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Abstract. In this paper, we characterize all the functions that attain their Flett mean
value at a particular point between the endpoints of the interval under consideration.
These functions turn out to be cubic polynomials and thus, we also characterize these.
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1. Introduction. In [5], Sahoo and Riedel gave a generalization of Flett’s mean value
theorem [2] as follows.

Theorem 1.1. Let f be a real valued function which is differentiable in [a,b], then
there is a point c ∈ (a,b) such that

f(c)−f(a)= (c−a)f ′(c)− 1
2
f ′(b)−f ′(a)

b−a (c−a)2. (1.1)

It is easy to see that if f ′(b)= f ′(a), then this reduces to Flett’s mean value theorem.
Aczél [1] and Haruki [3] used the Lagrange mean value theorem to ask the question

of which functions attained their mean value at a prescribed point c ∈ (a,b), in par-
ticular, at the midpoint c = (a+b)/2. The answer is that only quadratic polynomials
have the property that the mean value on any interval is attained at the midpoint of
that interval. A natural question to ask is this same question for the above mean value
theorem. It turns out that quadratic polynomials satisfy (1.1) for any c, but, more in-
terestingly, cubic polynomials satisfy it for c = (a+3b)/4. Thus, the main question
becomes whether cubic polynomials are the only functions having this property.
Following the approach in [1], we pexiderize (1.1) to obtain

f(c)−f(a)= (c−a)h(c)− 1
2
h(b)−h(a)
b−a (c−a)2, (1.2)

and now setting c = (a+3b)/4 yields

f
(
a+3b
4

)
−f(a)= 3

4
(b−a)h

(
a+3b
4

)
− 9
32
(b−a)(h(b)−h(a)) (1.3)

or

f
(
a+3b
4

)
−f(a)= 3

4
(b−a)


h
(
a+3b
4

)
− 3
8

(
h(b)−h(a))


. (1.4)

http://ijmms.hindawi.com
http://www.hindawi.com


104 T. RIEDEL AND M. SABLIK

More generally, setting c = sa+tb with s+t = 1 and 0< s, t < 1, we obtain

f(sa+tb)−f(a)= (sa+tb−a)h(sa+tb)− 1
2
h(b)−h(a)
b−a (sa+tb−a)2. (1.5)

The question we answer, in this paper, is: What are the functions f ,h that satisfy the
functional equations (1.4) and (1.5) for all a,b ∈R? In solving this functional equation,
we do not assume any regularity conditions on f or h.

2. Solution of the functional equation. The main work in solving this functional
equation is to reduce (1.4) and (1.5) to a form where we can apply the following result
by Székelyhidi [6, Thm. 9.5] and Wilson [7].

Theorem 2.1. Let G,S be commutative groups, n a nonnegative integer,ϕi,ψi ad-
ditive functions from G into G and let Ran(ϕi) ⊆ Ran(ψi)(i = 1, . . . ,n+ 1). Then if
h,hi,ϕi,ψi(i= 1, . . . ,n+1) satisfy

h(x)+
n+1∑
i=1
hi
(
ϕi(x)+ψi(t)

)= 0, (2.1)

then h is a generalized polynomial of degree at most n.

Thus, we are able to prove our main result (Theorem 2.2).

Theorem 2.2. The real valued functions f and h are solutions of the functional
equation (1.5) if and only if

f(x)=


Ax3+Bx2+Cx+D if s = 1

4 , t = 3
4 ,

Bx2+Cx+D if s ≠ 1
4 , t ≠

3
4 ,

(2.2)

h(x)=


3Ax2+2Bx+C if s = 1

4 , t = 3
4 ,

2Bx+C if s ≠ 1
4 , t ≠

3
4 .

(2.3)

Proof. It is easy to check that the functions f and h, given above, do satisfy the
functional equation (1.5).
To show that these are the only solutions, we start by rewriting (1.5) using s+t = 1

as follows:

f
(
a+t(b−a))−f(a)= t(b−a)[h(a+t(b−a))− t

2

[
h(b)−h(a)]]. (2.4)

Now, letting u= (b−a)/3, we obtain

f(a+3tu)−f(a)= 3tu
[
h(a+3tu)− t

2

[
h(3u+a)−h(a)]]. (2.5)

Now, we replace a by a−tu in (2.5) and get

f(a+2tu)−f(a−tu)= 3tu
[
h(a+2tu)− t

2

[
h
(
(3−t)u+a)−h(a−tu)]]. (2.6)
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Similarly, using a= a−2tu in (2.5), we get

f(a+tu)−f(a−2tu)= 3tu
[
h(a+tu)− t

2

[
h
(
(3−2t)u+a)−h(a−2tu)]]. (2.7)

Interchanging u with −u in (2.7) gives

f(a−tu)−f(a+2tu)=−3tu
[
h(a−tu)− t

2

[
h
(
(−3+2t)u+a)−h(a+2tu)]].

