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Abstract. We establish that the differential subordinations of the forms p(z)+γzp′(z)≺
h(A1,B1;z) or p(z)+γzp′(z)/p(z) ≺ h(A2,B2;z) implies p(z) ≺ h(A,B;z), where γ ≥ 0
and h(A,B;z)= (1+Az)/(1+Bz) with −1≤ B <A.
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1. Introduction. For each n ∈ N, let �(n) denote the class of functions f of the
form

f(z)= z+
∞∑

k=n+1
akzk (1.1)

which are analytic in the open unit disk � = {z ∈ C : |z| < 1}. We write � instead of
�(1). Also, let � denote the class of all functions in � which are univalent in � (see
Srivastava and Owa [9]).
For analytic functions g and h on � with g(0) = h(0), g is said to be subordinate

to h if there exists an analytic function ω on � such that ω(0) = 0, |ω(z)| < 1 and
g(z)= h(ω(z)) for z ∈�. We denote this subordination relation by

g ≺ h or g(z)≺ h(z) (z ∈�). (1.2)

For each A and B such that −1≤ B <A, let us define the function

h(A,B;z)= 1+Az
1+Bz , (z ∈�). (1.3)

It is well known that h(A,B;z), for −1≤ B ≤ 1, is the conformal map of the unit disk
onto the disk symmetrical with respect to the real axis having the center (1−AB)/(1−
B2) and the radius (A−B)/(1−B2). The boundary circle cuts the real axis at the points
(1−A)/(1−B) and (1+A)/(1+B). A function f(z)∈� is said to be in �∗[A,B] if

zf ′

f
≺ h(A,B;z), (z ∈�) (1.4)

and in �[A,B] if

1+ zf ′′

f ′
≺ h(A,B;z), (z ∈�). (1.5)

Note that f ∈�[A,B] if and only if zf ′ ∈�∗[A,B].
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In [3] Janowski introduced the class �(A,B) for −1≤ B <A≤ 1

�(A,B)=
{
p : p(z)≺ h(A,B;z),z ∈�

}
. (1.6)

For fixedn∈N= {1,2,3, . . .} the subclass�n(A,B) of�(A,B) containing functionsp of
the form p(z)= 1+pnzn+··· , z ∈�, was defined by Stankiewicz and Waniurski [10].
Further subclasses of �(A,B) were considered by various authors. Janowski [3, 4],

and Silverman and Silvia [8] studied the above-mentioned class �∗[A,B]. The class
Rn(A,B) for n ∈ N of functions f ∈ �(n) such that f ′ ∈ �n(A,B) was examined by
Stankiewicz and Waniurski [10]. For γ ≥ 0 the class

H
(
γ,A,B

)= {f ∈� : f ′ +γzf ′′ ∈�(A,B)
}

(1.7)

was studied by Dinggong [11]. Notice that H(0,A,B)= R1(A,B).
Let the functions fj(z) be defined by

fj(z)=
∞∑

n=0
aj,n+1zn+1,

(
j = 1,2

)
. (1.8)

We denote by (f1 ∗ f2)(z) the Hadamard product or convolution of two functions
f1(z) and f2(z), that is,

(
f1∗f2

)
(z)=

∞∑
n=0

a1,n+1a2,n+1zn+1. (1.9)

Also, let the function φ(a,c;z) be defined by

φ(a,c;z)=
∞∑

n=0

(a)n
(c)n

zn+1, (z ∈�), (1.10)

where c ≠ 0,−1,−2, . . . , and (λ)n is the Pochhammer symbol defined by

(λ)n =


1, (n= 0),

λ(λ+1)···(λ+n−1), (n∈N). (1.11)

Corresponding to the function φ(a,c;z), Carlson and Shaffer [2] defined a linear op-
erator on � by

�(a,c)f (z)=φ(a,c;z)∗f(z) for f(z)∈�. (1.12)

Then �(a,c)maps � onto itself. Furthermore, if a≠ 0,−1,−2, . . . , �(c,a) is an inverse
of �(a,c). (See also Owa and Srivastava [6].)
Ruscheweyh [7] introduced an operator �λ :�→� defined by the convolution

�λf (z)= z
(1−z)λ+1 ∗f(z), (λ≥−1;z ∈�) (1.13)

which implies that

�nf(z)= z
(
zn−1f(z)

)(n)
n!

