SKEW GROUP RINGS WHICH ARE GALOIS

GEORGE SZETO and LIANYONG XUE

(Received 20 March 1998)

ABSTRACT. Let S*G be a skew group ring of a finite group G over a ring S. It is shown that if S*G is an G'-Galois extension of $(S*G)^{G'}$, where G' is the inner automorphism group of S*G induced by the elements in G, then G is a G-Galois extension of G. A necessary and sufficient condition is also given for the commutator subring of $(S*G)^{G'}$ in S*G to be a Galois extension, where $(S*G)^{G'}$ is the subring of the elements fixed under each element in G'.

Keywords and phrases. Skew group rings, Azumaya algebras, Galois extensions, H-separable extensions.

2000 Mathematics Subject Classification. Primary 16S35; Secondary 16W20.

- **1. Introduction.** Let S be a ring with 1, C the center of S, G a finite automorphism group of S of order n invertible in S, S^G the subring of the elements fixed under each element in G, S*G a skew group ring of group G over S, and G' the inner automorphism group of S*G induced by the elements in G, that is, $g'(x) = gxg^{-1}$ for each g in G and x in S * G, so the restriction of G' to S is G. In [3, 2], a G-Galois extension S of S^G which is an Azumaya C^G -algebra is characterized in terms of the Azumaya C^G -algebra S*G and the H-separable extension S*G of S, respectively, and the properties of the commutator subring of S in S * G are given in [1]. It is clear that S is a G-Galois extension of S^G implies that S * G is a G'-Galois extension of $(S*G)^{G'}$ with the same Galois system as *S*. In the present paper, we prove the converse theorem: if S * G is a G'-Galois extension of $(S * G)^{G'}$, then S is a G-Galois extension of S^G . Moreover, for a G'-Galois extension S*G of $(S*G)^{G'}$ which is a projective separable C^G -algebra, S can be shown to be a G-Galois extension of S^G which is also a projective separable C^G -algebra. Then a sufficient condition on $(S*G)^{G'}$ is given for Sto be a G-Galois extension of S^G which is an Azumaya C^G -algebra, and an equivalent condition on S^G is obtained for the commutator subring of $(S*G)^{G'}$ in S*G to be a G-Galois extension.
- **2. Preliminaries.** Throughout, we keep the notation as given in the introduction. Let B be a subring of a ring A with 1. Following [3,2], A is called a separable extension of B if there exist $\{a_i,b_i \text{ in } A,\ i=1,2,\ldots,m \text{ for some integer } m\}$ such that $\sum a_ib_i=1$, and $\sum sa_i\otimes b_i=\sum a_i\otimes b_is$ for all s in A, where s is over s. An Azumaya algebra is a separable extension of its center. A ring s is called an s-separable extension of s if s is isomorphic to a direct summand of a finite direct sum of s as an s-bimodule. It is known that an Azumaya algebra is an s-separable extension and an s-separable extension is a separable extension. Let s be given as in Section 1.

Then it is called a *G*-Galois extension of S^G if there exist elements $\{c_i, d_i \text{ in } S, i = 1, 2, ..., k \text{ for some integer } k\}$ such that $\sum c_i g_j(d_i) = \delta_{1,j}$, where $G = \{g_1, g_2, ..., g_n\}$ with identity g_1 , for each $g_j \in G$. Such a set $\{c_i, d_i\}$ is called a *G*-Galois system for *S*.

3. Galois skew group rings. In this section, we show that a G'-Galois extension skew group ring S * G implies a G-Galois extension S. More results are obtained for S^G when $(S * G)^{G'}$ is a projective separable C^G -algebra, and an H-separable S^G -extension, respectively.

THEOREM 3.1. If S * G is a G'-Galois extension of $(S * G)^{G'}$, then S is a G-Galois extension of S^G .

