ABEL-TYPE WEIGHTED MEANS TRANSFORMATIONS INTO ℓ

MULATU LEMMA and GEORGE TESSEMA

(Received 15 July 1999)

ABSTRACT. Let $q_k = \binom{k+\alpha}{k}$ for $\alpha > -1$ and $Q_n = \sum_{k=0}^n q_k$. Suppose $A_q = \{a_{nk}\}$, where $a_{nk} = q_k/Q_n$ for $0 \le k \le n$ and 0 otherwise. A_q is called the Abel-type weighted mean matrix. The purpose of this paper is to study these transformations as mappings into ℓ . A necessary and sufficient condition for A_q to be ℓ - ℓ is proved. Also some other properties of the A_q matrix are investigated.

Keywords and phrases. ℓ - ℓ methods, *G*-*G* methods, *G*_{*w*}-*G*_{*w*} methods.

2000 Mathematics Subject Classification. Primary 40A05, 40D25; Secondary 40C05.

1. Introduction. Throughout this paper, we assume that $\alpha > -1$ and Q_n is the partial sums of the sequence $\{q_k\}$, where q_k is as above. Let $A_q = \{a_{nk}\}$. Then the Abel-type weighted mean matrix, denoted by A_q , is defined by

$$a_{nk} = \begin{cases} \frac{q_k}{Q_n} & \text{for } 0 \le k \le n, \\ 0 & \text{for } k > n. \end{cases}$$
(1.1)

The A_q matrix is the weighted mean matrix that is associated with the Abel-type matrix introduced by M. Lemma in [5]. It is regular, indeed, totally regular.

2. Basic notation and definitions. Let $A = (a_{nk})$ be an infinite matrix defining a sequence summability transformation given by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k,$$
 (2.1)

where $(Ax)_n$ denotes the *n*th term of the image sequence Ax. Let y be a complex number sequence. Throughout this paper, we use the following basic notation and definitions:

- (i) $c = \{\text{The set of all convergent complex sequences}\},\$
- (ii) $\ell = \{ \gamma : \sum_{k=0}^{\infty} |\gamma_k| < \infty \},\$
- (iii) $\ell^{P} = \{ \gamma : \sum_{k=0}^{\infty} |\gamma_{k}|^{P} < \infty \},$
- (iv) $\ell(A) = \{ \gamma : A \gamma \in \ell \},\$
- (v) $G = \{y : y_k = O(r^k) \text{ for some } r \in (0,1)\},\$
- (vi) $G_w = \{y : y_k = O(r^k) \text{ for some } r \in (0, w), 0 < w < 1\}.$

DEFINITION 1. If *X* and *Y* are sets of complex number sequences, then the matrix *A* is called an *X*-*Y* matrix if the image Au of u under the transformation *A* is in *Y*, whenever u is in *X*.

3. Some basic facts. The following facts are used repeatedly.

(1) For any real number $\alpha > -1$ and any nonnegative integer *k*, we have

$$\binom{k+\alpha}{k} \sim \frac{k^{\alpha}}{\Gamma(\alpha+1)} \quad (\text{as } k \to \infty).$$
(3.1)

(2) For any real number $\alpha > -1$, we have

$$\sum_{k=0}^{n} \binom{k+\alpha}{k} = \binom{n+\alpha+1}{n}.$$
(3.2)

(3) Suppose $\{a_n\}$ is sequence of nonnegative numbers with $a_0 > 0$, that

$$A_n = \sum_{k=0}^n a_k \longrightarrow \infty.$$
(3.3)

Let

$$a(x) = \sum_{k=0}^{\infty} a_k x^k, \qquad A(x) = \sum_{k=0}^{\infty} A_k x^k,$$
 (3.4)

and suppose that

$$a(x) < \infty \quad \text{for } 0 < x < 1. \tag{3.5}$$

Then it follows that

$$(1-x)A(x) = a(x)$$
 for $0 < x < 1$. (3.6)

4. The main results

LEMMA 1. If A_q is an ℓ - ℓ matrix, then $1/Q \in \ell$.

