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Abstract. Let G and f : [0,1]×R4 → R be two functions satisfying Caratheodory condi-
tions. This paper is concerned with the problems of existence and uniqueness of solutions
for the nonlinear fourth-order ordinary differential equation

y′′′′ +λy′′ +ky+G(x,y,y′,y′′,y′′′)= f (x,y,y′,y′′,y′′′)
with one of a particular set of boundary conditions.
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1. Introduction. In this paper, we are concerned with the global solvability of the
fourth-order ordinary differential equation

y ′′′′ +λy ′′ +ky+G(x,y,y ′,y ′′,y ′′′)= f (x,y,y ′,y ′′,y ′′′) (1.1)

with one of the following sets of boundary conditions:

y(0)=y ′′(0)=y(1)=y ′′(1)= 0; (1.2)

y(0)=y ′′(0)=y(1)=y ′(1)= 0; (1.3)

y(0)=y ′′(0)=y ′(1)=y ′′′(1)= 0; (1.4)

y(0)=y ′(0)=y(1)=y ′(1)= 0; (1.5)

y(0)=y ′(0)=y ′′(1)=y ′′′(1)= 0; (1.6)

y(0)=y ′(0)=y ′(1)=y ′′′(1)= 0. (1.7)

(Hereinafter, for simplicity, when we refer to (1.1) we will actually mean the fourth-
ordinary differential equation (1.1) along with one of the boundary conditions given in
(1.2) through (1.7).) Those boundary value problems govern the equilibrium states of
a beam-column. The source of nonlinearity comes from a nonlinear lateral constraint
(foundation). The equilibrium equation is formulated as a fourth-order nonlinear dif-
ferential equation. Different boundary conditions are corresponding to various ways
in which the ends of the beam may be supported.
Very recently, Elgindi and Guan [3] studied these boundary value problems when

G in (1.1) is independent of y ′′′, and f in (1.1) is independent of y,y ′,y ′′, and y ′′′,
that is, G(x,y,y ′,y ′′,y ′′′)=G(x,y,y ′,y ′′) and f(x,y,y ′,y ′′,y ′′′)= f(x). It turns
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out that the dependence of G and f in (1.1) on the third-order derivative y ′′′ of y
causes a fundamental difference between the problem studied in this paper and the
corresponding problems studied in [3], where G and f are independent of y ′′′. The
conditions on G(x,y,y ′,y ′′) for the existence of a solution to the boundary value
problems (1.1), as given in [3], are some homogeneous conditions and sign conditions
with respect to y . Now when G, in (1.1), is not independent of y ′′′, these conditions
on G which are related to y do not give the necessary, a priori, estimates to obtain
existence of a solution to the boundary value problems (1.1). It is the purpose of this
paper to show that necessary, a priori, estimates can be obtained to prove existence
of a solution to the boundary value problems (1.1) when one imposes conditions on G
and f they are related to y ′′′. We remark that the existence and uniqueness theorems
obtained in this paper for the boundary value problems (1.1), when particularized to
the case when G in (1.1) is independent of y ′′′ and f(x,y,y ′,y ′′,y ′′′) = f(x) gives
new existence theorems for the problems studied in [3]. We would like to refer the
reader to [1, 2, 4, 5, 6, 7, 8] and references therein for related works on fourth-order
boundary value problems.
The proof of the existence of solutions is based upon a corollary of Leray-Schauder

fixed point theorem, which we state here as the following lemma.

Lemma 1.1. Let B be a banach space and K : B→ B be a compact operator. Suppose
that there exists a priori bound m > 0 such that every solution of y − tKy = 0, for
t ∈ [0,1], satisfies ‖y‖ ≤m. Then K has a fixed point y with ‖y‖ ≤m.

