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1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [12],
several researches were conducted on the generalizations of the notion of fuzzy set.
The idea of “intuitionistic fuzzy set” was first given by Atanassov [2, 3]. Later this
concept is generalized to intuitionistic sets in Çoker [6] and intuitionistic topological
spaces in [5, 9, 10]. An introduction to connectedness in these spaces is given in [10].

2. Preliminaries. First we present the fundamental definitions (see [6]).

Definition 2.1 (cf. [5, 9]). Let X be a nonempty fixed set. An intuitionistic fuzzy
special set (IFSS for short) A is an object having the form A = 〈x, A1, A2〉, where A1
andA2 are subsets of X satisfyingA1∩A2 =∅. The setA1 is called the set of members
of A, while A2 is called the set of nonmembers of A.
The reader may consult [6, 9] to see several types of relations and operations on

IFSS’s, and intuitionistic fuzzy special points (IFSP’s for short) and vanishing intu-
itionistic fuzzy special points (VIFSP’s for short).

Definition 2.2 (cf. [5, 7, 8, 9, 10, 11]). An intuitionistic fuzzy special topology
(IFST for short) on a nonempty set X is a family τ of IFSS’s in X containing ∅∼ , X∼
and closed under finite infima and arbitrary suprema. In this case the pair (X,τ) is
called an intuitionistic fuzzy special topological space (IFSTS for short) and any IFSS
in τ is known as an intuitionistic fuzzy special open set (IFSOS for short) in X. The
complement Ā of an IFSOS A in an IFSTS (X,τ) is called an intuitionistic fuzzy special
closed set (IFSCS for short) in X.
Using a similar construction as in [7], one can easily define the interior and closure

operators in IFSTS’s.

3. Types of connectedness in intuitionistic fuzzy special topological spaces.
Throughout this section (X,τ) and (Y ,Φ) will always denote IFSTS’s. Here we define
several types of connectedness in IFSTS’s.
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Notice that two IFSS’s A and B in (X,τ) are said to be weakly separated, if cl(A)⊆ B̄
and cl(B)⊆ Ā; and q-separated, if cl(A)∩B =∅∼ =A∩cl(B).

Lemma 3.1.

A∩B =∅∼ �⇒A⊆ B̄; (3.1)

A� B̄ �⇒A∩B ≠∅∼ . (3.2)

Definition 3.1 (cf. [1, 10, 11]). Let (X,τ) be an IFSTS in X.
(a) X is called CS -disconnected, if there exist weakly separated nonzero IFSS’s A

and B in (X,τ) such that X∼ = A∪ B. (X,τ) is called CS -connected, if (X,τ) is not
CS -disconnected.
(b) X is called CM -disconnected, if there exist q-separated nonzero IFSS’s A and B in

(X,τ) such that X∼ =A∪B. X is called CM -connected, if X is not CM -disconnected.

The idea of Ci-connectedness in fuzzy topological spaces and in intuitionistic fuzzy
topological spaces (see [1, 11]) can be generalized to the intuitionistic case.

Definition 3.2 (cf. [10]). Let N be an IFSS in (X,τ).
(a) If there exist IFSOS’s M and W in X satisfying the following properties, then N

is called Ci-disconnected (i= 1,2,3,4).
C1: N ⊆M∪W , M∩W ⊆ N̄ , N∩M ≠∅∼ , N∩W ≠∅∼ ,
C2: N ⊆M∪W , M∩W ∩N =∅∼ , N∩M ≠∅∼ , N∩W ≠∅∼ ,
C3: N ⊆M∪W , M∩W ⊆ N̄,M � N̄ , W � N̄ ,
C4: N ⊆M∪W , M∩W ∩N =∅∼ , M � N̄ , W � N̄ .

(b) N is said to be Ci-connected (i = 1,2,3,4) if N is not Ci-disconnected (i =
1,2,3,4).

Corollary 3.1. P , Q are weakly separated if and only if ∃M , W ∈ τ such that
P ⊆M , Q⊆W , P ⊆ W̄ , and Q⊆ M̄ .

