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VACCINATION IN A MODEL OF AN EPIDEMIC
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Abstract. Vaccination has been included in a model which describes an epidemic. A trav-
eling wave solution together with an equilibrium and stability analysis have been done to
the model.
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1. Introduction. When a population is infected by a disease it is partitioned into
several distinct classes such as the infectives (denoted by I), the susceptibles (de-
noted by S) and others. Kermack and McKendrick [6] have originally introduced the
epidemicmodels. In this paper, we consider only two classes of the population, namely
the infectives and the susceptibles. The infectives is the class of the population who
already have caught the disease and can transmit it, and the susceptibles is the class
of the population who can catch the disease. In our model we consider vaccination
which in turns keep the number of infectives and susceptibles unchanged and spe-
cific in the long run. Anderson [2] considered this subject into a population of labo-
ratory mice. Also, Anderson and May [3, 4] talked about that idea further. Greenhalgh
(1988) discussed vaccination in age-dependent epidemic models and in later paper
Greenhalgh [5] talked about vaccination in density dependent epidemic models. In
our model, we included logistic growth of the susceptibles, which is more realistic.

2. Themodel. Assume that the susceptible individuals are vaccinated at a constant
rate v , which in turn implies that the total rate of vaccination of individuals in the
population is vS. After non-dimensionalization we consider the following epidemic
model with logistic growth of the susceptibles and vaccination:

dS
dt

= (a−v)S−SI−aS2, dI
dt
=−bI+SI, (2.1)

where S = S(t), and I = I(t). a,b, and v are positive constants with b < 1. Here v is
the vaccination rate. Abual-Rub [1] gave an explanation to such terms as follows:
The terms aS and bI denote the growth or death of the susceptibles and infectives,

respectively. The term SI represents the binary interaction between the susceptibles
and infectives.
Finally, the term S2 represents the interaction between the same kind of species in

the susceptible population. In the next two sections we investigate the equilibrium
and stability analysis of the model (2.1)
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3. Equilibrium analysis. In order to find the equilibrium or steady states of our
model, let us set the right-hand side of (2.1) equal zero and suppose that the steady
states of susceptibles and infectives are, respectively, Ŝ and Î. Solving the system of
equations we obtain the following possibilities for the steady states:
(i) Ŝ = Î = 0.

This means that the population has died out which is always possible.
(ii) Ŝ = 1−v/a, Î = 0.

This means that due to vaccination the disease has died out and therefore the popu-
lation maintains itself at a steady level and of course this case is possible in reality.
(iii) Ŝ = b, Î = a−ab−v .

This means that the disease is possible and due to vaccination the population remains
at the above two steady levels of susceptibles and infectives. Of course, this case is
possible.

4. Stability analysis. We now consider small perturbations of the stability for the
solutions, which are possible, namely:

(i) Ŝ = Î = 0.
Let S = s, I = i and substitute into (2.1).
To the first order, we get

ds
dt
= (a−v)s, di

dt
=−bi. (4.1)

By calculating the characteristic equation we get two roots, namely −b and a−v . In
order to get local stability to small perturbations in this state, the two roots above
must be negative, and therefore we require that

v > a. (4.2)

This means that the effect of vaccination is so high on the susceptibles. Of course,
local unstability occurs if and only if v < a.
(ii) Ŝ = 1−v/a, Î = 0.

Let S = 1−v/a+s, I = i. By the same way of (i) we conclude that this state is locally
stable if and only if

1−b < v < 1. (4.3)

(iii) Ŝ = b, Î = a−ab−v .
Let S = b+s, I = a−ab−v+ i. After very long calculations we obtain that this state
is a locally stable node if

v ≥ a
(
1−b− ab

4

)
, (4.4)

a locally stable spiral if

v < a
(
1−b− ab

4

)
, (4.5)

and unstable otherwise.
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In the next two sections, we include diffusion to our model and then analyze the
traveling wave solution.

5. Spatial spread model. Now we consider the spatial spread of the infectives and
susceptibles. By remodeling our basic model (2.1) by simple diffusion and letting d1
and d2 to be the diffusion coefficients of susceptibles and infectives, respectively, we
obtain the following model:

∂S
∂t
= (a−v)S−SI−aS2+d1∆S, ∂I

∂t
=−bI+SI+d2∆I, (5.1)

where S = S(x,t) and I = I(x,t).∆S and∆I represent the diffusion of the susceptibles
and infective densities respectively.