,
(
n∈N0 :=N∪{0}

)
. (1.14)

We also note that

�λf (z)=�(λ+1,1)f (z), (1.15)

z
(
�λf

)′(z)= (λ+1)�λ+1f(z)−λ�λf (z). (1.16)
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For a function f(z) belonging to the class �, Bernardi [1] defined the integral oper-
ator �c,

(
�cf

)
(z)= c+1

zc

∫ z

0
tc−1f(t)dt,

(
c >−1;z ∈�

)
. (1.17)

By the series expansion of the function (�cf )(z), it is easily seen that
(
�cf

)
(z)=�(c+1,c+2)f (z) for f ∈�. (1.18)

In this paper, we consider some geometric properties of certain differential subor-
dinations associated with the function h(A,B;z). We also apply the Carlson-Shaffer
operator and the Ruscheweyh derivative to such subordinations.

2. Main results. The following lemma proved by Miller and Mocanu [5] is required
in our investigation.

Lemma 1. Let q be an analytic function on �̄ except for at most one pole on ∂�,
and univalent on �̄, and let p be an analytic function in � with p(0) = q(0) and
p(z) �≡ p(0), z ∈ �. If p is not subordinate to q, then there exist points z0 ∈ � and
ξ0 ∈ ∂� and a number m≥ 1 for which

(a) p({z ∈ C : |z|< |z0|})⊂ q(�),
(b) p(z0)= q(ξ0),
(c) z0p′(z0)=mξ0q′(ξ0).

After simple calculations, we have the following lemma.

Lemma 2. If −1< B <A, then
∣∣∣h′(A,B;eiθ)

∣∣∣= A−B
1+2B cosθ+B2 ,

A−B
(1+|B|)2 ≤

∣∣∣h′(A,B;eiθ)
∣∣∣≤ A−B

(1−|B|)2 , (θ ∈R).
(2.1)

Now, we prove the following theorem.

Theorem 1. Let γ ≥ 0, A and B be such that −1< B < A ≤ 1. Let A1(γ) and B1(γ)
be defined by the system of equations

1−A1(γ)
1−B1(γ) =

1−A
1−B −γ

A−B
(1+|B|)2 ,

1+A1(γ)
1+B1(γ) =

1+A
1+B +γ

A−B
(1+|B|)2 .

(2.2)

If p is an analytic function in � with p(0)= 1 and

p(z)+γzp′(z)≺ h
(
A1
(
γ
)
,B1
(
γ
)
;z
)
, (z ∈�), (2.3)

then

p(z)≺ h(A,B;z) (z ∈�). (2.4)

Proof. First, notice that B1(γ)= (2−a1−b1)/(b1−a1) for γ ≥ 0, where
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a1 = 1−A
1−B −γ

A−B
(1+|B|)2 and b1 = 1+A

1+B +γ
A−B

(1+|B|)2 . (2.5)

Then b1 > a1, a1 < 1, b1 > 0, and −1 < B1(γ) < 1 for each γ ≥ 0. Hence, the function
h(A1(γ),B1(γ);z) is analytic and univalent in �, so that (2.3) is well defined.
To prove (2.4), we suppose that p is not subordinate to h(A,B;z)(z ∈�). Then, by

Lemma 1, there exist points z0 ∈� and ξ0 = eiθ(θ ∈R), andm≥ 1 such that

p(z0)= h
(
A,B;ξ0

)
, z0p′(z0)=meiθh′

(
A,B;eiθ

)
. (2.6)