Proof. (⇐) Suppose there exist M , W ∈ τ such that P ⊆ M, Q ⊆ W , P ⊆ W̄ , and
Q⊆ M̄ . Then cl(P)⊆ cl(W̄)= W̄ (since W̄ is an IFSCS) and cl(Q)⊆ cl(M̄)= M̄ ⇒ cl(P)⊆
W̄ ⊆ Q̄⇒ cl(P)⊆ Q̄ and cl(Q)⊆ M̄ ⊆ P̄ ⇒ cl(Q)⊆ P̄ ⇒ P,Q are weakly separated.
(⇒) Let cl(P)⊆ Q̄, cl(Q)⊆ P̄ . Now takeW = cl(P) andM = cl(Q)which are IFSOS’s in

(X,τ). Hence W̄ ⊆ Q̄ and M̄ ⊆ P̄ ⇒ P ⊆M ,Q⊆W . We also haveW = cl(P)⊆ P̄ ⇒ P ⊆ W̄
and M = cl(Q)⊆ Q̄⇒Q⊆ M̄ .
Here we define CS -connectedness and CM -connectedness of an IFSS in (X,τ).

Definition 3.3 (cf. Ajmal-Kohli [1]). An IFSSN in (X,τ) is said to beCS -disconnect-
ed (CM -disconnected) if and only if there are two nonempty weakly separated (q-
separated) IFSS’s A and B in (X,τ) such that N = A∪ B. N is called CS -connected
(CM -connected) if and only if N is not CS -disconnected (CM -disconnected).

Theorem 3.1. If N is C3-connected, then N is CM -connected.

Proof. LetN be CM -disconnected. Then there exist IFSS’s A, B such thatN =A∪B,
A, B ≠∅∼ and A, B are q-separated. Let P = cl(A) andQ= cl(B). Then P ,Q are IFSOS’s.
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Now

cl(A)∩cl(B)⊆ Ā∩ B̄ =A∪B = N̄ �⇒N
⊆ cl(A)∩cl(B)= cl(A)∪cl(B)
= P∪Q �⇒N ⊆ P∪Q,

(3.3)

P∩Q= cl(A)∩cl(B)= cl(A)∪cl(B)= cl(A∪B)⊆A∪B = N̄ �⇒ P∩Q⊂ N̄. (3.4)

If P ⊆ N̄ , then N ⊆ cl(A)⇒N∩B =∅∼ (since cl(A)∩B =∅∼ ) and N∩B = (A∪B)∩B =
B =∅∼ . This is a contradiction. Hence P � N̄ follows. Q � N̄ can be proved similarly.

Theorem 3.2. If N is C1-connected, then N is CS -connected.

Proof. Let N be CS -disconnected. Then there exist IFSS’s A, B such that N =A∪B,
A, B ≠∅∼ and A, B are weakly separated. Let P = cl(A) and Q = cl(B). Then P , Q are
IFSOS’s. We have seen that N ⊆ P∪Q and P∩Q ⊆ N̄ . If P∩N =∅∼ , then P ⊆ N̄ ⇒N ⊆
P̄ ⇒N ⊆ cl(A)⊆ B̄⇒N ⊆ B̄. Since N =A∪B and A∪B ⊆ B̄, we obtain a contradiction.
Hence P∩N ≠∅∼ follows. Similarly, it can be proved that Q∩N ≠∅∼ .

Theorem 3.3. If N is CS -connected, then N is C2-connected.

Proof. Suppose, on the contrary, that N is C2-disconnected. Hence there exist
IFSOS’s M , W such that N ⊆ M ∪W , N ∩M ∩W = ∅∼ , N ∩M ≠ ∅∼ , N ∩W ≠ ∅∼ . Now,
take P = N ∩M and Q = N ∩W . Since N ⊆ M ∪W , we get N = N ∩ (M ∪W) = (N ∩
M)∪(N∩W)= P∪Q. We show that P and Q are weakly separated. Let P ⊆M , Q⊆W .
Suppose that P � W̄ . Then P ∩W ≠∅∼ ⇒ (N∩M)∩W ≠∅∼ , a contradiction, in other
words P ⊆ W̄ follows. Similarly one can also show that Q ⊆ M̄ . Thus P , Q are weakly
separated, which is a contradiction. Therefore N is C2-connected.

