ON CHARACTERIZATIONS OF A CENTER GALOIS EXTENSION

GEORGE SZETO and LIANYONG XUE

(Received 16 June 1999)

Abstract

Let B be a ring with $1, C$ the center of B, G a finite automorphism group of B, and B^{G} the set of elements in B fixed under each element in G. Then, it is shown that B is a center Galois extension of B^{G} (that is, C is a Galois algebra over C^{G} with Galois group $\left.\left.G\right|_{C} \cong G\right)$ if and only if the ideal of B generated by $\{c-g(c) \mid c \in C\}$ is B for each $g \neq 1$ in G. This generalizes the well known characterization of a commutative Galois extension C that C is a Galois extension of C^{G} with Galois group G if and only if the ideal generated by $\{c-g(c) \mid c \in C\}$ is C for each $g \neq 1$ in G. Some more characterizations of a center Galois extension B are also given.

Keywords and phrases. Galois extensions, center Galois extensions, central extensions, Galois central extensions, Azumaya algebras, separable extensions, H-separable extensions.

2000 Mathematics Subject Classification. Primary 16S30, 16W20.

1. Introduction. Let C be a commutative ring with $1, G$ a finite automorphism group of C and C^{G} the set of elements in C fixed under each element in G. It is well known that a commutative Galois extension C is characterized in terms of the ideals generated by $\{c-g(c) \mid c \in C\}$ for $g \neq 1$ in G, that is C is a Galois extension with Galois group G if and only if the ideal generated by $\{c-g(c) \mid c \in C\}$ is C for each $g \neq 1$ in G (see [3, Proposition 1.2, page 80]). A natural generalization of a commutative Galois extension is the notion of a center Galois extension, that is, a noncommutative ring B with a finite automorphism group G and center C is called a center Galois extension of B^{G} with Galois group G if C is a Galois extension of C^{G} with Galois group $\left.G\right|_{C} \cong G$. Ikehata (see $[4,5]$) characterized a center Galois extension with a cyclic Galois group G of prime order in terms of a skew polynomial ring. Then, the present authors generalized the Ikehata characterization to center Galois extensions with Galois group G of any cyclic order [7] and to center Galois extensions with any finite Galois group G [8]. The purpose of the present paper is to generalize the above characterization of a commutative Galois extension to a center Galois extension. We shall show that B is a center Galois extension of B^{G} if and only if the ideal of B generated by $\{c-g(c) \mid c \in C\}$ is B for each $g \neq 1$ in G. A center Galois extension B is also equivalent to each of the following statements:
(i) B is a Galois central extension of B^{G}, that is, $B=B^{G} C$ which is G-Galois extension of B^{G}.
(ii) B is a Galois extension of B^{G} with a Galois system $\left\{b_{i} \in B, c_{i} \in C, i=1,2, \ldots, m\right\}$ for some integer m.
(iii) the ideal of the subring $B^{G} C$ generated by $\{c-g(c) \mid c \in C\}$ is $B^{G} C$ for each $g \neq 1$ in G.
2. Definitions and notations. Throughout this paper, B will represent a ring with $1, G=\left\{g_{1}=1, g_{2}, \ldots, g_{n}\right\}$ an automorphism group of B of order n for some integer n, C the center of B, B^{G} the set of elements in B fixed under each element in G, and $B * G$ a skew group ring in which the multiplication is given by $g b=g(b) g$ for $b \in$ B and $g \in G$.
B is called a G-Galois extension of B^{G} if there exist elements $\left\{a_{i}, b_{i} \in B, i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)=\delta_{1, g}$. Such a set $\left\{a_{i}, b_{i}\right\}$ is called a G-Galois system for $B . B$ is called a center Galois extension of B^{G} if C is a Galois algebra over C^{G} with Galois group $\left.G\right|_{C} \cong G$. B is called a central extension of B^{G} if $B=B^{G} C$, and B is called a Galois central extension of B^{G} if $B=B^{G} C$ is a Galois extension of B^{G} with Galois group G.
Let A be a subring of a ring B with the same identity 1 . We denote $V_{B}(A)$ the commutator subring of A in B. We call B a separable extension of A if there exist $\left\{a_{i}, b_{i} \in B, i=1,2, \ldots, m\right.$ for some integer $\left.m\right\}$ such that $\sum a_{i} b_{i}=1$, and $\sum b a_{i} \otimes b_{i}=$ $\sum a_{i} \otimes b_{i} b$ for all $b \in B$ where \otimes is over A. B is called H-separable extension of A if $B \otimes_{A} B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. B is called centrally projective over A if B is a direct summand of a finite direct sum of A as a A-bimodule.
3. The characterizations. In this section, we denote $J_{j}^{(C)}=\left\{c-g_{j}(c) \mid c \in C\right\}$. We shall show that B is a center Galois extension of B^{G} if and only if $B=B J_{j}^{(C)}$, the ideal of B generated by $J_{j}^{(C)}$, for each $g_{j} \neq 1$ in G. Some more characterizations of a center Galois extension B are also given. We begin with a lemma.
Lemma 3.1. If $B=B J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G (that is, $j \neq 1$), then
(1) B is a Galois extension of B^{G} with Galois group G and a Galois system $\left\{b_{i} \in B ; c_{i} \in\right.$ $C, i=1,2, \ldots, m\}$ for some integer m.
(2) B is a centrally projective over B^{G}.
(3) $B * G$ is H-separable over B.
(4) $V_{B * G}(B)=C$.

