ON A CLASS OF UNIVALENT FUNCTIONS

VIKRAMADITYA SINGH

(Received 3 March 1998)

AbSTRACT. We consider the class of univalent functions $f(z)=z+a_{3} z^{3}+a_{4} z^{4}+\cdots$ analytic in the unit disc and satisfying $\left|\left(z^{2} f^{\prime}(z) / f^{2}(z)\right)-1\right|<1$, and show that such functions are starlike if they satisfy $\left|\left(z^{2} f^{\prime}(z) / f^{2}(z)\right)-1\right|<(1 / \sqrt{2})$.

Keywords and phrases. Analytic, univalent and starlike functions.
2000 Mathematics Subject Classification. Primary 30C45.

Let A denote the class of functions which are analytic in the unit disc $U=\{z:|z|<1\}$ and have Taylor series expansion

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots, \tag{1}
\end{equation*}
$$

and let T be the univalent [3] subclass of A which satisfy

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1, \quad z \in U \tag{2}
\end{equation*}
$$

By T_{2} we denote the subclass of T for which $f^{\prime \prime}(0)=0$. In this paper, we prove the following theorem.

Theorem 1. If $f \in T_{2}$, then
(i) $\operatorname{Re}(f(z) / z)>1 / 2, z \in U$,
(ii) f is starlike in $|z|<1 / \sqrt[4]{2}=0.840896 \ldots$,
(iii) $\operatorname{Re} f^{\prime}(z)>0$ for $|z|<1 / \sqrt{2}$.

Items (i) and (iii) are improvements of results in [2], and (ii) is the same as in [2] but has a different proof. Furthermore, (i) and (iii) are sharp as shown by the function

$$
\begin{equation*}
f(z)=\frac{z}{1-z^{2}} \tag{3}
\end{equation*}
$$

but the sharpness of (ii) is difficult to establish by a direct example. We also prove the following theorem which partially answers a question raised in [1].

Theorem 2. If $T_{2, \mu}$ is the subclass of T_{2} which satisfies

$$
\begin{equation*}
\left|z^{2} \frac{f^{\prime}(z)}{f^{2}(z)}-1\right|<\mu<1 \tag{4}
\end{equation*}
$$

then $T_{2, \mu}$ is a subclass of starlike functions if $0 \leq \mu \leq 1 / \sqrt{2}$.

We define by B the class of functions ω analytic in U and satisfying

$$
\begin{equation*}
|\omega(z)|<1, \quad z \in U, \quad \omega(0)=\omega^{\prime}(0)=0 . \tag{5}
\end{equation*}
$$

From Schwarz's lemma it then follows that

$$
\begin{equation*}
|\omega(z)| \leq|z|^{2} . \tag{6}
\end{equation*}
$$

Proof of Theorem 1. If $f \in T_{2}$ and satisfies (2), then

$$
\begin{equation*}
z^{2} \frac{f^{\prime}(z)}{f^{2}(z)}-1=\omega(z), \quad z \in U, \omega \in B \tag{7}
\end{equation*}
$$

and by direct integration

$$
\begin{equation*}
\frac{z}{f(z)}=1-\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t, \quad z \in U, \omega \in B . \tag{8}
\end{equation*}
$$

From (8), we obtain

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right| \leq|z|^{2}<1, \tag{9}
\end{equation*}
$$

and this gives

$$
\begin{equation*}
\left|1-\frac{f(z)}{z}\right| \leq\left|\frac{f(z)}{z}\right| \tag{10}
\end{equation*}
$$

which is equivalent to $(\operatorname{Re} f(z) / z)>1 / 2$, This proves (i).
Furthermore, from (9), we obtain

$$
\begin{equation*}
\left|\arg \frac{f(z)}{z}\right| \leq \sin ^{-1}|z|^{2} \tag{11}
\end{equation*}
$$

