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Abstract. An open problem given by Kocic and Ladas in 1993 is generalized and consid-
ered. A sufficient condition is obtained for each solution to tend to the positive steady-state
solution of the systems of nonlinear Volterra difference equations of population models
with diffusion and infinite delays by using the method of lower and upper solutions and
monotone iterative techniques.
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1. Introduction. We consider the r -dimensional Euclidean spaceRr . For x=(x1, . . . ,
xr )T ∈ Rr , we define its norm ‖x‖ =maxi∈I |xi|, where I = {1, . . . ,r}. In Rr , we intro-
duce a cone P = {x : xi ≥ 0, i∈ I}. Then it is a solid cone in Rr . It is easy to show that
P is normal, regular, minimal, strong minimal and regenerated (see Amann [3]). For
two elements x and y= (y1, . . . ,yr )T in P , we introduce a partial ordering ≤ such that
x< (or=)y if and only if xi < (or=)yi for i∈ I and x≤ ymeans that xi ≤yi for i∈ I.
So, (Rr,≤) becomes a partial ordered Banach space. In Rr , we also define an operation
of multiplication ⊗ by x⊗y= (x1y1, . . . ,xryr )T . In this way, (Rr ,+,⊗) is a partially or-
dered commutative ring by installing both this operation ⊗ and the ordinary addition
+ with the zero element 0= (0, . . . ,0)T and the unit element u = (1, . . . ,1)T . Define an
ordered interval [·,·] in Rr by [x,y]= {z∈Rr : x≤ z≤ y}.
In the r×r -dimensional matrix spaceRr×r , we also introduce a partial ordering ≤. If

X = (xij)r×r and Y = (yij)r×r are two elements in Rr×r , then define that X < (or=)Y
if and only if xij < (or =)yij for i,j ∈ I and X ≤ Y means that xij ≤ yij for i,j ∈ I.
Therefore, Rr×r also becomes a partially ordered Banach space.
Consider the following systems of nonlinear Volterra difference equations of popu-

lation model with diffusion and infinite delays:

∆2um,n =A∆2
1um−1,n+1+um,n⊗

(
b−Cum,n−

∞∑
i=0

Dium,n−i

)
(1.1)

for (m,n) ∈ Ω × Z+(0) := {1, . . . ,M1} × ··· × {1, . . . ,Ms} × {0,1, . . .}, where ∆1 and
∆2 are forward partial difference operators, ∆2

1 is a discrete Laplacian operator (see
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[7, 14, 15]), A,C > (0)r×r are diagonal matrices, b∈Rr and b> 0, u·,· ∈Rr is a double
vector sequence (only in form), D0 = (0)r×r and Di ∈Rr×r for i∈ Z+(0).
Together with (1.1), we consider the homogeneous Neumann boundary condition

∆Num−1,n+1 = 0 for (m,n)∈ ∂Ω×Z+(0) (1.2)

and the initial condition

um,j =φm,j for (m,n)∈Ω×Z−(0) :=Ω×{. . . ,−1,0}, (1.3)

where ∆N is the normal difference, ∂Ω is the boundary of Ω (see [15]) and φm,j ∈ P
for (m,n)∈Ω×Z−(0).
By a solution, we mean a double vector sequence (in form) {um,n}, which is defined

on (m,n) ∈ Ω×Z := Ω×Z+(0)∪Z−(0), satisfies (1.1), (1.2), and (1.3), respectively,
when (m,n)∈Ω×Z+(0), (m,n)∈ ∂Ω×Z+(0), and (m,j)∈Ω×Z−(0).
For any given initial and boundary condition (1.2) and (1.3), we can show that the ini-

tial and boundary value problem (1.1), (1.2), and (1.3) have a unique solution (see [16]).
We suppose that

∞∑
i=0
|Di| =D <∞,

0< ‖φ‖ = sup
(m,j)∈Ω×Z−(0)

φm,j <∞.
(1.4)

We write throughout this paper that

Dn =
n∑
i=0
|Di|, δn =

n∑
i=0

Di, D±
n =

Dn±δn

2
for n∈ Z+(0). (1.5)

Then Dn, D±
n are all nonnegative, nondecreasing and bounded above by D.