Theorem 3.4. If N is CS -connected, then N is C3-connected.

Proof. Similar to the previous one.

CS -connectedness does not imply C1-connectedness in general:

Counterexample 3.1. Let X = {a,b,c} and τ = {∅∼ ,X∼ ,A1,A2,A3} where

A1 =
〈
x,{c},{a,b}〉, A2 =

〈
x,{a},{b,c}〉, A3 =

〈
x,{a,c},{b}〉. (3.5)

IfN = 〈x,{a},{b}〉, thenN is CS -connected, since there exist no two nonempty weakly
separated IFSS’s A, B ≠∅∼ such that N =A∪B. But N is C1-disconnected.
If N is C2-connected (C3-connected), then N may not be CS -connected.

Counterexample 3.2. Let X = {a,b,c,d} and τ = {∅∼ ,X∼ ,A1,A2,A3,A4}, where

A1 =
〈
x,{c},{a,b}〉,

A3 =
〈
x,{a},{b}〉,

A2 =
〈
x,{a,c},{b}〉,

A4 =
〈
x,∅,{a,b}〉. (3.6)
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Now take N = 〈x,{a},{b,c}〉. N is C2-connected (C3-connected) but not CS -connected,
since there exist two nonempty weakly separated IFSS’s A, B ≠∅∼ such that N =A∪B;
namely

A= 〈x,∅,{a,b,c}〉, B = 〈x,{a},{b,c}〉. (3.7)

C2-connectedness does not imply CM -connectedness in general as shown below.

Counterexample 3.3. Let X = {a,b,c} and τ = {∅∼ ,X∼ ,A1,A2,A3,A4}, where

A1 =
〈
x,{b},{c}〉,

A3 =
〈
x,{b,c},∅〉,

A2 =
〈
x,{c},{a}〉,

A4 =
〈
x,∅,{a,c}〉. (3.8)

N = 〈x,{c},{a}〉 is C2-connected, but not CM -connected, since N can be expressed as
the join of two nonempty q-separated IFSS’s

A= 〈x,{c},{a,b}〉, B = 〈x,∅,{a,c}〉. (3.9)

Similarly, CM -connectedness does not imply C3- (C4-)connectedness in general:

Counterexample 3.4. Let X = {a,b,c} and τ = {∅∼ ,X∼ ,A1,A2,A3}, where

A1 =
〈
x,{c},{a,b}〉, A2 =

〈
x,{a},{b,c}〉, A3 =

〈
x,{a,c},{b}〉. (3.10)

Let N = 〈x,{a},{b}〉. N is CM -connected, since there exist no two nonempty q-sepa-
rated IFSS’s A, B ≠∅∼ such that N =A∪B. But N is C3-disconnected (C4-disconnected).
If N is C4-connected, then N may not be CM -connected.

Counterexample 3.5. Let X = {a,b,c,d} and τ = {∅∼ ,X∼ ,A1,A2,A3,A4}, where

A1 =
〈
x,{c},{a,b}〉,

A3 =
〈
x,{a},{b}〉,

A2 =
〈
x,{a,c},{b}〉,

A4 =
〈
x,∅,{a,b}〉. (3.11)

If N = 〈x,{a},{b,d}〉, then N is C4-connected, but not CM -connected. This is because,
N can be expressed as the join of two nonempty q-separated IFSS’s A and B, where

A= 〈x,∅,{a,b,d}〉, B = 〈x,{a},{b,c,d}〉. (3.12)

Now, we summarize the relations between several types of connectedness.

C1-connectedness �� CS -connectedness ��

��

C2-connectedness

��
CM -connectedness C3-connectedness�� �� C4-connectedness.