Proof. (1) Since $B=B J_{j}^{(C)}$ for each $j \neq 1$, there exist $\left\{b_{i}^{(j)} \in B, c_{i}^{(j)} \in C, i=\right.$ $\left.1,2, \ldots, m_{j}\right\}$ for some integer $m_{j}, j=2,3, \ldots, n$ such that $\sum_{i=1}^{m_{j}} b_{i}^{(j)}\left(c_{i}^{(j)}-g_{j}\left(c_{i}^{(j)}\right)\right)=1$. Therefore, $\sum_{i=1}^{m_{j}} b_{i}^{(j)} c_{i}^{(j)}=1+\sum_{i=1}^{m_{j}} b_{i}^{(j)} g_{j}\left(c_{i}^{(j)}\right)$. Let $b_{m_{j+1}}^{(j)}=-\sum_{i=1}^{m_{j}} b_{i}^{(j)} g_{j}\left(c_{i}^{(j)}\right)$ and $c_{m_{j}+1}^{(j)}=1$. Then $\sum_{i=1}^{m_{j}+1} b_{i}^{(j)} c_{i}^{(j)}=1$ and $\sum_{i=1}^{m_{j}+1} b_{i}^{(j)} g_{j}\left(c_{i}^{(j)}\right)=0$. Let $b_{i_{2}, i_{3}, \ldots, i_{n}}=b_{i_{2}}^{(2)} b_{i_{3}}^{(3)}$ $\cdots b_{i n}^{(n)}$ and $c_{i_{2}, i_{3}, \ldots, i_{n}}=c_{i_{2}}^{(2)} c_{i_{3}}^{(3)} \ldots c_{i_{n}}^{(n)}$ for $i_{j}=1,2, \ldots, m_{j}+1$ and $j=2,3, \ldots, n$. Then

$$
\begin{align*}
\sum_{i_{2}=1}^{m_{2}+1} \sum_{i_{3}=1}^{m_{3}+1} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{2}, i_{3}, \ldots, i_{n}} c_{i_{2}, i_{3}, \ldots, i_{n}} & =\sum_{i_{2}=1}^{m_{2}+1} \sum_{i_{3}=1}^{m_{3}+1} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{2}}^{(2)} b_{i_{3}}^{(3)} \cdots b_{i_{n}}^{(n)} c_{i_{2}}^{(2)} c_{i_{3}}^{(3)} \cdots c_{i_{n}}^{(n)} \\
& =\sum_{i_{2}=1}^{m_{2}+1} \sum_{i_{3}=1}^{m_{3}+1} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{2}}^{(2)} c_{i_{2}}^{(2)} b_{i_{3}}^{(3)} c_{i_{3}}^{(3)} \cdots b_{i_{n}}^{(n)} c_{i_{n}}^{(n)} \\
& =\sum_{i_{2}=1}^{m_{2}+1} b_{i_{2}}^{(2)} c_{i_{2}}^{(2)} \sum_{i_{3}=1}^{m_{3}+1} b_{i_{3}}^{(3)} c_{i_{3}}^{(3)} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{n}}^{(n)} c_{i_{n}}^{(n)}=1 \tag{3.1}
\end{align*}
$$