PROOF. By the Knopp-Lorentz theorem [4], A_q is an ℓ - ℓ matrix implies that

$$\sum_{k=0}^{\infty} |a_{n,0}| < \infty, \tag{4.1}$$

and consequently we have $1/Q \in \ell$.

LEMMA 2. We have that $1/Q \in \ell$ if and only if $\alpha > 0$.

PROOF. By using (3.1), we have

$$\frac{1}{Q_n} \sim \frac{\Gamma(\alpha+2)}{n^{\alpha+1}} \tag{4.2}$$

and hence the assertion easily follows.

LEMMA 3. If $1/Q \in \ell$, then A_q is an ℓ - ℓ matrix.

PROOF. By Lemma 2, we have $\alpha > 0$. To show that A_q is an $\ell - \ell$ matrix, we must show that the condition of the Knopp-Lorentz theorem [4] holds. Using (3.1), we have

$$\sum_{n=0}^{\infty} |a_{nk}| = {\binom{k+\alpha}{k}} \sum_{n=k}^{\infty} \frac{1}{Q_n} = {\binom{k+\alpha}{k}} \sum_{n=k}^{\infty} \frac{1}{\binom{n+\alpha+1}{n}}$$

$$\leq M_1 K^{\alpha} \sum_{n=k}^{\infty} \frac{1}{n^{\alpha+1}} \quad \text{for some } M_1 > 0,$$

$$\leq M_1 M_2 k^{\alpha} \int_k^{\infty} \frac{dx}{x^{\alpha+1}} \quad \text{for some } M_2 > 0,$$

$$= \frac{M_1 M_2}{\alpha}.$$
(4.3)

Hence, by the Knopp-Lorentz theorem [4], A_q is an ℓ - ℓ matrix.

THEOREM 1. The following statements are equivalent: (1) A_q is an $\ell \cdot \ell$ matrix; (2) $1/Q \in \ell$; (3) $\alpha > 0$.

PROOF. The theorem easily follows by Lemmas 1, 2, and 3. \Box

REMARK 1. In Theorem 1, we showed that A_q is an $\ell - \ell$ matrix if and only if $1/Q \in \ell$. But the converse is not true in general for any weighted mean matrix W_p that corresponds to a sequence-to-sequence variant of the general J_p power series method of summability [1]. To see this, let

$$p_k = (\ln(k+2))^{\alpha}, \quad \alpha > 1.$$
 (4.4)

We show that $1/P \in \ell$ but W_p is not an ℓ - ℓ matrix. We have

$$P_{n} = \sum_{k=0}^{n} \left(\ln(k+2) \right)^{\alpha}$$

~ $\int_{0}^{n} \left(\ln(x+2) \right)^{\alpha} dx$ (by [6, Thm. 1.20])
~ $(n+2) \left(\ln(n+2) \right)^{\alpha}$, (4.5)

using integration by parts repeatedly. This yields

$$\frac{1}{P_n} \sim \frac{1}{(n+2)(\ln(n+2))^{\alpha}}$$
 (4.6)

and by the condensation test, it follows that $1/P \in \ell$.

Next, we show that W_p is not an ℓ - ℓ matrix by showing that the condition of the Knopp-Lorentz theorem [4] fails to hold. Using (4.6), it follows that

$$\sum_{n=0}^{\infty} |a_{nk}| = (\ln(k+2))^{\alpha} \sum_{n=k}^{\infty} \frac{1}{P_n}$$

$$\geq M_1 (\ln(k+2))^{\alpha} \sum_{n=k}^{\infty} \frac{1}{(n+2)(\ln(n+2))^{\alpha}} \quad \text{for some } M_1 > 0$$

$$\geq M_1 M_2 (\ln(k+2))^{\alpha} \int_k^{\infty} \frac{dx}{(x+2)(\ln(x+2))^{\alpha}} \quad \text{for some } M_2 > 0$$

$$= \frac{M_1 M_2}{\alpha - 1} (\ln(k+2)).$$
(4.7)

Thus, we have

$$\sup_{k} \left\{ \sum_{n=0}^{\infty} a_{nk} \right\} = \infty, \tag{4.8}$$

and hence W_p is not an ℓ - ℓ matrix.