(3.13)

None of these implications are reversible, as given here and in [10]. The following
example shows that the closure of C1- (C2-)connected IFSS need not be C1-connected
(C2-connected).
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Counterexample 3.6. Let X = {a,b,c,d} and τ = {∅∼ ,X∼ ,A1,A2,A3}, where

A1 =
〈
x,{a,b},{c,d}〉, A2 =

〈
x,{d},{a,b}〉, A3 =

〈
x,{a,b,d},∅〉. (3.14)

If N = 〈x,{b},{c,d}〉, then N is C1-connected (C2-connected), but cl(N) is C1-discon-
nected (C2-disconnected).

Theorem 3.5. The closure of C3-connected (C4-connected) IFSS is C3-connected
(C4-connected)

Proof. Let N be C3-connected, but cl(N) be C3-disconnected. Hence there exist
IFSOS’s M , W ≠∅∼ such that cl(N)⊆M∪W , M∩W ⊆ cl(N), M � cl(N), W � cl(N). We
easily deduce N ⊆ cl(N) ⊆ M ∪W and M ∩W ⊆ cl(N) ⊆ N̄ . Since N is C3-connected,
M ⊆ N̄ or W ⊆ N̄ follows. If M ⊆ N̄ , then N ⊆ M̄ ⇒ cl(N) ⊆ cl(M̄) = int(M) = M̄ , i.e.,
cl(N) ⊆ M̄ or M ⊆ cl(N). But this is a contradiction to the fact M � cl(N). Similarly,
we obtain a contradiction in case W ⊆ N̄ . Therefore cl(N) is also C3-connected. The
other case can be proved similarly.

Theorem 3.6. IfN is C3-connected (C4-connected) IFSS in (X,τ) andN ⊆ P ⊆ cl(N),
then P is C3-connected (C4-connected) IFSS in (X,τ), too.

Proof. Assume the contrary and letM ,W be IFSOS’s inX such thatN ⊆ P ⊆M∪W ,
M ∩W ⊆ P̄ ⊆ N̄ . Since N is C3-connected, M ⊆ N̄ or W ⊆ N̄ follows. If M ⊆ N̄ , then
N ⊆ M̄ ⇒ cl(N) ⊆ cl(M̄) = int(M) = M̄ ⇒ cl(N) ⊆ M̄ . On the other hand, if N ⊆ W̄ ,
then cl(N) ⊆ cl(W̄) = int(W) = W̄ ⇒ cl(N) ⊆ W̄ . P ⊆ cl(N) ⊆ M̄ and P ⊆ cl(N) ⊆ W̄ .
Therefore P is C3-connected.

This theorem fails in the cases of C1- (C2-)connectedness as shown by the following
example.

Counterexample 3.7. Let X = {a,b,c,d} and τ = {∅∼ ,X∼ ,A1,A2,A3}, where

A1 =
〈
x,{a,b},{c,d}〉, A2 =

〈
x,{d},{a,b}〉, A3 =

〈
x,{a,b,d},∅〉. (3.15)

If N = 〈x,{a},{c,d}〉, then N is C2-connected. If we take the IFSS P = 〈x,{a},{d}〉,
then P satisfies the inclusions N ⊆ P ⊆ cl(N), and P is not C2-connected. On the
other hand, if we consider the C1-connected IFSS N = 〈x,{b},{c,d}〉 in (X,τ), then
P = 〈x,{b},{d}〉 satisfies the inclusions N ⊆ P ⊆ cl(N), but it is not C1-connected.

Theorem 3.7. If N1 and N2 are intersecting C1-connected IFSS’s, then N1 ∪N2 is
also C1-connected.

