
Internat. J. Math. & Math. Sci.
Vol. 23,No. 12 (2000) 815–818

S0161171200003033
© Hindawi Publishing Corp.

ON A NEW GENERALIZATION OF ALZER’S INEQUALITY
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Abstract. Let {an}∞n=1 be an increasing sequence of positive real numbers. Under certain
conditions of this sequence we use themathematical induction and the Cauchymean-value
theorem to prove the following inequality:

an
an+m

≤
(

(1/n)
∑n
i=1ari

(1/(n+m))∑n+mi=1 ari

)1/r
,

where n and m are natural numbers and r is a positive number. The lower bound is
best possible. This inequality generalizes the Alzer’s inequality (1993) in a new direction.
It is shown that the above inequality holds for a large class of positive, increasing and
logarithmically concave sequences.

Keywords and phrases. Alzer’s inequality, logarithmically concave sequence.

2000 Mathematics Subject Classification. Primary 26D15.

1. Introduction. Several authors includingAlzer [1], Sandor [8], andUme [10] proved
the following inequality:

n
n+1 <

(
(1/n)

∑n
i=1 ir

(1/(n+1))∑n+1
i=1 ir

)1/r
, (1.1)

where r > 0 and n ∈ N. The proof of this inequality involves the principle of the
mathematical induction and other analytical methods.
Based on the mathematical induction, Elezovíc and Pečaríc [2] generalized (1.1) and

proved the following theorem.

Theorem 1.1. If the sequence {an}∞n=1 of positive real numbers satisfies the inequal-
ity

1≤
(
an+2
an+1

)r[an+2
an+1

−1+
(
an
an+1

)r+1]
, n≥ 0, a0 = 0, (1.2)

then the following inequality holds:

an
an+1

≤
(
(1/an)

∑n
i=1a

r
i

(1/an+1)
∑n+1
i=1 a

r
i

)1/r
. (1.3)

Recently, Qi [4] proved a generalized version of (1.1). The reader is referred to [4,
Corollary 2].
The main purpose of this paper is to further generalize inequalities (1.1) and (1.3).
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2. Main Results

Theorem 2.1. Let n and m be natural numbers. Suppose {a1,a2, . . .} is a positive
and increasing sequence satisfying

(k+2)ark+2−(k+1)ark+1
(k+1)ark+1−kark

≥
(
ak+2
ak+1

)r
(2.1)

for any given positive real number r and k∈N, then we have the inequality

an
an+m

≤
(

(1/n)
∑n
i=1a

r
i

(1/(n+m))∑n+m
i=1 ari

)1/r
. (2.2)

The lower bound of (2.2) is best possible.

Proof. The inequality (2.2) is equivalent to

arn
arn+m

≤ (1/n)
∑n
i=1a

r
i

(1/(n+m))∑n+m
i=1 ari

, (2.3)

that is,

1
narn

n∑
i=1
ari ≥

1
(n+m)arn+m

n+m∑
i=1

ari . (2.4)

This is also equivalent to

1
narn

n∑
i=1
ari ≥

1
(n+1)arn+1

n+1∑
i=1
ari . (2.5)

Since

n+1∑
i=1
ari =

n∑
i=1
ari +arn+1, (2.6)

inequality (2.5) reduces to

n∑
i=1
ari ≥

narna
r
n+1

(n+1)arn+1−narn
. (2.7)

It is easy to see that inequality (2.7) holds for n= 1.
Assume that inequality (2.7) holds for n > 1. Using the principle of induction, it

is easy to show that (2.7) holds for n+1. Using equality (2.6), the induction can be
written as (2.1) for k=n. Thus, inequality (2.7) holds.
It can easily be shown that

lim
r→+∞

(
(1/n)

∑n
i=1a

r
i

(1/(n+m))∑n+m
i=1 ari

)1/r
= an
an+m

. (2.8)

Hence, the lower bound of (2.2) is best possible. The proof is complete.
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Corollary 2.2. Let n and m be natural numbers. Suppose a = {a1,a2, . . .} is a
positive and increasing sequence satisfying

a2k+1 ≥ akak+2, (2.9)

ak+1−ak
a2k+1−akak+2

≥max
{
k+1
ak+1

,
k+2
ak+2

}
, k∈N. (2.10)

Then, for any given positive real number r , we have the inequality (2.2). The lower
bound of (2.2) is best possible.

Proof. For x ∈ [n,n+1], let

f(x)= (n+1−x)an+1+(x−n)an+2, (2.11)

g(x)= (n+1−x)an+(x−n)an+1. (2.12)

Further, we define

F(x)= (x+1)f r (x), G(x)= xgr (x), x ∈ [n,n+1]. (2.13)

Direct calculation yields

F(n)= (n+1)arn+1, F(n+1)= (n+2)arn+2; (2.14)

G(n)=narn, G(n+1)= (n+1)arn+1; (2.15)

F ′(x)= f r−1(x)[f(x)+r(x+1)(an+2−an+1)]; (2.16)

G′(x)= gr−1(x)[g(x)+rx(an+1−an)]. (2.17)

Therefore, using the inequality (2.10) and standard arguments gives

F ′(x)
G′(x)

=
(
(n+1−x)an+1+(x−n)an+2
(n+1−x)an+(x−n)an+1

)r

× 1+r(x+1)
(
an+2−an+1

)/[
(n+1−x)an+1+(x−n)an+2

]
1+rx(an+1−an)/[(n+1−x)an+(x−n)an+1]

≥
(
(n+1−x)an+1+(x−n)an+2
(n+1−x)an+(x−n)an+1

)r
.

(2.18)

Applying the Cauchy’s mean-value theorem to the left side of inequality (2.1), it
turns out that there exists one point ζ ∈ (n,n+1) such that

(n+2)arn+2−(n+1)arn+1
(n+1)arn+1−narn

= F ′(ζ)
G′(ζ)

≥
(
(n+1−ζ)an+1+(ζ−n)an+2
(n+1−ζ)an+(ζ−n)an+1

)r
≥
(
an+2
an+1

)r
,

(2.19)

in which the logarithmic convexity of the sequence {an}∞n=1 is used. Thus, the inequal-
ity (2.1) is proved.
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Corollary 2.3 [4]. Let n and m be natural numbers and k a nonnegative integer.
Then

n+k
n+m+k <

(
(1/n)

∑n+k
i=k+1 ir

(1/(n+m))∑n+m+k
i=k+1 ir

)1/r
, (2.20)

where r is any given positive real number. The lower bound is best possible.

Proof. This follows from Corollary 2.2 applied to a= (k+1,k+2, . . .).
Note. When k= 0 andm= 1, inequality (2.20) reduces to (1.1).
Note. Recently, some inequalities related to Alzer’s inequality and the sum of pow-

ers of positive integers or sequences have been proved. For details, see Qi [6, 5, 3],
Sándor [9], and Qi and Luo [7].
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