COROLLARY 1. A_Q is an ℓ - ℓ matrix.

PROOF. Since $Q_n = \binom{n+\alpha+1}{n}$ and $\alpha > -1$ implies that $\alpha + 1 > 0$, the assertion easily follows by Theorem 1.

COROLLARY 2. A_q is an ℓ - ℓ matrix if and only if $\lim_{n \to \infty} (Q_n/nq_n) < 1$.

PROOF. By Theorem 1, A_q is an ℓ - ℓ matrix implies that $\alpha > 0$, and as a consequence we have $1/(\alpha + 1) < 1$. Now using (3.1), we have

$$\lim_{n} \left(\frac{Q_n}{nq_n} \right) = \lim_{n} \frac{n^{\alpha+1} \Gamma(\alpha+1)}{\Gamma(\alpha+2) n^{\alpha+1}} = \frac{1}{\alpha+1} < 1.$$
(4.9)

Conversely, if $\lim_{n}(Q_n/nq_n) < 1$, then it follows from (4.9) that $1/(\alpha + 1) < 1$ and consequently we have $\alpha > 0$, and hence, by Theorem 1, A_q is an ℓ - ℓ matrix.

COROLLARY 3. Suppose that $z_k = \binom{k+\beta}{k}$ and $\alpha < \beta$; then A_z is an $\ell - \ell$ matrix whenever A_q is an $\ell - \ell$ matrix.

PROOF. The corollary follows easily by Theorem 1.

LEMMA 4. If the Abel-type matrix $A_{\alpha,t}$ [5] is an ℓ - ℓ matrix, then $A_{\alpha+1,t}$ is also an ℓ - ℓ matrix.

PROOF. By the Knopp-Lorentz theorem [4], $A_{\alpha,t}$ is an ℓ - ℓ matrix implies that

$$\sup_{k} \left\{ \sum_{n=0}^{\infty} |a_{nk}| \right\} < \infty.$$
(4.10)

This is equivalent to

$$\sup_{k} \left\{ \binom{k+\alpha}{k} \sum_{n=0}^{\infty} t_n^k (1-t_n)^{\alpha+1} \right\} < \infty.$$
(4.11)

Now from (4.11), we can easily conclude that

$$\sup_{k} \left\{ \binom{k+\alpha+1}{k} \sum_{n=0}^{\infty} t_n^k (1-t_n)^{\alpha+2} \right\} < \infty.$$
(4.12)

Hence, $A_{\alpha+1,t}$ is an ℓ - ℓ matrix.

The next theorem compares the summability fields of the matrices A_q and $A_{\alpha,t}$ [5].

THEOREM 2. If $A_{\alpha,t}$ and A_q are ℓ - ℓ matrices, then $\ell(A_q) \subseteq \ell(A_{\alpha,t})$.

PROOF. Let $x \in \ell(A_q)$. Then we show that $x \in \ell(A_{\alpha,t})$. Let y be the A_q -transform of the sequence x. Then we have

$$y_n Q_n = \sum_{k=0}^n q_k x_k.$$
 (4.13)

Now since $y_n Q_n$ is the partial sums of the sequence q_x , using (3.6) it follows that

$$(1-t_n)\sum_{k=0}^{\infty} Q_k y_k t_n^k = \sum_{k=0}^{\infty} q_k x_k t_n^k.$$
(4.14)

This yields

$$(1-t_n)^{\alpha+2} \sum_{k=0}^{\infty} Q_k y_k t_n^k = (1-t_n)^{\alpha+1} \sum_{k=0}^{\infty} q_k x_k t_n^k,$$
(4.15)

and as a consequence we have $(A_{\alpha+1,t}y)_n = (A_{\alpha,t}x)_n$. By Lemma 4, $A_{\alpha,t}$ is an $\ell - \ell$ matrix implies that $A_{\alpha+1,t}$ is also an $\ell - \ell$ matrix, and from the assumption that $x \in \ell(A_q)$, it follows that $y \in \ell$. Consequently, we have $A_{\alpha+1,t}y \in \ell$ and this is equivalent to $A_{\alpha,t}x \in \ell$. Thus, $x \in \ell(A_{\alpha,t})$ and hence our assertion follows.