Proof. Assume that N1∪N2 is C1-disconnected. Thus there exist IFSOS’s M and
W such that N1∪N2 ⊆M∪W andM∩W ⊆N1∪N2, (N1∪N2)∩M ≠∅∼ and (N1∪N2)∩
W ≠ ∅∼ . Since N1 and N2 are C1-connected, then (N1∩M = ∅∼ or N1∩W = ∅∼ ) and
(N2∩M = ∅∼ or N2∩W = ∅∼ ) follow. Since N1∩N2 ≠∅∼ , ∃p≈ ∈ (N1∩N2), there exist
four cases:

Case 1. Let N1∩M =∅∼ and N2∩M =∅∼ . In this case we get (N1∩M)∪(N2∩M)=
(N1∪N2)∩M =∅∼ , a contradiction.
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Case 2. Let N1∩M =∅∼ and N2∩W =∅∼ . Then p≈ ∉M , p≈ ∉W . But this is impossible,
since p

≈
∈N1∪N2 ⊆M∪W .

Case 3 and Case 4. N1∩W =∅∼ and N2∩M =∅∼ , or N1∩W =∅∼ and N2∩W =∅∼ .
These cases may be treated similarly.
Hence it is seen that N1∪N2 is C1-connected.
Theorem 3.8. If N1 and N2 are intersecting C2-connected IFSS’s, then N1 ∪N2 is

also C2-connected.

Proof. Assume that N1∪N2 is C2-disconnected. Then there exist IFSOS’s M and
W such that N1∪N2 ⊆ M ∪W(N1∪N2)∩M ∩W = ∅∼ , (N1∪N2)∩M ≠ ∅∼ and (N1∪
N2)∩W ≠∅∼ . Since N1∩N2 ≠∅∼ , ∃p≈ ∈N1∩N2, and since N1 and N2 are C2-connected,
then (N1∩M =∅∼ or N1∩W =∅∼ ) and (N2∩M =∅∼ or N2∩W =∅∼ ).

Case 1. LetN1∩M =∅∼ andN2∩M =∅∼ . Then (N1∪N2)∩M = (N1∩M)∪(N2∩M)=
∅∼ , a contradiction.

Case 2. Let N1∩M =∅∼ and N2∩W =∅∼ . Then we obtain p≈ ∉M , p≈ ∉W a contradic-

tion to p
≈
∈N1∪N2 ⊆M∪W .

Case 3 and Case 4. They are similar to the ones given above.
Hence N1∪N2 is C2-connected.
Definition 3.4. Two IFSS’s A and B are said to be overlapping, if N1 � N2.

Conversely, N1 and N2 are said to be nonoverlapping, if N1 ⊆N2.
Notice that

N1 �N2⇐⇒N(1)1 �N(2)2 or N(2)1 �N(1)2

⇐⇒∃x
(
x ∈N(1)1 ,x ∉N(2)2

)
or ∃y

(
y ∈N(1)2 ,y ∉N(2)1

)

⇐⇒∃x
(
x∼ ∈N1,x≈ ∈N2

)
or ∃y

(
y
∼
∈N2,y

≈
∈N1

)
.

(3.16)

Theorem 3.9. If N1 and N2 are overlapping C3-connected IFSS’s, then so is N1∪N2.
Proof. Let N1∪N2 be C3-disconnected. Then there exist IFSOS’s M and W such

that N1∪N2 ⊆ M∪W , M∩W ⊆ N1∪N2, M � N1∪N2, W � N1∪N2. Since N1 and N2
are overlapping, ∃x(x∼ ∈ N1,x≈ ∈ N2) or ∃y(y∼ ∈ N2,y≈ ∈ N1). Since N1 and N2 are
C3-connected, then we obtain: (M ⊆N1 or W ⊆N1) and (M ⊆N2 or W ⊆N2).

Case 1. Let M ⊆ N1 and M ⊆ N2. Then M ⊆ N1∩N2 = N1∪N2, a contradiction to
M �N1∪N2⇒

Case 2. Let M ⊆ N1 and W ⊆ N2. Now suppose that ∃x(x∼ ∈ N1,x≈ ∈ N2). From
M ⊆ N1 and W ⊆ N2, we obtain N1∪N2 ⊆ M ∪W ⊆ N1∪N2 = N1∩N2 ⇒ N1∩N2 ⊆
N1∪N2 = N1∩N2. But x∼ ∈ N1,x≈ ∈ N2 ⇒ x≈ ∈ N1 ⇒ x≈ ∈ N2 ⇒ x≈ ∈ N1∩N2 ⊆ N1∩N2 ⇒
x≈ ∈N1,x≈ ∈N2 means a contradiction. Similarly, if ∃y(y∼ ∈N2,y≈ ∈N1), we arrive at a
contradiction again.