and for each $j \neq 1$

$$
\begin{align*}
& \sum_{i_{2}=1}^{m_{2}+1} \sum_{i_{3}=1}^{m_{3}+1} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i 2, i_{3}, \ldots, i_{n}} g_{j}\left(c_{i_{2}, i_{3}, \ldots, i_{n}}\right) \\
&=\sum_{i_{2}=1}^{m_{2}+1} \sum_{i_{3}=1}^{m_{3}+1} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{2}}^{(2)} b_{i_{3}}^{(3)} \cdots b_{i_{n}}^{(n)} g_{j}\left(c_{i_{2}}^{(2)} c_{i_{3}}^{(3)} \cdots c_{i_{n}}^{(n)}\right) \\
&=\sum_{i_{2}=1}^{m_{2}+1} \sum_{i_{3}=1}^{m_{3}+1} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{2}}^{(2)} b_{i_{3}}^{(3)} \cdots b_{i_{n}}^{(n)} g_{j}\left(c_{i_{2}}^{(2)}\right) g_{j}\left(c_{i_{3}}^{(3)}\right) \cdots g_{j}\left(c_{i_{n}}^{(n)}\right) \tag{3.2}\\
&=\sum_{i_{2}=1}^{m_{2}+1} \sum_{i_{3}=1}^{m_{3}+1} \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{2}}^{(2)} g_{j}\left(c_{i_{2}}^{(2)}\right) b_{i_{3}}^{(3)} g_{j}\left(c_{i_{3}}^{(3)}\right) \cdots b_{i_{n}}^{(n)} g_{j}\left(c_{i_{n}}^{(n)}\right) \\
&=\sum_{i_{2}=1}^{m_{2}+1} b_{i_{2}}^{(2)} g_{j}\left(c_{i_{2}}^{(2)}\right) \sum_{i_{3}=1}^{m_{3}+1} b_{i_{3}}^{(3)} g_{j}\left(c_{i_{3}}^{(3)}\right) \cdots \sum_{i_{n}=1}^{m_{n}+1} b_{i_{n}}^{(n)} g_{j}\left(c_{i_{n}}^{(n)}\right)=0 .
\end{align*}
$$