REMARK 2. Theorem 2 gives an important inclusion result in the ℓ - ℓ setting that parallels the famous inclusion result that exists between the power series method of summability and its corresponding weighted mean in the *c*-*c* setting [1].

LEMMA 5. Suppose $A = \{a_{nk}\}$ is an ℓ - ℓ matrix such that $a_{nk} = 0$ for k > n, m > s (both positive integers); then $\ell(A^s) \subseteq \ell(A^m)$, where the interpretation for A^s and A^m is as given in [6, p. 28].

THEOREM 3. If $B = A_q$ is an $\ell - \ell$ matrix, then B^m is also an $\ell - \ell$ matrix (for *m* a positive integer greater than 1.)

PROOF. Let $x \in \ell$. *B* is an ℓ - ℓ matrix implies that $x \in \ell(B)$. By Lemma 5, we have $\ell(B) \subseteq \ell(B^m)$ and hence it follows that $x \in \ell(B^m)$. Hence, B^m is an ℓ - ℓ matrix.

REMARK 3. Theorem 3 gives a result that goes parallel to a *c*-*c* result given on [6, Thm. 2.4, p. 28].

In Corollary 1, we showed that A_Q is an ℓ - ℓ matrix. Here, a question may be raised as to whether A_Q maps ℓ^p into ℓ for p > 1. But this is answered negatively by the following theorem.

201

THEOREM 4. A_Q does not map ℓ^p into ℓ for p > 1.

PROOF. Let $A_Q = \{b_{nk}\}$. Note that if $A_{Q,\alpha}$ maps ℓ^P into ℓ , then by [3, Thm. 2], we must have

$$\lim_{k} \sum_{n=1}^{\infty} |b_{nk}| = 0.$$
(4.16)

Let

$$R_n = \sum_{k=1}^n Q_k,$$
 (4.17)

then it follows that

$$\sum_{n=1}^{\infty} b_{nk} = \binom{k+\alpha+1}{k} \sum_{n=k}^{\infty} \frac{1}{R_n} = \binom{k+\alpha+1}{k} \sum_{n=k}^{\infty} \frac{1}{\binom{n+\alpha+2}{n}}$$

$$\geq M_1 k^{\alpha+1} \sum_{n=k}^{\infty} \frac{1}{n^{\alpha+2}} \quad \text{for some } M_1 > 0$$

$$\geq M_1 M_2 k^{\alpha+1} \int_k^{\infty} \frac{dx}{x^{\alpha+2}} \quad \text{for some } M_2 > 0$$

$$= \frac{M_1 M_2}{\alpha+1} > 0.$$
(4.18)

Thus, it follows that

$$\lim_{k} \sum_{n=1}^{\infty} |b_{nk}| > 0, \tag{4.19}$$

and hence A_Q does not map ℓ^p into ℓ for p > 1 by [3, Thm. 2].

Our next theorem has the form of an extension mapping theorem. It indicates that a mapping of A_q from G or G_w into ℓ can be extended to a mapping of ℓ into ℓ .

THEOREM 5. The following statements are equivalent:

- (1) A_q is an ℓ - ℓ matrix;
- (2) A_q is a G- ℓ matrix;
- (3) A_q is a G_w - ℓ matrix.

PROOF. Since *G* is a subset of ℓ and G_w a subset of *G*, (1) \Rightarrow (2) \Rightarrow (3) follow easily. The assertion that (3) \Rightarrow (1) follows by [7, Thm. 1.1] and Theorem 1.

COROLLARY 4. (1) A_Q is a $G - \ell$ matrix. (2) A_Q a $G_w - \ell$ matrix.

PROOF. Since A_Q is an ℓ - ℓ matrix by Corollary 1, the assertion follows by Theorem 5.

COROLLARY 5. (1) If A_q is a G-G matrix, then A_q is an ℓ - ℓ matrix. (2) If A_q is a G_w - G_w matrix, then A_q is an ℓ - ℓ matrix.