Case 3 and Case 4. They are similar to the previous ones.
Hence it follows that N1∪N2 is also C3-connected.
Theorem 3.10. IfN1 andN2 are overlappingC4-connected IFSS’s, then so isN1∪N2.
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Proof. Similar to the previous one.

Using the last two theorems we get the following lemmas immediately:

Lemma 3.2. If N1 and N2 are C3-connected IFSS’s such that [](N1∩N2) ≠∅∼ , then
N1∪N2 is C3-connected, too.

Proof. For IFSS A, the set []A was defined as []A= 〈x,A1,A2〉 if A= 〈x,A1,A2〉. If
[](N1∩N2)≠∅∼ , then we see that N

(1)
1 ∩N(1)2 ≠φ, i.e., ∃x ∈N(1)1 ∩N(1)2 ⇒ x ∈N(1)1 and

x ∈N(1)2 ⇒ x∼ ∈N1 and x ∉N
(2)
2 ⇒ x∼ ∈N1 and x≈ ∈N2, i.e., N1 and N2 are overlapping.

Hence, the required result follows from a previous theorem.

Lemma 3.3. If N1 and N2 are C4-connected IFSS’s such that [](N1∩N2) ≠∅∼ , then
N1∪N2 is C4-connected, too.
Now, we give generalized versions of these theorems. Here, a family (Ni)i∈J of IFSS’s

is said to be nonoverlapping if and only if for each i∈ J, Ni and ∩j≠iNj are nonover-
lapping, i.e., Ni ⊆∩j≠iNj .

Theorem 3.11. Let (Ni)i∈J be a family of C1-connected IFSS’s such that ∩Nj ≠∅∼ .
Then ∪Ni is C1-connected, too.

Proof. Let N = ∪Ni be C1-disconnected. Then there exist IFSOS’s M and W such
that N ⊆M∪W , M∩W ⊆ N̄ , N∩M ≠∅∼ , N∩W ≠∅∼ .
Now consider any index i0 ∈ J. Since Ni0 is C1-connected, we have Ni0 ∩M =∅∼ or

Ni0∩W =∅∼ . Hence there exist three cases:
Case 1. LetNi∩M =∅∼ for each i∈ J. Then, wemay write downN∩M = (∪Ni)∩M =

∪(Ni∩M)=∪∅∼ =∅∼ , which is a contradiction.
Case 2. Let Ni∩W =∅∼ for each i∈ J. Then we obtain a similar contradiction.
Case 3. Let Ni ∩M = ∅∼ for each i ∈ J1 and Ni ∩W = ∅∼ for each i ∈ J2, where

J = J1∪ J2 and J1 ≠ ∅, J2 ≠ ∅. Since ∩Nj ≠ ∅∼ , ∃p≈ ∈ ∩Nj . in this case we get p≈ ∉
M and p

≈
∉ W , which is a contradiction with p

≈
∈ N ⊆ M ∪W . Therefore, N is also

C1-connected.

Theorem 3.12. Let (Ni)i∈J be a family of C2-connected IFSS’s such that ∩Nj ≠∅∼ .
Then ∪Ni is C2-connected, too.

Proof. Similar to the previous one.

Theorem 3.13. Let (Ni)i∈J be an overlapping family of C3-connected IFSS’s. Then
∪Ni is C3-connected, too.