2. Assumptions and preliminary results

Definition 2.1. A function u : [0,1]×Rk → R is said to satisfy Corotheodory’s
condition for Lq(0,1) if the following conditions are satisfied:

(i) for a.e. x ∈ [0,1], the function f(x,·) is continuous;
(ii) for every y ∈ Rk, the function f(·,y) is measurable;
(iii) for every r > 0, there is gr ∈ Lq(0,1) such that for a.e. x ∈ [0,1], |u(x,y)| ≤

gr (x) whenever ‖y‖ ≤ r .
Throughout the rest of the paper, we use the following notation:

Wk =
{
y : [0,1] �→R |y(j) ∈AC[0,1], j = 0,1, . . . ,k−1 and y(k) ∈ L2(0,1)

}
,

‖y‖2k =
k∑
j=0

∥∥y(j)∥∥2
k, y ∈Wk,

(2.1)

D(Li)= {y ∈Wk |y satisfies the ith boundary conditions (1.i)}, i= 2, . . . ,7,
Lj :D(Li)→ L2(0,1) is defined by

Lj(y)=y ′′′′. (2.2)

We make the following assumptions.
(H1) Let f : [0,1]×R4 → R satisfy Corotheodory’s condition for L2(0,1) and there

exists f̄ ∈ L2(0,1) such that
∣∣f(x,y,z,u,v)∣∣≤ f̄ (x) for all (x,y,z,u,v)∈ [0,1]×R4. (2.3)
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(H2)G(x,y,z,u,v)=g(u)+h(x,y,z,u,v),whereg is continuous,h : [0,1]×R4→R
satisfies Corotheodory’s condition for L2(0,1). (It is well known that the map H :
[0,1]×W 3 → L2(0,1) defined by H(x,y) = h(x,y,y ′,y ′′,y ′′′) is continuous.) Fur-
thermore, we assume

(a) there exists p > 1 such that

g(ru)= rpg(u) for r , x ∈ R with r > 0; (2.4)

(b) for any y ∈ W 3,
∫ 1
0 g(y ′′)y ′′dx ≤ 0, and

∫ 1
0 g(y ′′)y ′′dx = 0 if and only if

y ′′ = 0;
(c)

∫ 1
0 h(x,y,z,u,v)udx ≤ 0, y ∈W 3.

We collect some preliminary results which we use in Section 3 in the following lem-
mas.

Lemma 2.2. If u∈ C1[0,1], and u(0)= 0, then ‖u‖2L2 ≤ (4/π2)‖u′‖2L2 .
Lemma 2.3. If u∈ C1[0,1], and u(0)= 0=u(1), then ‖u‖2L2 ≤ (1/π2)‖u′‖2L2 .
Lemma 2.4. Let Mη =max{η,1−η}, 0≤ η≤ 1. If u∈ C1[0,1], and u(η)= 0, then

‖u‖2L2 ≤
(
4
π2

)
Mη
∥∥u′∥∥2L2 . (2.5)

Lemmas 2.2 and 2.3 are direct consequences of Wirtinger’s inequalities, see [1].
Lemma 2.4 can be easily deduced from Lemmas 2.2 and 2.3.

Lemma 2.5. For each Lj, j = 2, . . . ,7, the following are true:
(A) Lj, as an operator on L2, is densely defined and self-adjoint;
(B) cj‖y‖L2 ≤ ‖y ′′‖L2 ≤ dj‖y ′′′‖L2 for y ∈ D(Lj), where c2 = c5 = π2, c3 = c7 =

π2/2, c4 = c6 =π2/4; d2 = 1/π , d3 = d4 = d5 = d6 = d7 = 2/π ;
(C) for any y ∈D(Lj), Ljy = 0 if and only if y = 0;
(D) there exists unique ψj : L2(0,1) → W 4 such that Lj(ψj(h)) = h for any h ∈

L2(0,1) and ψj : L2(0,1)→W 4 is bounded;
(E) Kj : L2 → W 3 defined by Kj = i◦ψj , where i : D(Lj)→ W 3 denotes the identity

map, is compact.

The proof of (A)–(E) are direct and therefore omitted. For some of the estimates in
(B), one needs to use Lemmas 2.2, 2.3, and 2.4.

3. Existence of solutions. In this section, we consider the solvability of the six
boundary value problems consisting of the differential equation (1.1) in the following
theorem.

Theorem 3.1. Under the Assumptions (H1) and (H2), the boundary value problem
consisting of (1.1), and (1,j), j = 2, . . . ,7, has at least one solution.