Thus, $\left\{b_{i_{2}, i_{3}, \ldots, i_{n}} \in B ; c_{i_{2}, i_{3}, \ldots, i_{n}} \in C, i_{j}=1,2, \ldots, m_{j}+1\right.$ and $\left.j=2,3, \ldots, n\right\}$ is a Galois system for B. This complete the proof of (1).
(2) By (1), B is a Galois extension of B^{G} with a Galois system $\left\{b_{i} \in B, c_{i} \in C, i=\right.$ $1,2, \ldots, m\}$ for some integer m. Let $f_{i}: B \rightarrow B^{G}$ given by $f_{i}(b)=\sum_{j=1}^{n} g_{j}\left(c_{i} b\right)$ for all $b \in$ $B, i=1,2, \ldots, m$. Then it is easy to check that f_{i} is a homomorphism as B^{G}-bimodule and $b=\sum_{i=1}^{m} b_{i} c_{i} b=\sum_{j=1}^{n} \sum_{i=1}^{m} b_{i} g_{j}\left(c_{i}\right) g_{j}(b)=\sum_{i=1}^{m} b_{i} \sum_{j=1}^{n} g_{j}\left(c_{i} b\right)=\sum_{i=1}^{m} b_{i} f_{i}(b)$ for all $b \in B$. Hence $\left\{b_{i} ; f_{i}, i=1,2, \ldots, m\right\}$ is a dual bases for B as B^{G}-bimodule, and so B is finitely generated and projective as B^{G}-bimodule. Therefore, B is a direct summand of a finite direct sum of B^{G} as a B^{G}-bimodule. Thus B is centrally projective over B^{G}.
(3) $\mathrm{By}(1), B$ is a Galois extension of B^{G} with Galois group G. Hence $B * G \cong \operatorname{Hom}_{B}$ (B, B) $\left[2\right.$, Theorem 1]. By (2), B is centrally projective over B^{G}. Thus, $B * G\left(\cong \operatorname{Hom}_{B}(B, B)\right)$ is H-separable over B [6 , Proposition 11].
(4) We first claim that $V_{B * G}(C)=B$. Clearly, $B \subset V_{B * G}(C)$. Let $\sum_{j=1}^{n} b_{j} g_{j}$ in $V_{B * G}(C)$ for some $b_{j} \in B$. Then $c\left(\sum_{j=1}^{n} b_{j} g_{j}\right)=\left(\sum_{j=1}^{n} b_{j} g_{j}\right) c$ for each $c \in C$, so $c b_{j}=b_{j} g_{j}(c)$, that is, $b_{j}\left(c-g_{j}(c)\right)=0$ for each $g_{j} \in G$ and $c \in C$. Since $B=B J_{j}^{(C)}$ for each $g_{j} \neq 1$, there exist $b_{i}^{(j)} \in B$ and $c_{i}^{(j)} \in C, i=1,2, \ldots, m$ such that $\sum_{i=1}^{m} b_{i}^{(j)}\left(c_{i}^{(j)}-g_{j}\left(c_{i}^{(j)}\right)\right)=$ 1. Hence $b_{j}=\sum_{i=1}^{m} b_{i}^{(j)}\left(c_{i}^{(j)}-g_{j}\left(c_{i}^{(j)}\right)\right) b_{j}=\sum_{i=1}^{m} b_{i}^{(j)} b_{j}\left(c_{i}^{(j)}-g_{j}\left(c_{i}^{(j)}\right)\right)=0$ for each $g_{j} \neq 1$. This implies that $\sum_{j=1}^{n} b_{j} g_{j}=b_{1} \in B$. Hence $V_{B * G}(C) \subseteq B$, and so $V_{B * G}(C)=B$. Therefore, $V_{B * G}(B) \subset V_{B * G}(C)=B$. Thus $V_{B * G}(B)=V_{B}(B)=C$.

We now show some characterizations of a center Galois extension B.
Theorem 3.2. The following statements are equivalent.
(1) B is a center Galois extension of B^{G}.
(2) $B=B J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G.
(3) B is a Galois extension of B^{G} with a Galois system $\left\{b_{i} \in B, c_{i} \in C, i=1,2, \ldots, m\right\}$ for some integer m.
(4) B is a Galois central extension of B^{G}.
(5) $B^{G} C=B^{G} C J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G.