Proof. Let N = ∪Ni be C3-disconnected. Then there exist IFSOS’s M and W such
that N ⊆M∪W , M∩W ⊆ N̄ , M � N̄ , W � N̄ . Now consider any index i∈ J. Since Ni is
C3-connected, we haveM ⊆Ni orW ⊆Ni. Since (Ni) is an overlapping family, suppose
further that ∃i0 ∈ J such that

∃x
(
x∼ ∈Ni0 ,x≈ ∈ ∩

j≠i0
Nj
)

or ∃y
(
y
∼
∈ ∩
j≠i0

Nj,y
≈
∈Ni0

)
. (3.17)
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Hence there exist three cases:
Case 1. Let M ⊆ Ni for each i ∈ J. Then we may write down M ⊆ ∩Ni = ∪Ni = N ,

which is an obvious contradiction.
Case 2. Let W ⊆Ni for each i∈ J. Then we obtain a similar contradiction.
Case 3. LetM ⊆Ni for each i∈ J1 and W ⊆Ni for each i∈ J2, where J = J1∪J2 and

J1 ≠∅, J2 ≠∅. Hence

N ⊆M∪W ⊆
(
∩
i∈J1

Ni

)
∪
(
∩
i∈J2

Ni

)
=
(
∪Ni
i∈J1

)
∪
(
∪Ni
i∈J2

)

�⇒
(
∪
i∈J1

Ni

)
∩
(
∪
i∈J2

Ni

)
⊆N = ∩

i∈J
Ni

(3.18)

follows.
Now, let ∃x(x∼ ∈Ni0 ,x≈ ∈ ∩

j≠i0
Nj). Since x≈ ∈Ni0 and hence x≈ ∈ ∩Ni. We see that x≈ ∈

N ⇒ x≈ ∈ Ni0 , a contradiction to x∼ ∈Ni0 . Secondly, let ∃y(y∼ ∈ ∩
j≠i0

Nj,y
≈
∈Ni0). From

these data we get y
≈
∈ ∩Nj and hence y

≈
∈ N . Without loss of generality, we may

assume that the index set J\{i0} has cardinality greater than 1; in other words, ∃i1 ∈ J
such that i1 ≠ i0. Thus y

∼
∈ Ni1 and y≈ ∈ Ni1 , an obvious contradiction. Therefore, N

is also C3-connected.

Theorem 3.14. Let (Ni)i∈J be an overlapping family of C4-connected IFSS’s. Then
∪Ni is C4-connected, too.

Proof. Similar to the above proof.

Now, we show that intuitionistic points are always Ci connected, unless X is one-
point space (i= 1,2,3,4).

Lemma 3.4. Let (X,τ) be an IFSTS and p ∈X. Then
(a) p

∼
is C1-connected.

(b) p
∼
is C2-connected.

(c) p
∼
is C3-connected.

(d) p
∼
is C4-connected.

Proof. (a) Assume the contrary, and let p
∼
be C1-disconnected. Hence there exist

IFSOS’s M and W such that p
∼
⊆ M ∪W , M ∩W ⊆ p

∼
= 〈x,{p}c , {p}〉, p

∼
∩M ≠ ∅∼ ,

p
∼
∩W ≠ ∅∼ . Since p∼ ∩M ≠ ∅∼ , and p∼ ∩W ≠ ∅∼ , we get p≈ ∈ M and p

≈
∈ W ; but from

M∩W ⊆ p
∼
, we see thatM1∩W1 ⊆ {p}c andM2∪W2 ⊇ {p}, which is impossible. Hence

p
∼
is C1-connected.

(c) Assume the contrary, and let p
∼
be C3-disconnected. Hence there exist IFSOS’s

M and W such that p
∼
⊆ M∪W , M∩W ⊆ p

∼
= 〈x,{p}c,{p}〉,M � p

∼
and W � p

∼
. Since

M � p
∼
and W � p

∼
, we get p

≈
∈M and p

≈
∈W ; and the same reasoning may be applied

in this case, too. Hence p
∼
is C3-connected.

(b) and (d) are similar to the first part.
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Lemma 3.5. (a) p
≈
is C2-connected.

(b) p
≈
is C3-connected.

(c) p
≈
is C4-connected.