Proof. The boundary value problem (1.1) can be written as

y =Kjy, (3.1)

where

Kjy =Kj
[
λy ′′ +ky+G(x,y,y ′,y ′′,y ′′′)−f (x,y,y ′,y ′′,y ′′′)]. (3.2)
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Kj :W 3→W 3 is compact, andKj is as in Lemma 2.5. We prove the existence of solution
of (3.1) by verifying the conditions of Lemma 1.1.
Assume that the solutions of y-tKjy = 0 are not uniformly bounded with respect

to t ∈ [0,1]. Then there exist sequence {tn} ⊂ (0,1) and yn ∈W 3 such that

yn = tnKjyn (3.3)

and ‖yn‖3→∞ as n→∞.
From (3.3), it follows that each yn satisfies

y ′′′′n +tnλy ′′n +tnkyn+tnG
(
x,yn,y ′n,y ′′n ,y ′′′n

)= tnf (x,yn,y ′n,y ′′n ,y ′′′n ) (3.4)

with yn ∈D(Lj), which in turn implies (upon multiplying both sides of the equation
by y ′′n , integrating by parts and using the boundary conditions)

−∥∥y ′′′n ∥∥2L2+tnλ
∥∥y ′′n∥∥2L2+tnk

∫ 1
0
yny ′′n dx+tn

∫ 1
0
G
(
x,yn,y ′n,y ′′n ,y ′′′n

)
y ′′n dx

= tn
∫ 1
0
f
(
x,yn,y ′n,y ′′n ,y ′′′n

)
y ′′n dx.

(3.5)

Set zn = yn/‖yn‖3, then {zn} ⊂W 3 is a bounded sequence, and since a bounded set
of W 3 is weakly relatively compact, it follows that there exists a subsequence of {zn},
that converges weakly in W 3. By the fact that the imbedding i0 :D(L)⊂W 3→ C2[0,1]
is compact, it follows that there exists a subsequence of {zn}, which we recall {zn}
again, that converges strongly in C2[0,1] to some z0 ∈ C2[0,1].
From (3.5) and Assumption (H2), we obtain

−tn
∫ 1
0
g
(
y ′′n
)
y ′′n dx =−

∥∥y ′′′n ∥∥2L2+tnk
∫ 1
0
yny ′′n dx+tnλ

∥∥y ′′n∥∥2L2

+tn
∫ 1
0
h
(
x,yn,y ′n,y ′′n ,y ′′′n

)
y ′′n dx

−tn
∫ 1
0
f
(
x,yn,y ′n,y ′′n ,y ′′′n

)
y ′′n dx

≤ tn|k|
∥∥y ′′n∥∥L2

∥∥yn∥∥L2+tn|λ|
∥∥y ′′n∥∥2L2

−tn
∫ 1
0
f
(
x,yn,y ′n,y ′′n ,y ′′′n

)
y ′′n dx

≤ tn
(
c−1j |k|+|λ|

)∥∥y ′′n∥∥2L2+tn
∥∥f̄∥∥L2

∥∥y ′′n∥∥L2 .

(3.6)

Using (3.6) and homogeneity of g, we obtain

0≤−
∫ 1
0
g
(
z′′n
)
z′′n dx ≤

(
c−1j |k|+|λ|

)∥∥y ′′n∥∥2L2∥∥yn∥∥p+13

+
∥∥f̄∥∥L2

∥∥y ′′n∥∥L2∥∥yn∥∥p+13

�→ 0 (3.7)

as n→∞. Since g is continuous, it follows from (3.7) that
∫ 1
0 g(z

′′
0 )z

′′
0 dx = 0 which, in

view of (H2) part (b), implies that z′′0 = 0. This together with the boundary conditions
(1.2) through (1.7) imply that z0 = 0. Thus zn→ 0 in C2[0,1].
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On the other hand, from (3.5) we have
∥∥y ′′′n ∥∥2L2∥∥yn∥∥23

= tnλ
∥∥y ′′n∥∥2L2∥∥yn∥∥23

+tnk
∫ 1
0

yny ′′n∥∥yn∥∥23
dx

+tn
∫ 1
0
G
(
x,yn,y ′n,y ′′n ,y ′′′n

) y ′′n∥∥yn∥∥23
dx

−tn
∫ 1
0
f
(
x,yn,y ′n,y ′′n ,y ′′′n

) y ′′n∥∥yn∥∥23
dx

≤ tnk
[
z′n(1)zn(1)−z′n(0)zn(0)