Proof. (1) \Rightarrow (2). By hypothesis, C is a Galois extension of C^{G} with Galois group $\left.G\right|_{C} \cong G$. Hence $C=C J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G [3, Proposition 1.2, page 80]. Thus, $B=B J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G.
(2) $\Rightarrow(1)$. Since $B=B J_{j}^{C}$ for each $g_{j} \neq 1$ in $G, B * G$ is H-separable over B by Lemma 3.1(3) and $V_{B * G}(B)=C$ by Lemma 3.1(4). Thus C is a Galois extension of C^{G} with Galois group $\left.G\right|_{C} \cong G$ by [1, Proposition 4].
$(1) \Rightarrow(3)$. This is Lemma 3.1(1).
$(3) \Rightarrow(1)$. Since B is Galois extension of B^{G} with a Galois system $\left\{b_{i} \in B, c_{i} \in C, i=\right.$ $1,2, \ldots, m\}$ for some integer m, we have $\sum_{i=1}^{m} b_{i} g_{j}\left(c_{i}\right)=\delta_{1, g}$. Hence $\sum_{i=1}^{m} b_{i}\left(c_{i}-g_{j}\left(c_{i}\right)\right)$ $=1$ for each $g_{j} \neq 1$ in G. So for every $b \in B, b=\sum_{i=1}^{m} b b_{i}\left(c_{i}-g_{j}\left(c_{i}\right)\right) \in B J_{j}^{(C)}$. Therefore, $B=B J_{i}^{(C)}$ for each $g_{i} \neq 1$ in G. Thus, B is a center Galois extension of B^{G} by (2) \Rightarrow (1).
$(1) \Longrightarrow(4)$. Since C is a Galois algebra with Galois group $\left.G\right|_{C} \cong G, B$ and $B^{G} C$ are Galois extensions of B^{G} with Galois group $\left.G\right|_{B^{G} C} \cong G$. Noting that $B^{G} C \subset B$, we have $B=B^{G} C$, that is, B is a central extension of B^{G}. But B is a Galois extension of B^{G}, so B is a Galois central extension of B^{G}.
$(4) \Rightarrow(1)$. By hypothesis, $B=B^{G} C$ is a Galois extension of B^{G}. Hence there exists a Galois system $\left\{a_{i} ; b_{i} \in B, i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} a_{i} g_{j}\left(b_{i}\right)=$ $\delta_{1, j}$. But $B=B^{G} C$, so $a_{i}=\sum_{k=1}^{n_{a_{i}}} b_{k}^{\left(a_{i}\right)} c_{k}^{\left(a_{i}\right)}$ and $b_{i}=\sum_{l=1}^{n_{b_{i}}} b_{l}^{\left(b_{i}\right)} c_{l}^{\left(b_{i}\right)}$ for some $a_{k}^{\left(a_{i}\right)}, b_{l}^{\left(b_{i}\right)}$ in B^{G} and $c_{k}^{\left(a_{i}\right)}, c_{l}^{\left(b_{i}\right)}$ in $C, k=1,2 \ldots, n_{a_{i}}, l=1,2, \ldots, n_{b_{i}}, i=1,2, \ldots, m$. Therefore,

$$
\begin{align*}
\delta_{1, j} & =\sum_{i=1}^{m} a_{i} g_{j}\left(b_{i}\right)=\sum_{i=1}^{m} \sum_{k=1}^{n_{a_{i}}} b_{k}^{\left(a_{i}\right)} c_{k}^{\left(a_{i}\right)} g_{j}\left(\sum_{l=1}^{n_{b_{i}}} b_{l}^{\left(b_{i}\right)} c_{l}^{\left(b_{i}\right)}\right) \\
& =\sum_{i=1}^{m} \sum_{k=1}^{n a_{i}} b_{k}^{\left(a_{i}\right)} c_{k}^{\left(a_{i}\right)} \sum_{l=1}^{n_{b_{i}}} b_{l}^{b_{i}} g_{j}\left(c_{l}^{\left(b_{i}\right)}\right)=\sum_{i=1}^{m} \sum_{k=1}^{n a_{i}} \sum_{l=1}^{n_{b_{i}}}\left(b_{k}^{\left(a_{i}\right)} c_{k}^{\left(a_{i}\right)} b_{l}^{\left(b_{i}\right)}\right) g_{j}\left(c_{l}^{\left(b_{i}\right)}\right) . \tag{3.3}
\end{align*}
$$

This shows that $\left\{b_{k, l}^{\left(a_{i}, b_{i}\right)}=b_{k}^{\left(a_{i}\right)} c_{k}^{\left(a_{i}\right)} b_{l}^{\left(b_{i}\right)} \in B ; c_{k, l}^{\left(a_{i}, b_{i}\right)}=c_{l}^{\left(b_{i}\right)} \in C, k=1,2, \ldots, n_{a_{i}}, l=\right.$ $\left.1,2, \ldots, n_{b_{i}}, i=1,2, \ldots, m\right\}$ is a Galois system for B. Thus, B is a center Galois extension of B^{G} by (3) $\Rightarrow(1)$.
$(1) \Rightarrow(5)$. Since B is a center Galois extension of $B^{G}, B=B J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G by $(1) \Longrightarrow$ (2) and $B=B^{G} C$ by $(1) \Longrightarrow$ (4). Thus, $B^{G} C=B^{G} C J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G.
$(5) \Rightarrow(1)$. Since $B^{G} C=B^{G} C J_{j}^{(C)}$ for each $g_{j} \neq 1$ in $G, B=B J_{j}^{(C)}$ for each $g_{j} \neq 1$ in G. Thus, B is a center Galois extension of B^{G} by (2) $\Rightarrow(1)$.