PROOF. Let $\{u_i, v_i \mid i=1,2,...,m\}$ be a G'-Galois system of S*G over $(S*G)^{G'}$, that is, u_i and v_i are elements of S*G satisfying $\sum_{i=1}^m u_i g'(v_i) = \sum_{i=1}^m u_i g v_i g^{-1} = \delta_{1,g}$. Let $w_i = \sum_{h \in G} h v_i$, i=1,2,...,m. Then $gw_i = \sum_{h \in G} ghv_i = w_i$. Since $\{h \mid h \in G\}$ is a basis of S*G over S, we have $u_i = \sum_{h \in G} s_h^{(u_i)}h$ and $w_i = \sum_{h \in G} s_h^{(w_i)}h$, i=1,2,...,m, for some $s_h^{(u_i)}$, $s_h^{(w_i)}$ in S. Let $x_i = \sum_{h \in G} s_h^{(u_i)}$ and $y_i = s_1^{(w_i)}$, i=1,2,...,m. We prove that $\{x_i, y_i \mid i=1,2,...,m\}$ is a G-Galois system for S over S^G . First, we prove that

- (1) $g(s_h^{(w_i)}) = s_{gh}^{(w_i)}$ for all i = 1, 2, ..., m and all $g, h \in G$,
- (2) $\sum_{i=1}^{m} u_i w_i = 1$

For (1), since $w_i = gw_i$, we have

$$\sum_{k \in G} s_k^{(w_i)} k = \sum_{h \in G} s_h^{(w_i)} h = g \sum_{h \in G} s_h^{(w_i)} h = \sum_{h \in G} g(s_h^{(w_i)}) h = \sum_{h \in G} g(s_h^{(w_i)}) gh.$$
 (3.1)

Since $\{k \mid k \in G\}$ is a basis of S * G over S, $g(s_h^{(w_i)}) = s_{gh}^{(w_i)}$.

For (2), since $\{u_i, v_i \mid i = 1, 2, ..., m\}$ is a G'-Galois system for S * G over $(S * G)^{G'}$, $\sum_{i=1}^m u_i h'(v_i) \sum_{i=1}^m u_i h v_i h^{-1} = \delta_{1,h}$. Therefore,

$$1 = \sum_{h \in G} \delta_{1,h} h = \sum_{h \in G} \left(\sum_{i=1}^{m} u_i h v_i h^{-1} \right) h = \sum_{h \in G} \sum_{i=1}^{m} u_i h v_i = \sum_{i=1}^{m} u_i \sum_{h \in G} h v_i = \sum_{i=1}^{m} u_i w_i. \quad (3.2)$$

Next, we prove that $\{x_i, y_i \mid i = 1, 2, ..., m\}$ is a G-Galois system for S over S^G . By using (1) and (2), we get

$$1 = \sum_{i=1}^{m} u_{i} w_{i} = \sum_{i=1}^{m} \left(\sum_{h \in G} s_{h}^{(u_{i})} h \right) \left(\sum_{k \in G} s_{k}^{(w_{i})} k \right)$$

$$= \sum_{i=1}^{m} \sum_{h \in G} \sum_{k \in G} s_{h}^{(u_{i})} h s_{k}^{(w_{i})} k = \sum_{i=1}^{m} \sum_{h \in G} \sum_{k \in G} s_{h}^{(u_{i})} h \left(s_{k}^{(w_{i})} \right) h k$$

$$= \sum_{i=1}^{m} \sum_{g \in G} \sum_{h k = g} s_{h}^{(u_{i})} h \left(s_{k}^{(w_{i})} \right) h k = \sum_{i=1}^{m} \sum_{g \in G} \sum_{h k = g} s_{h}^{(u_{i})} s_{hk}^{(w_{i})} h k \quad \text{by (1)}$$

$$= \sum_{i=1}^{m} \sum_{g \in G} \sum_{h \in G} s_{h}^{(u_{i})} s_{hh^{-1}g}^{(w_{i})} h h^{-1} g \quad \text{(since } hk = g, \ k = h^{-1}g)$$

$$= \sum_{i=1}^{m} \sum_{g \in G} \sum_{h \in G} s_{h}^{(u_{i})} s_{g}^{(w_{i})} g = \sum_{g \in G} \left(\sum_{i=1}^{m} \sum_{h \in G} s_{h}^{(u_{i})} s_{g}^{(w_{i})} \right) g.$$

