and only if

‖fx−y‖< ‖fx−x‖ for all x ∈ C. (11)

It is easy to see that Fx is convex and x ∉ Fx. F has open graph because f is
continuous. Therefore by Fan’s lemma, F has a maximal element, that is, there is an

x̄ ∈ C (12)

such that Fx̄ =∅. This implies that ‖f x̄− x̄‖ ≤ ‖f x̄−y‖ for all y ∈ C .
Note. In case f : C → C , then f has fixed point, that is, there is an x0 ∈ C such that

fx0 = x0.
The following result deals with the existence of zero for a continuous function.

Theorem 12. Let C be a closed bounded convex subset of R and g : C → R a con-
tinuous function. If fx = gx +x and f : C → C , then there is an x0 ∈ C such that
gx0 = 0.

Proof. Define F onC byy ∈ Fx if and only if|fx−y|< |fx−x| for eachx ∈ C . As
in the above theorem we get Fx0 =∅. For some x0 ∈ C , that is, |fx0−x0| ≤ |fx0−y|
for all y ∈ C . Thus |fx0−x0| = d(fx0,C). Since f : C → C so fx0 = x0 = gx0+x0.
Hence gx0 = 0.
Similar results can be proved by the use of maximal elements.
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