The characterization of a commutative Galois extension C in terms of the ideals generated by $\{c-g(c) \mid c \in C\}$ for $g \neq 1$ in G is an immediate consequence of Theorem 3.2.
COROLLARY 3.3. A commutative ring C is a Galois extension of C^{G} if and only if $C=C J_{j}^{(C)}$, the ideal generated by $\left\{c-g_{j}(c) \mid c \in C\right\}$ is C for each $\mathfrak{g}_{j} \neq 1$ in G.

Proof. Let $B=C$ in Theorem 3.2. Then, the corollary is an immediate consequence of Theorem 3.2(2).

By Theorem 3.2, we derive several characterizations of a Galois centeral extension B.

Corollary 3.4. If B is a central extension of B^{G} (that is, $B=B^{G} C$), then the following statements are equivalent.
(1) B is a Galois extension of B^{G}.
(2) B is a center Galois extension of B^{G}.
(3) $B * G$ is H-separable over B.
(4) $B=C J_{j}^{(B)}$ for each $g_{j} \neq 1$ in G.
(5) $B=B J_{j}^{(B)}$ for each $g_{j} \neq 1$ in G.

Proof. $(1) \Longleftrightarrow(2)$. This is given by $(1) \Longleftrightarrow(4)$ in Theorem 3.2.
$(2) \Rightarrow(3)$. This is Lemma 3.1(3).
$(3) \Longrightarrow(1)$. Since $B * G$ is H-separable over B, B is a Galois extension of B^{G} [1, Proposition 2].
Since $B=B^{G} C$ by hypothesis, it is easy to see that $J_{j}^{(B)}=B^{G} J_{j}^{(C)}$ for each g_{j} in G. Thus, $B=C J_{j}^{(B)}, B=B J_{j}^{(B)}$, and $B=B J_{j}^{(C)}$ are equivalent. This implies that $(2) \Longleftrightarrow(4) \Longleftrightarrow(5)$ by Theorem 3.2(2).

We call a ring B the DeMeyer-Kanzaki Galois extension of B^{G} if B is an Azumaya C algebra and B is a center Galois extension of B^{G} (for more about the DeMeyer-Kanzaki Galois extensions, see [2]). Clearly, the class of center Galois extensions is broader than the class of the DeMeyer-Kanzaki Galois extensions. We conclude the present paper with two examples. (1) The DeMeyer-Kanzaki Galois extension of B^{G} and (2) a center Galois extension of B^{G}, but not the DeMeyer-Kanzaki Galois extension of B^{G}.

Example 3.5. Let \mathbb{C} be the field of complex numbers, that is, $\mathbb{C}=\mathbb{R}+\mathbb{R} \sqrt{-1}$ where \mathbb{R} is the field of real numbers, $B=\mathbb{C}[i, j, k]$ the quaternion algebra over \mathbb{C}, and $G=$ $\left\{1, g \mid g\left(c_{1}+c_{i} i+c_{j} j+c_{k} k\right)=g\left(c_{1}\right)+g\left(c_{i}\right) i+g\left(c_{j}\right) j+g\left(c_{k}\right) k\right.$ for each $b=c_{1}+c_{i} i+$ $c_{j} j+c_{k} k \in \mathbb{C}[i, j, k]$ and $g(u+v \sqrt{-1})=u-v \sqrt{-1}$ for each $\left.c=u+v \sqrt{-1} \in \mathbb{C}\right\}$. Then
(1) The center of B is \mathbb{C}.
(2) B is an Azumaya C-algebra.
(3) \mathbb{C} is a Galois extension of \mathbb{C}^{G} with Galois group $\left.G\right|_{\mathbb{C}} \cong G$ and a Galois system $\left\{a_{1}=1 / \sqrt{2}, a_{2}=(1 / \sqrt{2}) \sqrt{-1} ; b_{1}=1 / \sqrt{2}, b_{2}=-(1 / \sqrt{2}) \sqrt{-1}\right\}$.
(4) B is the DeMeyer-Kanzaki Galois extension of B^{G} by (2) and (3).
(5) $B^{G}=\mathbb{R}[i, j, k]$.
(6) $B=B^{G} \mathbb{C}$, so B is a centeral extension of B^{G}.
(7) $J_{g}^{(\mathbb{C})}=\mathbb{R} \sqrt{-1}$.
(8) $B=B J_{g}^{(C)}$ since $1=-\sqrt{-1} \sqrt{-1} \in B J_{g}^{(C)}$.
(9) $J_{g}^{(B)}=\mathbb{R} \sqrt{-1}+\mathbb{R} \sqrt{-1} i+\mathbb{R} \sqrt{-1} j+\mathbb{R} \sqrt{-1} k$.
(10) $B=\mathbb{C} J_{g}^{(B)}$.