Hence, $\sum_{i=1}^{m} \sum_{h \in G} s_h^{(u_i)} s_g^{(w_i)} = \delta_{1,g}$. But $x_i = \sum_{h \in G} s_h^{(u_i)}$, $y_i = s_1^{(w_i)}$, and $g(s_1^{(w_i)}) = s_g^{(w_i)}$ by (1). So,

$$\sum_{i=1}^{m} x_{i} g(y_{i}) = \sum_{i=1}^{m} \sum_{h \in G} s_{h}^{(u_{i})} g(s_{1}^{(w_{i})}) = \sum_{i=1}^{m} \sum_{h \in G} s_{h}^{(u_{i})} s_{g}^{(w_{i})} = \delta_{1,g}.$$
 (3.4)

We show more properties of the *G*-Galois extension *S* of S^G when S*G is a G'-Galois extension of $(S*G)^{G'}$ which possesses a property.

THEOREM 3.2. If S * G is a G'-Galois extension of $(S * G)^{G'}$ which is a projective separable C^G -algebra, then S is a G-Galois extension of S^G which is also a projective separable C^G -algebra.

PROOF. Since S * G is a G'-Galois extension of $(S * G)^{G'}$, S is a G-Galois extension of S^G by Theorem 3.1. Again, since S * G is a G'-Galois extension of $(S * G)^{G'}$, it is a separable extension [5]. Also, $(S * G)^{G'}$ is a separable C^G -algebra, so S * G is a separable C^G -algebra by the transitivity of separable extensions. Next, we claim that S is also a separable C^G -algebra. In fact, since S is a unit in S, the trace map: $(1/n)(\operatorname{tr}_G(S)) : S \to S^G \to S^G \to S^G$ is a splitting homomorphism of the imbedding homomorphism of S^G into S as a two sided S^G -module. Hence, S^G is a direct summand of S. Since S is a direct summand of S is a separable S^G -module, S^G is so of S is a S^G -module. Moreover, S is a finitely generated and projective S^G -module by the transitivity of the finitely generated and projective modules. This implies that S^G is a projective separable S^G -algebra by S-proof of Lem. 2, p. 120].

THEOREM 3.3. If

- (i) S * G is a G'-Galois extension of $(S * G)^{G'}$
- (ii) $(S*G)^{G'}$ is an H-separable extension of S^G which is a separable C^G -algebra, then S is a G-Galois extension of S^G which is an Azumaya C^G -algebra.

PROOF. Since S*G is a G'-Galois extension of $(S*G)^{G'}$ with an inner Galois group G', S*G is an H-separable extension of $(S*G)^{G'}$ [7, Prop. 4]. By hypothesis, $(S*G)^{G'}$ is an H-separable extension of S^G , so S*G is an H-separable extension of S^G by the transitivity of H-separable extensions. Noting that n is a unit of S, we have S^G is an S^G -direct summand of S. But S is a direct summand of S*G as an S^G -module, so S^G is a direct summand of S*G as an S^G -module. Thus, $V_{S*G}(V_{S*G}(S^G)) = S^G$ [6, Prop. 1.2]. This implies that the center of S*G is contained in S^G , and so the center of S*G is C^G . Therefore, S*G is an Azumaya C^G -algebra. Consequently, S is a G-Galois extension of S^G which is an Azumaya C^G -algebra [2, Thm. 3.1].

4. Galois commutator subrings. In [7], the class of G-Galois and H-separable extension was studied. Let A be a G-Galois and H-separable extension of A^G and let $V_A(A^G)$ be the commutator subring of A^G in A. Then, $V_A(A^G)$ is a central (G/I)-Galois algebra if and only if $A^I = A^G(V_A(A^G))$, where $I = \{g \in G \mid g(d) = d \text{ for all } d \in V_A(A^G)\}$ [7, Thm. 6.3]. Applying such an equivalence condition to a G'-Galois extension S * G, we characterize a Galois commutator subring $V_{S*G}((S*G)^{G'})$ in terms of elements in S^G .