Since P is regular, we can let D± = limn→∞D±
n . It is easy to see that

D+
n+D−

n =Dn, D+
n−D−

n = δn, D++D− =D, D+−D− = δ=
∞∑
i=0

Di. (1.6)

Assume that

Cu>D−u. (1.7)

From Berman and Plemmons [4] or Siljak [18], we know that C−D− is a nonsingular
and inverse-positive Metzlerian matrix, i.e., C−D− is invertible and det(C−D−)−1 > 0.
Then (C−D−)−1b> 0. Since C+δ > C−D−, we know, from Metzlerian matrix theory,
that C+δ is invertible and det(C+δ)−1 > 0.
In addition, we let

b−D+(C−D−)−1b> 0 (1.8)

and

p=max{(C−D−)−1b,‖φ‖}. (1.9)
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It is obvious that the nonlinear Volterra difference equation of population model

∆xn = xn

(
b−cxn−

∞∑
i=0

dixn−i

)
for n∈ Z+(0) (1.10)

is a special case when r = 1 and without diffusion, where ∆ is the forward difference
operator (cf. [2, 7]).
In Kocic and Ladas [10], the following open problem was given.

Open problem. Obtain stability and oscillation results for (1.10).
Recently, many mathematicians have approached some problems of (1.10). See, e.g.,

Karakostas, Philos and Sficas [6], Kiventidis [8], Kocic and Ladas [9, 10], Kuruklis and
Ladas [11], and Rodrigues [12], etc. In [14, 15, 16, 17], some problems for the nonlinear
or linear Volterra difference equation of population models are considered.
It is easy to show that (1.1) has only two steady-state solutions um,n ≡ 0 and um,n ≡

(C+δ)−1b. The purpose of this paper is to give a sufficient condition for each solution
of (1.1) to tend to the positive steady-state solution um,n ≡ (C + δ)−1b of (1.1) by
using the method of lower and upper solutions and monotone iterative techniques
(cf. [1, 13]).

2. Some lemmas

Lemma 2.1. Let (1.4), (1.7), (1.8), and (1.9) hold. Suppose that {um,n} is the unique
solution of (1.1), (1.2), and (1.3). Then,

um,n ∈
[
0,p

]
for (m,n)∈Ω×Z+(0). (2.1)

Proof. Consider the initial and boundary value problems

∆2vm,n ≤A∆2
1vm−1,n+1+vm,n⊗

(
b−Cvm,n−

∞∑
i=0

Divm,n−i

)
for (m,n)∈Ω×Z+(0),

∆Nvm−1,n+1 = 0≤ 0 for (m,n)∈ ∂Ω×Z+(0), (2.2)

vm,j = 0≤φm,j for (m,n)∈Ω×Z−(0)

and

∆2wm,n ≥A∆2
1wm−1,n+1+wm,n⊗

(
b−Cwm,n−

∞∑
i=0

Diwm,n−i
)

for (m,n)∈Ω×Z+(0),

∆Nwm−1,n+1 = 0≥ 0 for (m,n)∈ ∂Ω×Z+(0), (2.3)

wm,j = p≥φm,j for (m,n)∈Ω×Z−(0).

Since

b−(C+δ)p≤ b−Cp+D−p= b−(C−D−)p≤ 0, (2.4)

it is easy to see that v≡ 0 and wm,n ≡ p are, respectively, solutions of (2.2) and (2.3),
i.e., a pair of lower and upper solutions of (1.1), (1.2), and (1.3). Therefore, (2.1) holds.
This completes the proof.
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Lemma 2.2. Let (1.4), (1.7), (1.8), and (1.9) hold. Suppose that {p(1)
n } is the unique

solution of the Cauchy problem

∆p(1)
n = p(1)

n ⊗(b−Cp(1)
n +D−p

)
for n∈ Z+(0),

p(1)
j = p for j ∈ Z−(0).

(2.5)

Then {p(1)
n } is nonincreasing and

p(1)
n ∈ [C−1(b+D−p

)
,p
]

for n∈ Z+(0). (2.6)

Proof. Consider the Cauchy problems

∆v(1)
n ≤ v(1)

n ⊗(b−Cv(1)
n +D−p

)
for n∈ Z+(0),

v(1)
j = C−1(b+D−p)≤ p for j ∈ Z−(0),

(2.7)

and

∆w(1)
n ≥w(1)

n ⊗(b−Cw(1)
n +D−p

)
for n∈ Z+(0),

w(1)
j = p≥ p for j ∈ Z−(0).

(2.8)

It is easy to see that v(1)
n ≡ C−1(b+D−p) and w(1)

n ≡ p are, respectively, solutions of
(2.7) and (2.8), i.e., a pair of lower and upper solutions of (2.5). So, (2.6) holds.
By (2.6), we have that ∆p(1)

n ≤ 0. Hence, {p(1)
n } is nonincreasing. The proof is thus

complete.