Example 3.6. By replacing in Example 3.5 the field of complex numbers \mathbb{C} with the ring $C=\mathbb{Z} \oplus \mathbb{Z}$ where \mathbb{Z} is the ring of integers, $g(a, b)=(b, a)$ for all $(a, b) \in C$, and $G=\left\{1, g \mid g\left(c_{1}+c_{i} i+c_{j} j+c_{k} k\right)=g\left(c_{1}\right)+g\left(c_{i}\right) i+g\left(c_{j}\right) j+g\left(c_{k}\right) k\right.$ for each $b=$ $\left.c_{1}+c_{i} i+c_{j} j+c_{k} k \in B=C[i, j, k]\right\}$. Then
(1) The center of B is C.
(2) C is a Galois extension of C^{G} with Galois group $\left.G\right|_{C} \cong G$ and a Galois system $\left\{a_{1}=(1,0), a_{2}=(0,1) ; b_{1}=(1,0), b_{2}=(0,1)\right\}$.
(3) B is not an Azumaya C-algebra (for $1 / 2 \notin C$), and so B is not the DeMeyer-Kanzaki Galois extension of B^{G}.
(4) $C^{G}=\{(a, a) \mid a \in \mathbb{Z}\} \cong \mathbb{Z}$.
(5) $B^{G}=C^{G}[i, j, k]$.
(6) $B=B^{G} C$, so B is a central extension of B^{G}.
(7) $J_{g}^{(C)}=\{(a,-a) \mid a \in \mathbb{Z}\}=\mathbb{Z}(1,-1)$.
(8) $B=B J_{g}^{(C)}$ since $1=(1,1)=(1,-1)(1,-1) \in B J_{G}^{(C)}$.
(9) $J_{g}^{(B)}=\mathbb{Z}(1,-1)+\mathbb{Z}(1,-1) i+\mathbb{Z}(1,-1) j+\mathbb{Z}(1,-1) k$.
(10) $B=C J_{g}^{(B)}$.

REFERENCES

[1] R. Alfaro and G. Szeto, The centralizer on H-separable skew group rings, Rings, extensions, and cohomology (Evanston, IL, 1993) (New York), Dekker, 1994, pp. 1-7. MR 95g:16027. Zbl 812.16038.
[2] F. R. DeMeyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965), 117-127. MR 32\#128. Zbl 143.05602.
[3] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, SpringerVerlag, Berlin, 1971. MR 43\#6199. Zbl 215.36602.
[4] S. Ikehata, On H-separable polynomials of prime degree, Math. J. Okayama Univ. 33 (1991), 21-26. MR 93g:16043. Zbl 788.16022.
[5] S. Ikehata and G. Szeto, On H-skew polynomial rings and Galois extensions, Rings, extensions, and cohomology (Evanston, IL, 1993) (New York), Dekker, 1994, pp. 113-121. MR 95j:16033. Zbl 815.16009.
[6] K. Sugano, Note on separability of endomorphism rings, J. Fac. Sci. Hokkaido Univ. Ser. I 21 (1970/71), 196-208. MR 45\#3465. Zbl 236.16003.
[7] G. Szeto and L. Xue, On the Ikehata theorem for H-separable skew polynomial rings, Math. J. Okayama Univ. 40 (1998), 27-32, 2000.
[8] , The general Ikehata theorem for H-separable crossed products, Internat. J. Math. Math. Sci., Vol 25, to appear, 1999.

Szeto: Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA
E-mail address: szeto@bradley.bradley.edu
Xue: Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA
E-mail address: 1xue@bradley.bradley.edu