]+tnk
∫ 1
0
z2ndx

+tnλ
∥∥z′′n∥∥2L2+tn

∥∥f̄∥∥L2
∥∥y ′′n∥∥L2∥∥yn∥∥23

(3.8)

which implies that (by the fact that zn→ 0 in C2[0,1])
∥∥y ′′′n ∥∥2L2∥∥yn∥∥23

�→ 0. (3.9)

However, from part (B) of Lemma 2.5 and Lemmas 2.2 and 2.3, we know that
∥∥yn∥∥L2 ≤

∥∥y ′n∥∥L2 ≤
∥∥y ′′n∥∥L2 ≤

∥∥y ′′′n ∥∥L2 for y ∈D(L) (3.10)

and moreover, we have
∥∥yn∥∥23 =

∥∥yn∥∥2L2+
∥∥y ′n∥∥2L2+

∥∥y ′′n∥∥2L2+
∥∥y ′′′n ∥∥2L2 ≤ 4

∥∥y ′′′n ∥∥2L2 , (3.11)

and this contradicts (3.9). This completes the proof.

4. Uniqueness. Assume that G(x,y,y ′,y ′′,y ′′′) and f(x,y,y ′,y ′′,y ′′′) satisfy
the condition (H3) for all y, z ∈W 3,

∫ 1
0

{[
G
(
x,y,y ′,y ′′,y ′′′

)−f (x,y,y ′,y ′′,y ′′′)]

−[G(x,z,z′,z′′,z′′′)−f (x,z,z′,z′′,z′′′)]}(y ′′ −z′′)dx < 0.
(4.1)

We obtain the following result on the uniqueness of the solution.

Theorem 4.1. Assume (H3), the solution of the boundary value problem (1.1) has
at most one solution, provided that |λ|d2j +|k|c−1j d2j ≤ 1.

Proof. Let y and z be two solutions of the boundary value problem. Setw =y−z
and assume that w′′ ≠ 0, w satisfies the equation

w′′′′ +λw′′ +kw+[G(x,y,y ′,y ′′,y ′′′)−f (x,y,y ′,y ′′,y ′′′)]
−[G(x,z,z′,z′′,z′′′)−f (x,z,z′,z′′,z′′′)]= 0 (4.2)

and the boundary condition (1.2) through (1.7). Let A = ‖w′′′‖L2 and B = ‖w′′‖L2 .
Uponmultiplying (4.2) byw′′ and integrating by parts, using the boundary conditions,
Holder’s inequality and (H3), we obtain

−A2+λB2+|k|c−1j B2 > 0. (4.3)
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If |λ|d2j +|k|c−1j d2j ≤ 1, we have

−A2+λB2+|k|c−1j B2 ≤−A2+|λ|d2jA2+|k|c−1j d2jA
2

=A2(−1+|λ|d2j +|k|c−1j d2j
)≤ 0, (4.4)

where

dj =




1
π
, for j = 2,

2
π
, for j = 3,4,5,6,7,

(4.5)

(see part (B) of Lemma 2.5). (4.4) contradicts the inequality (4.3).
Thus w′′ = 0. This together with one of the boundary conditions (1.2), (1.3), (1.4),

(1.5), (1.6), (1.7) imply that w = 0. This proves the theorem.
Remark 4.2. It is quite clear that most of the functions G which are of interest

physically satisfy our Assumptions (H2) parts (a), (b), and (c), and (H3). For example,
G(x,y,z,u,v) = −u3 satisfies all these assumptions. More generally, if we assume
cj ∈ L2(0,1),j = 3,5, . . . ,2n+1, are functions satisfying c2n+1(x) < 0 and cj(x) ≤ 0
for j = 3,5, . . . ,2n−1, then the functions G(x,y,z,u,v) = c3(x)u3+c5(x)u5+···+
c2n+1(x)u2n+1 and g(u)= c2n+1(x)u2n+1 satisfy our Assumptions (H2) and (H3).
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