Lemma 2.3. Let (1.4), (1.7), (1.8), and (1.9) hold. Suppose that {um,n} and {p(1)
n } are,

respectively, the unique solutions of (1.1), (1.2), (1.3), and (2.5). Then

um,n ∈
[
0,p(1)

n
]

for (m,n)∈Ω×Z+(0). (2.9)

Proof. Let J± satisfy that J+∪J− = Z+(0) and J+∩J− =∅, the empty set, and be
such that Di ≥ (0)r×r for i∈ J+ and Di < (0)r×r for i∈ J−. Write δ± =∑i∈J±Di. Then
we must have δ+ =D+ and −δ− =D−. Hence, using (2.6) we have,

−
∞∑
i=0

Dip
(1)
n−i =−

∑
i∈J+

Dip
(1)
n−i−

∑
i∈J−

Dip
(1)
n−i ≤−

∑
i∈J−

Dip
(1)
n−i ≤−δ−p=D−p,

b−Cp(1)
n −

∞∑
i=0

Dip
(1)
n−i ≤ b−Cp(1)

n +D−p for n∈ Z+(0).

(2.10)

Therefore,wm,n ≡ p(1)
n is a solution of (2.3) and (2.9) holds. Thus, the proof is complete.

For the regularity of P , we can let p(1) = limn→∞p
(1)
n . By virtue of (2.5), we can obtain

p(1) = C−1(b+D−p). It follows that

limsup
n �→∞

max
m∈Ω

um,n ≤ p(1). (2.11)
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So, for any ε= (ε, . . . ,ε)T > 0, there exist an n1 > 0 and an n2 >n1 such that

um,n < p(1)+ε for n∈ Z+
(
n1
)

(2.12)

and

(0)r×r ≤D−−D−
n−n1−1 < (ε)r×r for n∈ Z+(n2). (2.13)

Lemma 2.4. Let (1.4), (1.7), (1.8), and (1.9) hold. Suppose that {p(2)
n } is the unique

solution of the Cauchy problem

∆p(2)
n = p(2)

n ⊗(b−Cp(2)
n +D−(p1+ε

)+ε⊗p) for n∈ Z+(n2),

p(2)
j = p1+ε for j ∈ Z−(n2).

(2.14)

Then p(2)
n is nonincreasing and

um,n ∈
[
0,p(2)

n
]

for (m,n)∈Ω×Z+(n2). (2.15)

Proof. If (2.15) is not true, then there exist an m3 ∈Ω and an n3 > n2 such that
um,n ≤ p(2)

n for n2 ≤n<n3 and m∈Ω and um3,n3 > p(2)
n .

Let xm,n = um,n−p(2)
n . Then xm,n ≤ 0 for n2 ≤n<n3 and m∈Ω and

xm3,n3 > 0. (2.16)

We can derive, from (2.14),

A∆2
1xm−1,n+1−∆2xm,n+ym,n⊗xm,n = zm,n for (m,n)∈Ω×Z+(n2), (2.17)

where

ym,n = b−Cum,n−
∞∑
i=0

Dium,n−i−Cp(2)
n for (m,n)∈Ω×Z+(n2),

zm,n = p(2)
n ⊗

(
D−(p1+ε

)+ ∞∑
i=0

Dium,n−i+ε⊗p
)

for (m,n)∈Ω×Z+(n2).
(2.18)

It is easy to show that ym,n is bounded. We can see in the following that zm,n ≥ 0.
Indeed, from (2.12) and (2.13), we have

−
∞∑
i=0

Dium,n−i =−
∞∑
i=0

(
∆δi−1

)
um,n−i

=−
∞∑
i=0

(
∆D+

i−1
)
um,n−i+

∞∑
i=0

(
∆D−

i−1
)
um,n−i

≤
n−n1−1∑

i=0

(
∆D−

i−1
)
um,n−i+

∞∑
i=n−n1

(
∆D−

i−1
)
um,n−i

≤D−
n−n1−1

(
p1+ε

)+(D−−D−
n−n1−1

)
p

≤D−(p1+ε
)+(ε)r×rp.