(2.8)

Comparing (2.8) and (2.6) gives, for a,u∈R,
[
h(a−tu)− t

2

[
h
(
(−3+2t)u+a)−h(a+2tu)]]

=
[
h(a+2tu)− t

2

[
h
(
(3−t)u+a)−h(a−tu)]], (2.9)

which simplifies to

t
[
h
(
(3−t)u+a)−h((−3+2t)u+a)−(h(a−tu)−h(a+2tu))]

=−2[h(a−tu)−h(a+2tu)]. (2.10)

Collecting the terms of h that have the same argument, we obtain

(2−t)h(a+2tu)−(2−t)h(a−tu)−th((3−t)u+a)+th((−3+2t)u+a)= 0.
(2.11)

Writing x = a+2tu and dividing (2.11) by (2−t) yields

h(x)−h(x−3tu)− t
2−t h

(
x+3(1−t)u)+ t

2−t h(x−3u)= 0. (2.12)

Thus, since t ≠ 0 is fixed, (2.12) is of the form of equation (2.1) and hence, h(x) is
a generalized polynomial of degree at most 2,

h(x)= β(x,x)+α(x)+C, (2.13)

where β is a symmetric, biadditive function and α is an additive function and C is an
arbitrary real constant.
Setting a= 0 in (2.5), we get

f(x)= x
[
h(x)− t

2

[
h
(
x
t

)
−h(0)

]]
+D, (2.14)

and substituting from (2.13), we obtain

f(x)= xβ(x,x)+xα(x)+Cx−x t
2
β
(
x
t
,
x
t

)
−x t

2
α
(
x
t

)
+D. (2.15)

To prove the continuity of f and h, let us substitute the solutions given in (2.15)
into (2.5). We see that both the left- and the right-hand side of (2.5) are polynomial
functions in a and u. The equality of the two sides implies, therefore, the equality
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of terms which are of the same degree with respect to a and u. First, comparing the
terms of degree 1 with respect to each variable, we get

3a
[
α(3tu)− t

2
α(3u)

]
+3tu

[
α(a)− t

2
α
(
a
t

)]
= 3tuα(a), (2.16)

whence, substituting ta instead of a and dividing by t/2, we get

tuα(a)= 2aα(tu)−taα(u). (2.17)

Dividing both sides by tua, we obtain

α(a)
a

= 2α(tu)
tu

− α(u)
u

∀a≠ 0≠u. (2.18)

In particular, α(a)/a does not depend on a and, therefore, α(a) = 2Ba for some
constant B.
Now, let us compare the terms of degree 2 with respect to a and those of degree 1

with respect to u. We get

6a
[
β(a,tu)− t

2
β
(
a
t
,u
)]
+3tu

[
β(a,a)− t

2
β
(
a
t
,
a
t

)]
= 3tuβ(a,a). (2.19)

Rearranging and simplifying, we get

6a
[
β(a,tu)− t

2
β
(
a
t
,u
)]
= 3t

2

2
β
(
a
t
,
a
t

)
, (2.20)

or, after substituting ta instead of a and dividing by 3t/2,

4a
[
β(ta,tu)− t

2
β(a,u)

]
= tuβ(a,a). (2.21)

Dividing (2.21) by a2u, we obtain

4

[
β(ta,tu)
au

− t
2
β(a,u)
au

]
= tβ(a,a)

a2
for a≠ 0≠u. (2.22)

Using the symmetry of β, we infer that

β(a,a)
a2

= β(u,u)
u2

∀u≠ 0≠ a, (2.23)

whence, it follows that β(a,a) = 3Aa2 for some constant A. Comparing this with
formulae for f and h, we see that

f(x)= 3A
(
1− 1

2t

)
x3+Bx2+Cx+D,

h(x)= 3Ax2+2Bx+C.
(2.24)

Inserting (2.24) into (1.5), we get, after simplifying,

27t
(
1− 1

2t

)
Aa2u+81t2

(
1− 1

2t

)
Aau2 = 9tAa2u+27t2Aau2 ∀a,u∈R, (2.25)

whence, it follows that A= 0 provided t ≠ 3/4. Note that, for t = 3/4, we have 3A(1−
(1/2t))=A and the assertion follows from (2.24).
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