6. Traveling wave solution. Now, as done in Abual-Rub [1], we seek a constant
shape traveling wave solution of (5.1) by setting

S(x,t)= S̃(z), I(x,t)= Ĩ(z), z = x−ct, (6.1)

where c is the wave speed, which has to be determined. Substitute (6.1) into (5.1) we
get

cS̃′ = (v−a)S̃+ S̃ Ĩ+aS̃2−d1S̃′′,
cĨ′ = bĨ− S̃ Ĩ−d2Ĩ′′,

(6.2)

where ′ denotes the differentiation with respect to z.
Before analyzing (6.2) we assume that d1 is much smaller than d2. This assumption

is a legitimate one because the infective population is very active in infecting other in-
dividuals in the total population and it is capable of moving more but the susceptibles
is not so.
Therefore we assume that d1 is negligible compared to d2.
Hence, with d1 = 0, we can rewrite (6.2) as three ordinary differential equations,

S̃′ = aS̃
2+ S̃ Ĩ+(v−a)S̃

c
, Ĩ′ = T̃ , T̃ ′ = −cT̃ +bĨ− S̃ Ĩ

d2
(6.3)

In the (S̃, Ĩ, T̃ ) phase space there are three steady states, namely

(0,0,0),
(
1− v

a
,0,0

)
, (b,a−ab−v,0). (6.4)

From the analysis we have done in [1], we expect the traveling wavefront solution
to be from (0,0,0) to (b,a−ab−v,0) and from (1−v/a,0,0) to (b,a−ab−v,0).
Therefore we have to seek solutions

(
S̃(z), Ĩ(z)

)
of (6.3) with the following boundary

conditions:

S̃(−∞)= 0, Ĩ(−∞)= 0, S̃(∞)= b, Ĩ(∞)= a−ab−v, (6.5)

S̃(−∞)= 1− v
a
, Ĩ(−∞)= 0, S̃(∞)= b, Ĩ(∞)= a−ab−v. (6.6)
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Let us consider only (6.3) with (6.6) and the analysis of (6.3) with (6.5) is analogous.
Now, we linearize (6.3) about the point (1−v/a,0,0), i.e., S̃ = 1−v/a and Ĩ = 0 then
determine the eigenvalues λ, which are the roots of

∣∣∣∣∣∣∣∣∣∣

a−v
c

−λ a−v
ac

0

0 −λ 1

0
ab−a+v
ad2

−c
d2
−λ

∣∣∣∣∣∣∣∣∣∣
, (6.7)

we obtain

λ1 = a−vc ; λ2,λ3 =
−c±

[
c2+4

(
bd2−d2+ vd2

a

)]1/2
2d2

. (6.8)

Using (6.8) we can see that the only possibility for the existence of a traveling wave-
front solution which tends to S̃ = 1−v/a and Ĩ = 0 as z→−∞ if

c ≥ 2
(
d2−bd2− vd2a

)1/2
; provided that v < a(1−b). (6.9)

Now, let us consider the steady state (b,a−ab−v) and linearize (6.3) about the point
(b,a−ab−v,0) then determine the roots of

∣∣∣∣∣∣∣∣∣∣∣

ab
c
−λ b

c
0

0 −λ 1
v+ab−a

d2
0

−c
d2
−λ

∣∣∣∣∣∣∣∣∣∣∣
, (6.10)

which are the roots of the characteristic polynomial

P(λ)= λ3+
(
c
d2
− ab
c

)
λ2− ab

d2
λ+ ab−bv−ab

2

cd2
. (6.11)

Using the theory of cubic polynomials we can easily see that its impossible to have
three real roots of P(λ). Therefore, we have one real root and two complex roots.
To get stability to small linear perturbations we use the Routh-Hurwitz conditions

for the roots P(λ) to have negative real parts, i.e., we require Reλ < 0. This holds if

c
d2
− ab
c
> 0,

ab−bv−ab2
cd2

> 0,
ab
d2

(
c
d2
− ab
c

)
+ ab−bv−ab

2

cd2
< 0. (6.12)

It is obvious that if the first and the second inequalities of (6.12) hold, the third of
(6.12) does not hold unless d2 < 0. Therefore in order to have a traveling wavefront
solution which approach the steady state (b,a−ab−v,0) in an oscillatory manner as
z→+∞, we require that d2 < 0 and (6.12) must hold. Otherwise we have unstability.
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7. Interpretations and conclusions. We talk about the biological interpretation of
some of the results. For example, since we assumed that the death rate b is con-
stant we may say, as in (Anderson and May [4]), that the proportion of susceptibles in
the population is the same no matter what the strength of the vaccination campaign
will be.
The result (4.2) is very reasonable in the steady state where the population has

died out because (4.2) means that the birth rate of susceptibles, a, is very small and
much smaller than the vaccination rate. On the other hand, the result (4.3) means that
vaccination has a very strong effect in the population and therefore the disease has
died out which might always happen.
We expect that the most realistic result can be found from (4.4) and (4.5), namely

v = a(1−b−ab/4) and this gives us an estimate on the vaccination rate we should
use in order to overcome the disease and to keep the population at a steady state of
susceptibles and infectives and thus we may control the proportion of infectives in
the population.
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