In the following, we denote the center of G by P and the center S * G by Z. By a direct computation, we have the following.

LEMMA 4.1. (1) Let $I = \{g_i \in G \mid g_i'(d) = d \text{ for each } d \in ZG\}$. Then I = P.

(2) Let x be an element in $(S*G)^{G'}$. Then $x = \sum_{i=1}^n s_i g_i$ such that $g_j(s_i) = s_k$ whenever $g_j g_i g_j^{-1} = g_j'(g_i) = g_k \in G$.

LEMMA 4.2. Assume that S * G is a G'-Galois extension of $(S * G)^{G'}$ and an Azumaya Z-algebra. Then $V_{S*G}((S*G)^{G'})$ is a central (G'/P')-Galois algebra if and only if $S^PG = (S*G)^{G'}G$.

PROOF. Since n is a unit in Z and S*G is an Azumaya Z-algebra, $V_{S*G}((S*G)^{G'}) = V_{S*G}(V_{S*G}(ZG)) = ZG$ by the commutator theorem for Azumaya algebras [4, Thm. 4.3] (for ZG is a separable Z-subalgebra). Moreover, since S*G is a G'-Galois extension of $(S*G)^{G'}$ with an inner Galois group G', it is an H-separable extension of $(S*G)^{G'}$ [7, Prop. 4]. Hence, $V_{S*G}((S*G)^{G'})(=ZG)$ is a central (G'/P')-Galois algebra if and only if $(S*G)^{P'} = (S*G)^{G'}ZG$ by [7, Lem. 4.1(1) and Thm. 6.3]. Clearly, $Z \subset (S*G)^{G'}$, and so $(S*G)^{G'}ZG = (S*G)^{G'}G$. Noting that P is the center of G, we have $(S*G)^{P'} = S^PG$. Thus, the lemma holds.

THEOREM 4.4. Assume that S * G is a G'-Galois extension of $(S * G)^{G'}$ and an Azumaya Z-algebra. Then ZG is a central (G'/P')-Galois algebra if and only if, for every $s \in S^P$, there exists an $n \times n$ matrix $[s_{k,h}]_{k,h \in G}$ for some $s_{k,h}$ in S such that

- (1) $\sum_{h \in G} s_{gh^{-1},h} = \delta_{1,g} s$ (therefore, $s = \sum_{h \in G} s_{h^{-1},h}$), and
- (2) $g(s_{k,h}) = s_{qkq^{-1},h}$ for every $g \in G$.

PROOF. (\Longrightarrow) Assume that ZG is a central (G'/P')-Galois algebra. Then by Lemma 4.2, $S^PG = (S*G)^{G'}G$. Therefore, for every $s \in S^P$, $s = s1 \in S^PG = (S*G)^{G'}G$. Hence, there exists $\sum_{k \in G} s_{k,h} k \in (S*G)^{G'}$ for each $h \in G$ such that

$$s = s1 = \sum_{h \in G} \left(\sum_{k \in G} s_{k,h} k \right) h = \sum_{g \in G} \left(\sum_{k h = g} s_{k,h} \right) g = \sum_{g \in G} \left(\sum_{h \in G} s_{gh^{-1},h} \right) g. \tag{4.1}$$

Since $\{g \mid g \in G\}$ is a basis of S * G over S, we have $\sum_{h \in G} s_{gh^{-1},h} = \delta_{1,g}s$ and, therefore, $\sum_{h \in G} s_{h^{-1},h} = s$. Furthermore, for each $h \in G$, $\sum_{k \in G} s_{k,h}k \in (S * G)^{G'}$, i.e., $\sum_{k \in G} s_{k,h}k = g\sum_{k \in G} s_{k,h}kg^{-1} = \sum_{k \in G} g(s_{k,h})gkg^{-1}$ for every $g \in G$. Therefore, $g(s_{k,h}) = s_{gkg^{-1},h}$ for every $g \in G$ since $\{k \mid k \in G\}$ is a basis of S * G over S.