By Lemma 2 and by the fact thatm≥ 1, we have

∣∣z0p′(z0)∣∣≥ ∣∣h′(A,B;eiθ)∣∣= A−B
1+2B cosθ+B2 (2.7)

and

min
θ∈[0,2π]

∣∣h′(A,B;eiθ)∣∣= A−B
(1+|B|)2 , (2.8)

the minimum is achieved for θ = 0 if B ≥ 0 and for θ =π if B < 0.
From (2.2) it follows at once that the disk h(A,B;�) is contained in the disk h(A1(γ),

B1(γ);�) and they have the same center. Also, the distance between the circle ∂h(A1(γ),
B1(γ); �) and the circle ∂h(A,B;�) is a constant and equal to γ(A−B)/(1+|B|)2.
On the other hand, ξ0h′(A,B;ξ0) is an outward normal to the circle ∂h(A,B;�) at

the point h(A,B;ξ0) of the length not less than (A−B)/(1+|B|)2 as a consequence
of (2.8). But m ≥ 1 and the point h(A,B;ξ0)+γmξ0h′(A,B;ξ0) is outside of the disk
h(A1(γ),B1(γ);�). Using Lemma 1, we finally obtain

p(z0)+γz0p′(z0)= h
(
A,B;ξ0

)+γmξ0h′
(
A,B;ξ0

) �∈ h
(
A1(γ),B1(γ);�

)
. (2.9)

This is a contradiction to the assumption.

In the following corollaries, we assume the conditions of Theorem 1 on constants
γ, A, B, A1(γ), and B1(γ).
By setting p(z)= f(z)/z for f ∈� in Theorem 1, we obtain the following.

Corollary 1.1. If f ∈� and

(
1−γ)f(z)

z
+γf ′(z)≺ h

(
A1
(
γ
)
,B1
(
γ
)
;z
)
, (z ∈�), (2.10)

then

f(z)
z

≺ h(A,B;z), (z ∈�). (2.11)

Especially for γ = 1, we have the following.

Corollary 1.2. If f ∈� and

f ′(z)≺ h
(
A1(1),B1(1);z

)
, (z ∈�), (2.12)
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then

f(z)
z

≺ h(A,B;z), (z ∈�). (2.13)

Setting p(z)= f ′(z) for f ∈� in Theorem 1, we have the next corollary.

Corollary 1.3. If f ∈� and

f ′(z)+γzf ′′(z)≺ h
(
A1(γ),B1(γ);z

)
, (z ∈�), (2.14)

then

f ′(z)≺ h(A,B;z), (z ∈�). (2.15)

Taking p(z)= zf ′(z)/f(z) for f ∈� in Theorem 1, we have the following corollary.

Corollary 1.4. If f ∈� and

zf ′(z)
f(z)

[
1+γ+ zf ′′(z)

f ′(z)
−γ zf

′(z)
f(z)

]
≺ h

(
A1(γ),B1(γ);z

)
, (z ∈�), (2.16)

then

zf ′(z)
f(z)

≺ h(A,B;z), (z ∈�). (2.17)

By putting p(z)=�λf (z)/z and γ = 1/(λ+1) for f ∈� in Theorem 1, the relation
(1.16) yields the following.

Corollary 1.5. Let λ >−1. If f ∈� and

�λ+1f(z)
z

≺ h
(
A1

(
1

λ+1
)
,B1
(

1
λ+1

)
;z
)
, (z ∈�), (2.18)

then

�λf (z)
z

≺ h(A,B;z), (z ∈�). (2.19)

Remark 1. As was observed in the proof of Theorem 1, there holds the inclusion
property

h(A,B;�)⊂ h
(
A1
(
γ
)
,B1
(
γ
)
;�
)

for every γ ≥ 0. (2.20)

Consequently, Theorem 1 and its corollaries can be improved results concerning inclu-
sion relations between classes of analytic functions. For example, from Corollary 1.3
it follows that H(γ,A,B) ⊂H(0,A,B) for every γ > 0 in terms of the class H(γ,A,B)
in (1.7), which was proved in [11].
For γ ≥ 0 such that A1(γ)≤ 1 and B1(γ)≤ 1, the statement of Corollary 1.3 can be

written as H(γ,A1(γ),B1(γ))⊂H(0,A,B).