From (7), we obtain

$$
\begin{equation*}
z \frac{f^{\prime}(z)}{f(z)}=\frac{f(z)}{z}(1+\omega(z)) \tag{12}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|=\left|\arg \frac{f(z)}{z}+\arg (1+\omega(z))\right| \leq 2 \sin ^{-1}|z|^{2} . \tag{13}
\end{equation*}
$$

This gives (ii).
In order to prove (iii), we notice that (7) yields

$$
\begin{equation*}
f^{\prime}(z)=\left(\frac{f(z)}{z}\right)^{2}(1+\omega(z)) \tag{14}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\left|\arg f^{\prime}(z)\right|=\left|2 \arg \frac{f(z)}{z}+\arg (1+\omega(z))\right| \leq 3 \sin ^{-1}|z|^{2} . \tag{15}
\end{equation*}
$$

But this is equivalent to (iii).
Proof of Theorem 2. If $f \in T_{2, \mu}$, we obtain from (4)

$$
\begin{equation*}
z \frac{f^{\prime}(z)}{f^{2}(z)}-1=\mu \omega(z), \quad \omega \in B, z \in U \quad \text { and } \quad \frac{z}{f(z)}=1-\mu \int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t \tag{16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
z \frac{f^{\prime}(z)}{f(z)}=\frac{1+\mu \omega(z)}{1-\mu \int_{0}^{1}\left(\omega(t z) / t^{2}\right) d t} \tag{17}
\end{equation*}
$$

Now $\operatorname{Re} z\left(f^{\prime}(z) / f(z)\right)>0$ is equivalent to the condition

$$
\begin{equation*}
z \frac{f^{\prime}(z)}{f(z)}=\frac{1+\mu \omega(z)}{1-\mu \int_{0}^{1}\left(\omega(t z) / t^{2}\right) d t} \neq-i T, \quad T \in \operatorname{Re} \tag{18}
\end{equation*}
$$

Relation (18) is equivalent to

$$
\begin{equation*}
\frac{\mu}{2}\left[\left(\omega(z)+\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t\right)+\frac{1-i T}{1+i T}\left(\omega(z)-\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t\right)\right] \neq-1 \tag{19}
\end{equation*}
$$

Let

$$
\begin{equation*}
M=\sup _{z \in U, \omega \in B, T \in \operatorname{Re}}\left|\left[\left(\omega(z)+\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t\right)+\frac{1-i T}{1+i T}\left(\omega(z)-\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t\right)\right]\right| \tag{20}
\end{equation*}
$$

then, in view of the rotation invariance of B, it follows that

$$
\begin{equation*}
\operatorname{Re} z \frac{f^{\prime}(z)}{f(z)}>0, \quad \text { if } \mu \leq \frac{2}{M} \tag{21}
\end{equation*}
$$

However, from (20), we notice that

$$
\begin{align*}
M & \leq \sup _{z \in U, \omega \in B}\left[\left|\omega(z)+\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t\right|+\left|\omega(z)-\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t\right|\right] \\
& \leq 2 \sup _{z \in U_{i}, \omega \in B}\left[\sqrt{|\omega(z)|^{2}+\left|\int_{0}^{1} \frac{\omega(t z)}{t^{2}} d t\right|^{2}}\right] \leq 2 \sqrt{2} \tag{22}
\end{align*}
$$

Inequality (22) follows from the parallelogram law and the last step from (6). And (21) shows that $\mu \leq 1 / \sqrt{2}$.

References

[1] M. Obradović, Starlikeness and certain class of rational functions, Math. Nachr. 175 (1995), 263-268. MR 96m:30016. Zbl 845.30005.
[2] M. Obradović, N. N. Pascu, and I. Radomir, A class of univalent functions, Math. Japon. 44 (1996), no. 3, 565-568. MR 97i:30016. Zbl 902.30008.
[3] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392-394. MR 45\#8821. Zbl 233.30011.

Singh: 3A/95 Azad Nagar, Kanpur 208002, India