Proof. (a) Suppose the contrary, i.e., let there exist IFSOS’s M and W such that
p
≈
⊆M∪W , M∩W ∩p

≈
=∅∼ , p≈ ∩M ≠ ∅∼ , and p≈ ∩W ≠ ∅∼ . Hence, {p}∩M

c
2 ∩Wc

2 = ∅∼ ,
p ∈Mc

2 , p ∈Wc
2 follow, which is a contradiction.

(b) Suppose not, i.e., let there exist IFSOS’sM andW such that p
≈
⊆M∪W ,M∩W ⊆ p

≈
,

M � p
≈
, and W � p

≈
. Hence M1∩W1 ⊆ {p}c , p ∈M1, p ∈ W1, a contradiction, i.e., p

≈
is

C3-connected.
(c) Similar to (a) and (b).

Notice that IFSS N = 〈x,N1,N2〉 is called proper if and only if N1∪N2 ≠X.
Corollary 3.2. In discrete intuitionistic fuzzy special topological space (X,I(X))

any nonempty proper IFSS, N is C1-disconnected.

Proof. Take M :=N , W :=N ∈ I(X). Then N ⊆N∪N , N∩N ⊆N , N∩N =N ≠∅∼
and N∩N ≠∅∼ hold, since, for example

N∩N = 〈x,N1∩N2,N1∪N2〉 = 〈x,∅,N1∪N2〉≠ 〈x,∅,X〉 =∅∼ . (3.19)

Corollary 3.3. In discrete intuitionistic fuzzy special topological space (X,I(X))
any proper IFSS N = 〈x,N1,N2〉, where N1 ≠∅, is C2-disconnected.

Proof. Take a point p ∈ X such that p ∈ Nc1 and p ∈ Nc2 and let M := p∼ , W := p∼
in this IFST. Then we get N ⊆M∪W , M∩W ∩N =∅∼ , N∩M ≠∅∼ and N∩W ≠∅∼ , as
required.

References

[1] N. Ajmal and J. K. Kohli, Connectedness in fuzzy topological spaces, Fuzzy Sets and Sys-
tems 31 (1989), no. 3, 369–388. MR 90i:54012. Zbl 684.54004.

[2] K. T. Atanassov, VII ITKR’s Session, June 1983 (Sofia) (V. Sgurev, ed.), Central Sci. and
Techn. Library, Bulg. Academy of Sciences, 1984.

[3] , Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96.
MR 87f:03151. Zbl 631.03040.

[4] A. K. Chaudhuri and P. Das, Fuzzy connected sets in fuzzy topological spaces, Fuzzy Sets
and Systems 49 (1992), no. 2, 223–229. MR 93f:54005. Zbl 762.54005.

[5] D. Çoker, An introduction to intuitionistic topological spaces, to appear in Turk. J. Math.
[6] , A note on intuitionistic sets and intuitionistic points, Turk. J. Math. 20 (1996), no. 3,

343–351. MR 99c:03100. Zbl 862.04007.
[7] , An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems

88 (1997), no. 1, 81–89. MR 97m:54009. Zbl 990.27983.
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[9] E. Coşkun and D. Çoker, On neighborhood structures in intuitionistic topological spaces,

Math. Balkanica 12 (1998), no. 3-4, 283–293. CMP 1 688 660.

http://www.ams.org/mathscinet-getitem?mr=90i:54012
http://www.emis.de/cgi-bin/MATH-item?684.54004
http://www.ams.org/mathscinet-getitem?mr=87f:03151
http://www.emis.de/cgi-bin/MATH-item?631.03040
http://www.ams.org/mathscinet-getitem?mr=93f:54005
http://www.emis.de/cgi-bin/MATH-item?762.54005
http://www.ams.org/mathscinet-getitem?mr=99c:03100
http://www.emis.de/cgi-bin/MATH-item?862.04007
http://www.ams.org/mathscinet-getitem?mr=97m:54009
http://www.emis.de/cgi-bin/MATH-item?990.27983
http://www.ams.org/mathscinet-getitem?mr=96j:54010
http://www.emis.de/cgi-bin/MATH-item?846.54003
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