Theorem 2. Let γ ≥ 0. For −1< B <A≤ 1, let

Φ(A,B)= (A−B)(1+B)
(1+A)(1+|B|)2 (2.21)

and let

Ψ(A,B)=
√
(1−A2)(1−B2)

1−AB . (2.22)
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Let A2(γ) and B2(γ) be defined by the system of equations

1−A2
(
γ
)

1−B2
(
γ
) = 1−A

1−B −γΦ(A,B)Φ(A,B),

1+A2
(
γ
)

1+B2
(
γ
) = 1+A

1+B +γΦ(A,B)Ψ(A,B).
(2.23)

If p is an analytic function in � with p(0)= 1 and

p(z)+γ zp
′(z)

p(z)
≺ h

(
A2(γ),B2(γ);z

)
, (z ∈�), (2.24)

then

p(z)≺ h(A,B;z), (z ∈�). (2.25)

Proof. By the same way as in the proof of Theorem 1, it is easily seen that the
function h(A2(γ),B2(γ);z) for γ ≥ 0 is analytic and univalent in �. Since for γ = 0
the statement of the theorem is trivial, we can assume, for further considerations,
that γ > 0.
Let us assume that p is not subordinate to h(A,B;z)(z ∈ �). Then, by Lemma 1,

there exist points z0 ∈ � and ξ0 ∈ ∂�, and m ≥ 1 such that p(z0) = h(A,B;ξ0),
z0p′(z0)=mξ0h′(A,B;ξ0). From Lemma 2, we also have

∣∣mξ0h′
(
A,B;ξ0

)∣∣≥ A−B
(1+|B|)2 . (2.26)

Since |z| = 1 is mapped by h(A,B;z) onto a circle centered at c = (1−AB)/(1−B2)
with radius r = (A−B)/(1−B2), we see that

∣∣h(A,B;z)∣∣< 1+A
1+B , (z ∈�). (2.27)

If we put ψ= tan−1
{
(A−B)/√(1−A2)(1−B2)}, then we also have

∣∣argh(A,B;z)∣∣≤ tan−1
r√

c2−r 2 =ψ, (z ∈�). (2.28)

By using (2.26) and (2.27), it is obvious that
∣∣∣∣z0p

′(z0)
p(z0)

∣∣∣∣=
∣∣∣∣mξ0h′

(
A,B;ξ0

)
h
(
A,B;ξ0

)
∣∣∣∣≥ Φ(A,B), (2.29)

where Φ(A,B) is given by (2.21).
From (2.23) it follows that the disk h(A,B;�) and h(A2(γ),B2(γ);�) are concentric

and h(A,B;�) ⊂ h(A2(γ),B2(γ);�). Thus the distance between an arbitrary point of
the circle ∂h(A2(γ),B2(γ);�) and the circle ∂h(A,B;�) is a constant and equal to
γΦ(A,B)Ψ(A,B).
Notice that ξ0h′(A,B;ξ0) is an outward normal to the circle ∂h(A,B;�) at the point

h(A,B;ξ0). Therefore, ξ0h′(A,B;ξ0)/h(A,B;ξ0) is the vector of the length not less than
Φ(A,B) by (2.29), rotated with respect to the normal vector ξ0h′(A,B;ξ0) not more
than the angle ψ in view of (2.28). Since Ψ(A,B)= cosψ, so an elementary geometric
observation, and let us allow to assert that the point

h
(
A,B;ξ0

)+mγ
ξ0h′

(
A,B;ξ0

)
h
(
A,B;ξ0

) (2.30)
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lies in the outside of the disk h(A2(γ),B2(γ);�). Hence, we finally obtain

p(z0)+γ z0p
′(z0)

p(z0)
= h

(
A,B;ξ0

)+mγ
ξ0h′

(
A,B;ξ0

)
h
(
A,B;ξ0

) �∈ h
(
A2
(
γ
)
,B2
(
γ
)
;�
)
. (2.31)

This is a contradiction to the assumption.