 (\Leftarrow) Assume that, for every $s \in S^P$, there exists an $n \times n$ matrix $[s_{k,h}]_{k,h \in G}$ such that $\sum_{h \in G} s_{gh^{-1},h} = \delta_{1,g} s$ and $g(s_{k,h}) = s_{gkg^{-1},h}$ for every $g \in G$. Then

$$g\left(\sum_{k\in G} s_{k,h}k\right)g^{-1} = \sum_{k\in G} g(s_{k,h})gkg^{-1} = \sum_{k\in G} s_{gkg^{-1},h}gkg^{-1} = \sum_{k\in G} s_{k,h}k,$$
(4.2)

that is $\sum_{k \in G} s_{k,h} k \in (S * G)^{G'}$ for every $h \in G$. Therefore,

$$s = \sum_{g \in G} \delta_{1,g} sg = \sum_{g \in G} \left(\sum_{h \in G} s_{gh^{-1},h} \right) g = \sum_{g \in G} \left(\sum_{kh=g} s_{k,h} \right) g$$

$$= \sum_{h \in G} \left(\sum_{k \in G} s_{k,h} k \right) h \in (S * G)^{G'} G.$$

$$(4.3)$$

Hence, for every $s \in S^P$ and every $g \in G$, $sg \in (S*G)^{G'}GG = (S*G)^{G'}G$, that is $S^PG \subseteq (S*G)^{G'}G$.

On the other hand, for any $\sum_{k \in G} s_k k \in (S * G)^{G'}$, we have

$$\sum_{k \in G} s_k k = g \sum_{k \in G} s_k k g^{-1} = \sum_{k \in G} g(s_k) g k g^{-1} \quad \text{for every } g \in G.$$
 (4.4)

Therefore, $g(s_k) = s_{gkg^{-1}}$ for every $g \in G$ since $\{k \mid k \in G\}$ is a basis of S * G over S. In particular, for every $p \in P$, $p(s_k) = s_{pkp^{-1}} = s_k$, i.e., $s_k \in S^P$ for every $k \in G$ and, therefore, $\sum_{k \in G} s_k k \in S^P G$ if $\sum_{k \in G} s_k k \in (S * G)^{G'}$. Hence, $(S * G)^{G'} \subseteq S^P G$. Therefore, $(S * G)^{G'} G \subseteq S^P G G = S^P G$. Hence, $S^P G = (S * G)^{G'} G$. So, $(S * G)^{P'} = S^P G = (S * G)^{G'} G = (S * G)^{G'} ZG$. Consequently, by Lemma 4.2, ZG is a central (G'/P')-Galois algebra.

ACKNOWLEDGEMENT. This work was supported by a Caterpillar Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the support.

REFERENCES

- [1] R. Alfaro and G. Szeto, The centralizer on H-separable skew group rings, Rings, Extensions, and Cohomology (Evanston, IL, 1993), Dekker, New York, 1994, pp. 1-7. MR 95g:16027. Zbl 812.16038.
- [2] _____, Skew group rings which are Azumaya, Comm. Algebra 23 (1995), no. 6, 2255-2261.
 MR 96b:16027. Zbl 828.16030.
- [3] ______, On Galois extensions of an Azumaya algebra, Comm. Algebra 25 (1997), no. 6, 1873-1882. MR 98h:13007. Zbl 890.16017.
- [4] F. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, vol. 181, Springer-Verlag, Berlin, 1971. MR 43#6199. Zbl 215.36602.
- [5] F. R. DeMeyer, *Some notes on the general Galois theory of rings*, Osaka J. Math. 2 (1965), 117-127. MR 32#128. Zbl 143.05602.
- [6] K. Sugano, Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265–270. MR 37#1412. Zbl 199.07901.
- [7] ______, On a special type of Galois extensions, Hokkaido Math. J. 9 (1980), no. 2, 123-128.MR 82c:16036. Zbl 467.16005.

SZETO AND XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625, USA