(2.19)

So, zm,n ≥ 0 for (m,n) ∈ Ω×Z+(n2) from (2.18) and (2.19). It follows, from (2.17),
that

∆2xm,n ≤A∆2
1xm−1,n+1+ym,n⊗xm,n. (2.20)
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Consider the initial and boundary problems

∆2vm,n =A∆2
1vm−1,n+1+ym,n⊗vm,n for (m,n)∈Ω×Z+(n2),

∆Nvm−1,n+1 = 0 for (m,n)∈ ∂Ω×Z+(n2),

vm,n2 = 0 for m∈Ω
(2.21)

and

∆2xm,n ≤A∆2
1xm−1,n+1+ym,n⊗xm,n for (m,n)∈Ω×Z+(n2),

∆Nxm−1,n+1 ≤ 0 for (m,n)∈ ∂Ω×Z+(n2),

xm,n2 ≤ 0 for m∈Ω.
(2.22)

Obviously, vm,n ≡ 0 is the unique solution of (2.21). Comparing (2.21) with (2.22), we
see that xm,n ≤ 0 for (m,n)∈Ω×Z+(n2). But, this contradicts (2.16). Therefore, (2.15)
holds.
Similarly to the proof of Lemma 2.2, we can easily show that p(2)

n is nonincreasing,
which completes the proof.

Remark 2.5. As a matter of fact, we can directly use the maximum principle (see
Cheng [5]) to obtain the contradiction.
We can obtain from (2.14) and the regularity of P that

lim
n→∞p

(2)
n = C−1

(
b+D−(p1+ε

)+ε⊗p). (2.23)

Therefore,

limsup
n �→∞

max
m∈Ω

um,n ≤ C−1
(
b+D−(p1+ε

)+ε⊗p). (2.24)

Because ε is arbitrary, we have

limsup
n �→∞

max
m∈Ω

um,n ≤ C−1
(
b+D−p1

)
:= p2. (2.25)

Define a sequence {p%} as follows:

p% = C−1
(
b+D−p%−1

)
for % ∈ Z+(1),

p0 = p.
(2.26)

Lemma 2.6. Let (1.4), (1.7), (1.8), and (1.9) hold. Suppose that {p%} is defined by
(2.26). Then, {p%} is nonincreasing and

(C−D−)−1b∈ [0,p%
]

for % ∈ Z+(0). (2.27)

Proof. We rewrite (2.26) as follows:

∆p% = C−1D−∆p%−1 for % ∈ Z+(1). (2.28)

We know from ∆p0 = p1 −p ≤ 0 that ∆p% ≤ 0 for all % ∈ Z+(0). That is, {p%} is
nonincreasing.
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Noting that p ≥ (C−D−)−1b, we have from (2.26) and (2.6), that Cp1 = b+D−p ≥
b+D−p1. Hence, p1 ≥ (C−D−)−1b. By induction, we obtain (2.27). This completes the
proof.

Because P is regular, we let γ = lim%→∞p(%). From (2.26), we have γ = C−1(b+D−γ).
We can solve γ = (C−D−)−1b.
Repeating the above procedure, we can show that

limsup
n �→∞

max
m∈Ω

um,n ≤ γ. (2.29)

From (1.8), we have that b>D+γ. So, we can select an ε0 > 0 such that b>D+(γ+ε0)
+ε0⊗p.
Let 0< ε < ε0. By (2.19), there exist an n4 >n3 and an n5 >n4 such that

um,n < γ+ε for (m,n)∈Ω×Z+(n4),

(0)r×r ≤D+−D+
n−n4−1 < (ε)r×r for n∈ Z+(n5).

(2.30)

From (1.2), Lemma 2.1, and maximum principle (see Cheng [5]), we know that
um,n > 0 for (m,n)∈Ω×Z+(0) and can select an η > 0 such that minm∈Ωum,n5 ≥ 2η.
Consider the Cauchy problem

∆qn = qn⊗
(
b−Cqn−D+(γ+ε

)−ε⊗p) for n∈ Z+(n5),

qj = η for j ∈ Z−(n5).
(2.31)

Repeating an argument similar to the above, we can obtain that qn < um,n for
(m,n)∈Ω×Z+(n5) and

lim
n→∞qn = C−1

(
b−D+(γ+ε

)−ε
)⊗p. (2.32)

Consequently, we have

liminf
n �→∞ min

m∈Ω
um,n ≥ C−1

(
b−D+γ

)
(2.33)

for ε > 0 being arbitrary.
Define a pair of coupled sequences {µk} and {νk} as follows:

Cµk = b−D+νk−1+D−µk−1 for k∈ Z+(1),

Cνk = b+D−νk−1−D+µk−1 for k∈ Z+(1),

ν0 = (C−D−)−1b, µ0 = C−1
(
b−D+ν0

)
.

