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ON THE NUMERICAL TREATMENT OF THE CONTACT PROBLEM
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Abstract. The problem of the contact of two elastic bodies of arbitrary shape with a
kernel in the form of a logarithmic function—which is investigated fromHertz problem—is
reduced to an integral equation. A numerical method is adapted to determine the pressure
between the two surfaces under certain conditions.
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1. Introduction. Many problems of mathematical physics, theory of elasticity, vis-
codynamics fluid and mixed problems of mechanics of continuous media reduce to
a Fredholm integral equation with continuous or discontinuous kernel. Integral equa-
tion containing singular kernel appears in studies involving airfoil [3], fracture me-
chanics contact [18] radiation and molecular conduction [6] and others. Over the past
thirty years, substantial progress has been made in developing innovative approxi-
mate analytical and purely numerical solution to a large class of Fredholm integral
equation with singular kernel. Since the theory of singular integral equations devel-
oped by Muskhelishvili [8] has assumed various technique and has increasing impor-
tant applications in different areas of science. For this aim, many different methods
are established by Tricomi [16], Popov [15], Green [10] and others for obtaining the
solution of the integral equations analytically. Since closed form solution to these in-
tegral equations are generally not available, great attention has been focused on the
numerical treatment. The interested reader should consult the fine exposition by Gol-
berg [8], Linz [11], Atkinson [4], Delves and Mohamed [5]. Since the Fredholm integral
equation of the second kind with Cauchy kernel plays an important rule in applied
mathematics and physics, so many different numerical solutions are obtained. For
example in [7] Gerasoulis used a piecewise quadratic polynomials in the solution of
the singular integral equation. As the same way of Gerasoulis, Miller and Keer [12]
obtained the solution of the integral equation with Cauchy kernel. In [17] Venturino
used Galerkin method to obtain the singular integral equation of the second kind
with Cauchy kernel. In [6] Frankel used a Galerkin approach for solving the integro-
differential equation with Cauchy kernel.
In this paper, a numerical method is used to obtain the potential function of a Fred-

holm integral equation of the second kind with Cauchy kernel. Firstly, we remove the
singularity, secondly the solution is expanded in terms of the orthogonal polynomials
(we consider the Legendre’s polynomial as an example). The solution of the problem
reduces to the solution of a linear system. At the end, we give a numerical application
to test our method.
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2. Formulation of the contact problem. Consider the semi-symmetric problem [14],
when the tangent force, t(x), is related with the normal pressure, p(x), in the contact
region of the two surfaces, by the relation

t(x)= kP(x). (2.1)

Also, the normal stress, τxy , with the tangent stress, σy , satisfy the relation

τxy = kσy, (2.2)

where k is the friction coefficient.
For the displacement components υ∗i (i= 1,2) in the y-direction, we have the rela-

tion [15]

dυ∗1
dx

= t(x)
G1

,
dυ∗2
dx

= t(x)
G2

, (2.3)

where G1 and G2 are the displacement compressible materials of two surfaces f1(x)
and f2(x), respectively.
It is known that [3] such problem reduces to the following integral equation:

k1
G1+G2
G1G2

∫ x

0
φ(t)dt+(ν1+ν2)

∫ 1
1
k
(
x−y
λ

)
φ(t)dt = δ−f1(x)−f2(x), λ∈ [0,∞],

k(t)= 1
2

∫∞
−∞
tanhu
u

eiut du

(2.4)

under the condition∫ 1
−1
φ(y)dy = p <∞, φ(−1)=φ(1)= 0, (p is constant), (2.5)

where φ(t) is the unknown potential function which is continuous through the inter-
val of integration [−1,1], the contact domain between the two surfaces fi(x) (i= 1,2),
δ is the rigid displacement under the action of a force P , k1 is a physical constant,
k(t) is the discontinuous kernel of the problem with singularity at the point x = y ,
and νi = (1−µ2i )/(πEi) (i= 1,2) where µi are the Poisson’s coefficients and Ei are the
coefficients of Young.
As in [15], the kernel can be written in the following form

k(t)= 1
2

∫∞
−∞
tanhu
u

eiutdu=− ln
∣∣∣∣tanhπt4

∣∣∣∣. (2.6)