PROOF. The assertion follows easily by Theorem 5.

202

THEOREM 6. A_q is a G-G matrix if and only if $1/Q \in G$.

PROOF. If A_q is a *G*-*G* matrix, then the first column of A_q is must in *G*. This gives $1/Q \in G$ since $a_{n,0} = q_0/Q_n$. Conversely, suppose $1/Q \in G$. Then $1/Q_n \le M_1 r^n$ for $M_1 > 0$ and $r \in (0, 1)$. Now let $u \in G$, say $|u_k| \le M_2 t^k$ for some $M_2 > 0$ and $t \in (0, 1)$. Let *Y* be the A_q -transform of the sequence *u*. Then we have

$$|Y_n| \le M_1 M_2 r^n \sum_{k=0}^n \binom{k+\alpha}{k} t^k < M_1 M_2 r^n (1-t)^{-(\alpha+1)} < M_3 r^n \quad \text{for some} M_3 > 0.$$
(4.20)

Therefore, $Y \in G$ and hence it follows that A_q is a *G*-*G* matrix.

THEOREM 7. A_q is a G_w - G_w matrix if and only if $1/Q \in G_w$.

PROOF. The proof follows easily using the same steps as in the proof of Theorem 6 by replacing *G* with G_w .

LEMMA 6. If the Abel-type matrix $A_{\alpha,t}$ [5] is a G-G matrix, then $A_{\alpha+1,t}$ is also a G-G matrix.

PROOF. By [5, Thm. 7], $A_{\alpha,t}$ is *G*-*G* implies that $(1-t)^{\alpha+1} \in G$. But $(1-t)^{\alpha+1} \in G$ yields $(1-t)^{\alpha+2} \in G$, and hence by [5, Thm. 7], it follows that $A_{\alpha+1,t}$ is a *G*-*G* matrix.

LEMMA 7. If the Abel-type matrix $A_{\alpha,t}$ [5] is a G_w - G_w matrix, then $A_{\alpha+1,t}$ is also a G_w - G_w matrix.

PROOF. The assertion easily follows by replacing *G* with G_w in the proof of Lemma 6.

THEOREM 8. If $A_{\alpha,t}$ [5] and A_q are G-G matrices, then the $G(A_{\alpha,t})$ contains $G(A_q)$.

PROOF. The proof easily follows using the same techniques as in the proof of Theorem 3 by replacing ℓ with *G* and applying Lemma 6.

THEOREM 9. If $A_{\alpha,t}$ [3] and A_q are G_w - G_w matrices, then $G_w(A_{\alpha,t})$ contains $G_w(A_q)$.

PROOF. The proof easily follows using the same techniques as in the proof of Theorem 3 by replacing ℓ with G_w and applying Lemma 7.

REFERENCES

- D. Borwein and W. Kratz, On relations between weighted mean and power series methods of summability, J. Math. Anal. Appl. 139 (1989), no. 1, 178–186. MR 90j:40009. Zbl 714.40001.
- [2] G. H Fricke and J. A. Fridy, Sequence transformations that guarantee a given rate of convergence, Pacific J. Math. 146 (1990), no. 2, 239–246. MR 91i:40002. Zbl 722.40005.
- [3] J. A. Fridy, *Properties of absolute summability matrices*, Proc. Amer. Math. Soc. 24 (1970), 583–585. MR 42#724. Zbl 187.32103.
- [4] K. Knopp and G. G. Lorentz, *Beitrage zur absoluten Limitierung*, Arch. Math. 2 (1949), 10–16. MR 11,346i.
- [5] M. Lemma, *The Abel- type transformations into l*, to appear on the Internat. J. Math. Math. Sci.

- [6] R. E. Powell and S. M. Shah, Summability theory and applications, Prentice-Hall of India, New Delhi, 1988, Rev. ed. Zbl 665.40001.
- S. Selvaraj, Matrix summability of classes of geometric sequences, Rocky Mountain J. Math. 22 (1992), no. 2, 719-732. MR 93i:40002. Zbl 756.40005.

Lemma and Tessema: Savannah State University, Savannah, Georgia 31404, USA