(2.34)

Lemma 2.7. Let (1.4), (1.7), (1.8), and (1.9) hold. Suppose that the pair of {µk} and
{νk} is defined by (2.34). Then,

[µ0,ν0]⊇ [µ1,ν1]⊇ ··· ⊇ [µk,νk]⊇ ··· for k∈ Z+(0) (2.35)

and

lim
k→∞

µk = lim
k→∞

νk = (C+δ)−1b. (2.36)
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Proof. Because

Cµ1 ≥ b−D+ν0 = Cµ0, Cν0 = (C−D−)ν0+D−ν0 = b+D−ν0 ≥ Cν1,

Cν0 ≥ (C−D−)ν0 = b≥ b−D+ν0 = Cµ0,
(2.37)

we have

[µ0,ν0]⊇ [µ1,ν1]. (2.38)

We can get (2.35) by induction.
By virtue of the regularity of P , we can let µ = limk→∞µk and ν = limk→∞νk. Then

we get

Cµ = b−D+ν+D−µ, Cν = b+D−ν−D+µ. (2.39)

Subtracting the two equalities in (2.39), we obtain C(µ − ν) = (D+ +D−)(µ − ν) =
D(µ−ν). So, (C−D)(µ−ν)= 0.
Since (C−D)ν0 = (C−D+−D−)(C−D−)−1b= b−D+(C−D−)−1b> 0 from (1.8), we

have, from the properties of Metzlerian matrices, that det(C −D)−1 > 0. Therefore,
µ = ν .
It follows from (2.39) that Cµ = b−D+µ+D−µ = b−δµ or (C+δ)µ = b. This leads

to (2.36). The proof is thus complete.

Lemma 2.8. Let (1.4), (1.7), (1.8), and (1.9) hold. Suppose that the pair of {µk} and
{νk} is defined by (2.34). Then,

[
liminf
n �→∞ min

m∈Ω
um,n, limsup

n �→∞
max
m∈Ω

um,n

]
∈ [µk,νk] for k∈ Z+(0). (2.40)

Proof. From the above, (2.40) holds for k= 0.
Take an ε1 > 0 such that ε1 < µ0 and

b>D+(ν0+ε1)−D−(µ0−ε1)+2ε1⊗p. (2.41)

For 0< ε < ε1, there exist an n6 >n5 and an n7 >n6 such that

µ0−ε < um,n < ν0+ε for (m,n)∈Ω×Z+(n6),

(0)r×r ≤D−Dn−n6−1 < (ε)r×r for n∈ Z+(n7).
(2.42)

Now, we consider the Cauchy problems

∆p̄n = p̄n⊗
(
b−Cp̄n+D−(ν0+ε)−D+(µ0−ε)+2ε⊗p) for n∈ Z+(n7),

p̄j = ν0+ε for j ∈ Z−(n7),
(2.43)

and

∆q̄n = q̄n⊗
(
b−Cq̄n−D+(ν0+ε)+D−(µ0−ε)−2ε⊗p) for n∈ Z+(n7),

q̄j = µ0−ε for j ∈ Z−(n7).
(2.44)
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Similarly to the above argument, we can obtain

q̄n < um,n < p̄n for (m,n)∈Ω×Z+(n7),

lim
n→∞ p̄n = C−1

(
b+D−(ν0+ε)−D+(µ0−ε)+2ε⊗p),

lim
n→∞ q̄n = C−1

(
b−D+(ν0+ε)+D−(µ0−ε)−2ε⊗p).

(2.45)

Letting ε→ 0, we see that (2.40) holds for k= 1.
Again, by repeating the above process, we have that (2.40) holds.

3. Main results and remarks. Using the seven lemmas in Section 2, together with
the property that P is normal, we get the following main result.

Theorem 3.1. Let (1.4), (1.7), (1.8), and (1.9) hold. Assume that {um,n} is the unique
solution of (1.1), (1.2), and (1.3). Then

lim
n→∞
m∈Ω

um,n = (C+δ)−1b. (3.1)

For (1.10), we consider the initial condition

xj =φj ≥ 0 for j ∈ Z−(0). (3.2)

Then, we have the following.

Corollory 3.2. Assume that c >
∑∞

i=0 |di|, 0< ‖φ‖ = supj∈Z−(0)φj <∞ and {xn}
is the unique solution of (1.10) with (3.2). Then

lim
n→∞xn = b

c+∑∞
i=0di

. (3.3)

Remark 3.3. It is well known that (1.1) describes the growth of r -species alive in
Ω, that the densities of the r -populations at placem and time n is um,n, and that the
summation represents the effects of the past history on the present growth rate in
mathematical ecology. Therefore, we can only consider the case ‖φ‖> 0. If this is not
the case, these species do not exist. The condition ‖φ‖<∞ means that the densities
of these species should be finite in practice. Relation (3.1) means that the growth of
these species goes to an equilibrium state under ordinary conditions. Equation (1.10)
is the case that we do not consider the places and diffusion.
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