If λ → ∞ and the term (x − y/λ) is very small, so that it satisfies the condition
tanhz � z, then we have

ln
∣∣∣∣tanhπt4

∣∣∣∣= lnt−d
(
d= ln 4λ

π

)
. (2.7)

Hence, equation (2.4) with the aid of equation (2.7) can be adapted in the form

∫ x

0
φ(t)dt+ν

∫ 1
−1
[− ln|y−x|+d]φ(y)dy = f∗(x), (2.8)
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where,

ν = (ν1+ν2)G1G2
k1(G1+G2) , f∗(x)= [δ−f1(x)−f2(x)]G1G2

k[G1+G2] . (2.9)

Differentiating equation (2.8) with respect to x, we have

φ(x)+ν
∫ 1
−1

φ(y)
y−x dy = f(x)

(
f(x)= df∗(x)

dx

)
. (2.10)

Equation (2.10) represents a Fredholm integral equation of the second kind with
Cauchy kernel which will be solved under the condition (2.5).
Here

∫
denotes integrationwith Cauchy principal value sense. We suppose thatφ(x),

xε[−1,1] is continuous and satisfies the normality condition
[∫ 1

−1
|φ(y)|2dy

]1/2
≤A‖φ‖2, (2.11)

where ‖ ‖2 denotes the L2 norm and A is a constant. Moreover, the potential function
φ(x) satisfies the Lipschitz condition with respect to the second argument. Then∫
(φ(y))/(y−x)dy exists in the Cauchy principal value sense. It is not difficult to
prove the continuity and the normality of the integral operator

Kφ=
∫ 1
−1

φ(y)
y−x dy. (2.12)

In the special case G1+G2 = 0, f2(x)= 0 we have the Fredholm integral equation of
the first kind with logarithmic kernel, under the condition (2.5). Abdou and Hassan [2]
used potential theory to obtain the eigenvalues and eigenfunctions of the problem.
Also, Abdou and Ezz-Eldin [1] used Krein’s method to solve the same problem.

3. Solution of the problem. In this section, we will solve equation (2.10) under
condition (2.5). In order to reach to our goal the singularity of the integral of equation
(2.10) will be weakened as follows:

∫ 1
−1

φ(y)
y−x dy =

∫ 1
−1

φ(y)−φ(x)
y−x dy+φ(x)

∫ 1
−1

1
y−x dy. (3.1)

The first of two right integrals is regular and it will be evaluated later while the second
integral is evaluated in [9], it is equal to− log(1+x)/(1−x). Therefore equation (2.10)
becomes

φ(x)+ν
∫ 1
−1

φ(y)−φ(x)
y−x dy−νφ(x) log 1+x

1−x = f(x), −1<x < 1. (3.2)

Assume the unknown function, φ(x), can be expanded in terms of a series of Le-
gendre’s polynomials:

φ(x)=
∞∑
j=0

ajPj(x) (3.3)
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(one may use any other orthogonal polynomials expansion).
From condition (2.5), we obtain a0 = p, the rest of the coefficients aj , j = 1,2, . . .

are to be determined. The Rodrigues’ formula of the Legendre polynomial Pj(x) of
degree j is given by [9]:

Pj(x)=
[j/2]∑
k=0

αkxj−2k, (3.4)

where

αk = (−)k(2j−2k)!
2jk!(j−k)!(j−2k)! . (3.5)

From which we obtain

∫ 1
−1

Pj(y)−Pj(x)
y−x dy =

[(j−1)/2]∑
k=0

αk

j−2k−1∑
l=0

xl
∫ 1
−1
yj−2k−1−l dy, (3.6)

and therefore

∫ 1
−1

Pj(y)−Pj(x)
y−x dy =

[(j−1)/2]∑
k=0

j−2k−1∑
l=0

γj,k,lxl, (3.7)

where

γj,k,l = αk
[
1−(−)j−l]

(j−2k−l) . (3.8)

Using equations (3.3) and (3.7), equation (3.2) becomes:

(
1−ν log 1+x

1−x
) ∞∑
j=0

ajPj(x)+ν
∞∑
j=1

aj

[(j−1)/2]∑
k=0

αk

j−2k−1∑
j=0

γj,k,lxl = f(x) (3.9)

for −1<x < 1.
Multiply both sides of (3.9) by xi−1 for i= 1,2, . . . ,N−1,N , and then integrating the

resultant over the interval [−1,1], we get
∞∑
j=1

aj

∫ 1
−1

(
1−ν log 1+x

1−x
)
xi−1Pj(x)dx

+ν
∞∑
j=1

aj

[(j−1)/2]∑
k=0

αk

j−2k−1∑
l=0

γj,k,l
∫ 1
−1
xl+i−1dx =

∫ 1
−1
xi−lf (x)dx,

(3.10)

the term-by-term integration is justified by the uniform convergence of each of the
previous three series of the left side of the previous equation in the interval [-1,1] and

∣∣xiPj(x)
∣∣≤ ∣∣xi∣∣≤ 1, |x|< 1. (3.11)

For |x|< 1, we can assume

log
1+x
1−x � 2x, (3.12)
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and so equation (3.10) will take the form

∞∑
j=1

aj

{∫ 1
−1
(1−2νx)xi−1Pj(x)dx+ν

[(j−1)/2]∑
k=0

αk

j−2k−1∑
l=0

2[1−(−)j−l]
(j−2k−l)(l+j)δl+j−1

}

=
∫ 1
−1
xi−1f(x)dx−2p

(
δi−1
i
− 2νδi
i+1

)
, for i= 1,2, . . . ,N−1,N,

(3.13)

where

δc =

1, c even,

0, c odd.
(3.14)

And we will evaluate the integral of the left side of this equation by using the famous
Rodrigues’ formula. In fact this integral is equal to

∫ 1
−1
xiPj(x)dx =

[j/2]∑
k=0

αk
2δi,j

j+i−2k+1 , (3.15)

where

δc,d =

1, c+d even and c ≥ d,

0, otherwise.
(3.16)

From which the solution of equation (2.10) is the solution of the following linear
system:

∞∑
j=1

aj



[j/2]∑
k=0

(
2αkδi−1,j
j+i−2k −

4ναkδi,j
j+i−2k+1

)
+

[(j−1)/2]∑
k=0

j−2k−1∑
l=0

2ναk[1−(−)j−1]
(j−2k−l)(l+i) δl+i−1




=
∫ 1
−1
xi−1f(x)dx−2p

(
δi−1
i
− 2νδi
i+1

)
,

(3.17)

for i= 1,2, . . . ,N−1,N .
If we truncate the infinite series of the left side of the previous linear system to the

first N terms, this linear system will take the form

N∑
j=1

cijaj = bi, i= 1,2, . . . ,N−1,N, (3.18)

where

cij =
[j/2]∑
k=0

(
2αkδi−1,j
j+i−2k −

4ναkδi,j
j+i−2k+1

)
+

[(j−1)/2]∑
k=0

j−2k−1∑
l=0

2ναk[1−(−)j−1]
(j−2k−l)(l+i) δl+i−1 (3.19)

and

bi =
∫ 1
−1
xi−1f(x)dx−2p

(
δi−1
i
− 2νδi
i+1

)
. (3.20)
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Table 4.1. The coefficients aj , j = 1,2, . . . ,20 (ordered in rows).

−0.796513983 1.282960283 −1.39797130 1.456975757 −1.549072869
1.479876614 −1.567379746 1.417647537 −1.559090422 1.178337053

−1.392267336 2.037120656 −1.596255523 −2.924756126 −50248330647
8.38415880 6.333866610 1.704701286 −0.252825184 −1.196720603

4. Numerical example. The solution of the integral equation (3.2) depends on the
Cauchy kernel and the two surfaces f1(x) and f2(x). We can expand each of these
two functions in Macklaurin expansion near x = 0 where the initial points and the
tangent points of the surfaces are in contact with the origin O. For that reason, we
can assume the function f(x) is a polynomial (see the definition of the function f(x),
equation (2.10)).
If we take only the quadratic term in the Maclorian expansion of the function f1(x)+

f2(x), then we may assume f(x) = x. Also, take p = 0.8, ν = 0.25, and N = 10. The
pressure between the two surfaces in this case is given by

φ(x)=
10∑
j=0

ajPj(x), (4.1)

where, Pj(x) is Legendre’s polynomial of degree j and the coefficients aj are the
solution of the linear system (3.18), we used Maple V to solve such system. These
coefficients are tabulated in Table 4.1.
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