AN APPLICATION OF ALMOST INCREASING SEQUENCES HÜSEYIN BOR

(Received 28 September 1998)

Abstract

We extended a theorem of Mishra and Srivastava (1983-1984) on $|C, 1|_{k}$ summability factors, using almost increasing sequences, to $\left|\bar{N}, p_{n}\right|_{k}$ summability under weaker conditions.

Keywords and phrases. Almost increasing sequences, absolute summability factors.
2000 Mathematics Subject Classification. Primary 40D15, 40 F05.

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by z_{n} the nth $(C, 1)$ mean of the sequence $\left(s_{n}\right)$. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|z_{n}-z_{n-1}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \longrightarrow \infty, \quad \text { as } n \longrightarrow \infty,\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

defines the sequence $\left(t_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [3]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}$, $k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all values of n (resp., $p_{n}=1 /(n+1)$), $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (resp., $\left.|\bar{N}, 1 /(n+1)|_{k}\right)$ summability.

Concerning the $|C, 1|_{k}$ summability factors the following theorem is known.
THEOREM 1 (see [4]). Let $\left(X_{n}\right)$ be a positive nondecreasing sequence and let (β_{n}) and $\left(\lambda_{n}\right)$ be sequences such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{5}\\
\beta_{n} \rightarrow 0, \quad \text { as } n \longrightarrow \infty \tag{6}
\end{gather*}
$$

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \tag{7}\\
\left|\lambda_{n}\right| X_{n}=O(1), \quad \text { as } n \rightarrow \infty . \tag{8}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{n}\left|s_{n}\right|^{k}=O\left(X_{m}\right), \quad \text { as } m \rightarrow \infty, \tag{9}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.
The aim of this paper is to extend Theorem 1 to $\left|\bar{N}, p_{n}\right|_{k}$ summability under weaker conditions. Thus we need the concept of almost increasing sequence. A positive sequence (b_{n}) is said to be almost increasing if there exists a positive increasing sequence (c_{n}) and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$. Obviously every increasing sequence is almost increasing but the converse need not be true as can be seen from the example $b_{n}=n e^{(-1)^{n}}$.
Now, we shall prove the following theorem.
Theorem 2. Let (X_{n}) be an almost increasing sequence and let the condition (9) of Theorem 1 be satisfied. If the sequences (β_{n}) and (λ_{n}) such that conditions (5), (6), (7), and (8) of Theorem 1 are satisfied. If (p_{n}) is a sequence such that

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|s_{n}\right|^{k}=O\left(X_{m}\right), \quad \text { as } m \rightarrow \infty, \tag{10}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
We need the following lemma for the proof of our theorem.
LEmmA 3. Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$, and $\left(\lambda_{n}\right)$ as taken in the statement of the theorem, the following conditions hold, when (7) is satisfied,

$$
\begin{gather*}
n \beta_{n} X_{n}=O(1), \quad \text { as } n \rightarrow \infty, \tag{11}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty . \tag{12}
\end{gather*}
$$

Proof. Let $A c_{n} \leq X_{n} \leq B c_{n}$, where (c_{n}) is an increasing sequence. In this case,

$$
\begin{align*}
& n X_{n} \beta_{n} \leq n B c_{n}\left|\sum_{v=n}^{\infty} \Delta \beta_{v}\right| \leq n B c_{n} \sum_{v=n}^{\infty}\left|\Delta \beta_{v}\right| \\
& \leq B \sum_{v=n}^{\infty} v c_{v}\left|\Delta \beta_{v}\right| \leq \frac{B}{A} \sum_{v=n}^{\infty} v\left|\Delta \beta_{v}\right| X_{v} . \tag{13}
\end{align*}
$$

Hence $n \beta_{n} X_{n}=O(1)$ as $n \rightarrow \infty$. Again

$$
\begin{align*}
\sum_{n=1}^{\infty} X_{n} \beta_{n} & \leq B \sum_{n=1}^{\infty} c_{n} \beta_{n}=B \sum_{n=1}^{\infty} c_{n}\left|\sum_{v=n}^{\infty} \Delta \beta_{v}\right| \\
& \leq B \sum_{n=1}^{\infty} c_{n} \sum_{v=n}^{\infty}\left|\Delta \beta_{v}\right|=B \sum_{v=1}^{\infty}\left|\Delta \beta_{v}\right| \sum_{n=1}^{v} c_{n} \tag{14}\\
& \leq B \sum_{v=1}^{\infty} v c_{v}\left|\Delta \beta_{v}\right| \leq \frac{B}{A} \sum_{v=1}^{\infty} v X_{v}\left|\Delta \beta_{v}\right|<\infty
\end{align*}
$$