By taking p(z)= zf ′(z)/f(z) for f ∈� in Theorem 2, we have the following.

Corollary 2.1. Let γ ≥ 0, −1< B <A≤ 1, A2(γ) and B2(γ) are given by (2.23). If
f ∈� satisfies

(
1−γ)zf ′(z)

f(z)
+γ

(
1+ zf ′′(z)

f ′(z)

)
≺ h

(
A2
(
γ
)
,B2
(
γ
)
;z
)
, (z ∈�), (2.32)

then f(z)∈�∗[A,B].

Next, we consider the case γ = 1 in Corollary 2.1.

Corollary 2.2. Let −1 < B < A ≤ 1 and A2(1), B2(1) are defined by (2.23). If
f(z)∈�[A2(1),B2(1)], then f(z)∈�∗[A,B].

By using the definition (1.12) and Theorem 2 we prove the following theorem.

Theorem 3. Let

a> 0, −1< B <A≤ 1, and A2

(
1
a

)
, B2

(
1
a

)
(2.33)

be defined by (2.23). If f ∈�, then

�(a,c)f (z)
z

+ �(a+1,c)f (z)
�(a,c)f (z)

−1≺ h
(
A2

(
1
a

)
,B2
(
1
a

)
;z
)
, (z ∈�) (2.34)

implies

�(a,c)f (z)
z

≺ h(A,B;z), (z ∈�). (2.35)

Proof. The function

p(z)
�(a,c)f (z)

z
, (z ∈�) (2.36)

is analytic in � with p(0)= 1. Since

z(�(a,c)f (z))′ = a�(a+1,c)f (z)−(a−1)�(a,c)f (z),

zp′(z)
p(z)

= a�(a+1,c)f (z)
�(a,c)f (z)

−a. (2.37)

Therefore, the hypothesis (2.34) is equivalent to

p(z)+ zp′(z)
ap(z)

≺ h
(
A2

(
1
a

)
,B2
(
1
a

)
;z
)
. (2.38)

Hence, by Theorem 2 with γ = 1/a, the proof of Theorem 3 is completed.
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Setting a = λ+1 and c = 1 in Theorem 3 and owing to the relation (1.15), we have
the following.

Corollary 3.1. Let

λ >−1, −1< B <A≤ 1, and A2

(
1

(λ+1)
)
, B2

(
1

(λ+1)
)

(2.39)

be determined by (2.23). If f ∈� and

�λf (z)
z

+ �λ+1f(z)
�λf (z)

−1≺ h
(
A2

(
1

λ+1
)
,B2
(

1
λ+1

)
;z
)
, (z ∈�), (2.40)

then

�λf (z)
z

≺ h(A,B;z), (z ∈�). (2.41)

From Theorem 3 and the relation (1.18), we obtain the next corollary

Corollary 3.2. Let c > −1, −1 < B < A ≤ 1, A2(1/(c+1)), and B2(1/(c+1)) be
determined by (2.23). If f ∈� and

(
�cf

)
(z)

z
+ f(z)(

�cf
)
(z)

−1≺ h
(
A2

(
1

c+1
)
,B2
(

1
c+1

)
;z
)
, (z ∈�), (2.42)

then
(
�cf

)
(z)

z
≺ h(A,B;z), (z ∈�), (2.43)

where the integral operator �c is defined by (1.17).
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