Hence $\sum_{n=1}^{\infty} X_{n} \beta_{n}<\infty$.
PROOF OF THE THEOREM. Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then, by definition, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v} \tag{15}
\end{equation*}
$$

Then, for $n \geq 1$, we have

$$
\begin{equation*}
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v} \tag{16}
\end{equation*}
$$

By Abel's transformation, we have

$$
\begin{align*}
T_{n}-T_{n-1} & =-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta\left(P_{v-1} \lambda_{v}\right) s_{v}+\frac{p_{n} s_{n} \lambda_{n}}{P_{n}} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}+\frac{p_{n} s_{n} \lambda_{n}}{P_{n}} \tag{17}\\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}
\end{align*}
$$

let us denote the three terms in (17) by $T_{n, 1}, T_{n, 2}$, and $T_{n, 3}$.
Since

$$
\begin{equation*}
\left|T_{n, 1}+T_{n, 2}+T_{n, 3}\right|^{k} \leq 3^{k}\left(\left|T_{n, 1}\right|^{k}+\left|T_{n, 2}\right|^{k}+\left|T_{n, 3}\right|^{k}\right) \tag{18}
\end{equation*}
$$

to complete the proof of the theorem, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } r=1,2,3 \tag{19}
\end{equation*}
$$

Since $\left|\lambda_{n}\right|=O\left(1 / X_{n}\right)=O(1)$, by (8), applying Hölder's inequality with indices k and k^{\prime}, where $(1 / k)+\left(1 / k^{\prime}\right)=1$ and $k>1$, we get

$$
\begin{align*}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\right)\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|\lambda_{v}\right|\left|\lambda_{v}\right|^{k-1}\left|s_{v}\right|^{k} \tag{20}\\
& =O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{i=1}^{v} \frac{p_{i}}{P_{i}}\left|s_{i}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1), \quad \text { as } m \rightarrow \infty,
\end{align*}
$$

by virtue of (5), (8), (10), and (12). Again applying Hölder's inequality, as in $T_{n, 1}$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} P_{v}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} P_{v}\left|s_{v}\right| \beta_{v}\right)^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|s_{v}\right|^{k} \beta_{v}\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \beta_{v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|s_{v}\right|^{k} \beta_{v} \\
& =O(1) \sum_{v=1}^{m} P_{v}\left|s_{v}\right|^{k} \beta_{v} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|s_{v}\right|^{k} \beta_{v} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \frac{1}{v}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{u=1}^{v} \frac{1}{u}\left|s_{u}\right|^{k}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{1}{v}\left|s_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{align*}
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1), \quad \text { as } m \longrightarrow \infty \tag{21}
\end{align*}
$$

by virtue of (5), (7), (9), (11), and (12). Finally, as in $T_{n, 1}$, we have that

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 3}\right|^{k}=O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|\lambda_{n}\right|\left|s_{n}\right|^{k}=O(1), \quad \text { as } m \longrightarrow \infty \tag{22}
\end{equation*}
$$

Therefore we get (19). This completes the proof of the theorem.
It should be noted that if we take $\left(X_{n}\right)$ is a positive nondecreasing sequence and $p_{n}=1$ for all values of n in this theorem, then we get Theorem 1 . In this case the condition (10) reduces to the condition (9). Also, if we take $p_{n}=1 /(n+1)$ in this theorem, then we get a result concerning the $|\bar{N}, 1 /(n+1)|_{k}$ summability factors.

REFERENCES

[1] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986), no. 1, 81-84. MR 87i:40007. Zbl 601.40004.
[2] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. (3) 7 (1957), 113-141. MR 19,266a. Zbl 109.04402.
[3] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949. MR 11,25a. Zbl 032.05801.
[4] K. N. Mishra and R. S. L. Srivastava, On absolute Cesàro summability factors of infinite series, Portugal. Math. 42 (1983/84), no. 1, 53-61 (1985). MR 87a:40003. Zbl 597.40003.

Bor: Department of Mathematics, Erciyes University, Kayseri 38039, Turkey
E-mail address: bor@.erciyes.edu.tr

