# ON THE REPRESENTATION OF $m$ AS $\sum_{k=-n}^{n} \epsilon_{k} k$ 

## LANE CLARK

(Received 3 September 1998)

AbSTRACT. Let $A(n, m)$ be the number of solutions of $\sum_{k=-n}^{n} \epsilon_{k} k=m$ where each $\epsilon_{k} \in$ $\{0,1\}$. We determine the asymptotic behavior of $A(n, m)$ for $m=o\left(n^{3 / 2}\right)$, extending results of van Lint and of Entringer.

Keywords and phrases. Representation, asymptotic behavior.
2000 Mathematics Subject Classification. 11A67, 11B75.

For a nonnegative integer $n$ and an integer $m$, let

$$
\begin{equation*}
A(n, m)=\#\left\{\left(\epsilon_{-n}, \ldots, \epsilon_{0}, \ldots, \epsilon_{n}\right) \in\{0,1\}^{2 n+1}: \sum_{k=-n}^{n} \epsilon_{k} k=m\right\} \tag{1}
\end{equation*}
$$

van Lint [2] answered a question of Erdös by determining the asymptotic behavior of $A(n, 0)$. Entringer [1] used this result and induction to determine the asymptotic behavior of $A(n, m)$ for $m=O(n)$. In this note, we give a further extension by showing that

$$
\begin{equation*}
A(n, m) \sim\left(\frac{3}{\pi}\right)^{1 / 2} 2^{2 n+1} n^{-3 / 2} \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

for $m=o\left(n^{3 / 2}\right)$. We estimate the integral below, as in [2], though our analysis is more involved. It is immediately seen that $A(n, m)$ is the coefficient of $z^{m}$ in $\prod_{k=-n}^{n}\left(1+z^{k}\right)$ and, hence,

$$
\begin{align*}
A(n, m) & =\frac{1}{2 \pi i} \oint_{C} \frac{\prod_{k=-n}^{n}\left(1+z^{k}\right)}{z^{m+1}} d z \\
& =\frac{2^{2 n+2}}{\pi} \int_{0}^{\pi / 2} \cos 2 m x \prod_{k=1}^{n} \cos ^{2} k x d x \tag{3}
\end{align*}
$$

upon parameterizing the unit circle $C$ (see $[1,2]$ ). Note that $A(n, m)=A(n,-m)$ and $A(n, m)=0$ if and only if $|m|>\binom{n+1}{2}$. Hence, we assume that $m$ is a nonnegative integer. We denote the nonnegative integers by $\mathbb{N}$; the integers by $\mathbb{Z}$; and the real numbers by $\mathbb{R}$.

We use the following Taylor series approximations which are valid for all $x \in \mathbb{R}$.

$$
\begin{equation*}
\sin x=x-\frac{x^{3}}{6}+r(x) ; \quad|r(x)| \leq \frac{x^{4}}{24} \quad \text { for } x \in \mathbb{R} \quad \text { and } \quad r(x) \geq 0 \quad \text { for } x \in[0, \pi] \tag{4}
\end{equation*}
$$

$$
\begin{align*}
\cos x & =1+s(x) ; \quad|s(x)| \leq|x| \quad \text { for } x \in \mathbb{R} ;  \tag{5}\\
\cos ^{2} x & =1-x^{2}+t(x) ; \quad|t(x)| \leq \frac{2|x|^{3}}{3}  \tag{6}\\
e^{-x} & \text { for } x \in \mathbb{R} ;  \tag{7}\\
& 1-x+u(x) ; \quad 0 \leq u(x) \leq \frac{x^{2}}{2} \quad \text { for } x \in[0, \infty) .
\end{align*}
$$

Of course, $r, s, t$, and $u$ are all infinitely-differentiable functions on $\mathbb{R}$. We also use the following standard inequalities:

$$
\begin{array}{rlrl}
e^{x-x^{2}} \leq 1+x \leq e^{x-x^{2} / 6} & & \text { for } x \in[-0.68,0.68] ; \\
& 1-x \leq e^{-x} & & \text { for } x \in \mathbb{R} . \tag{9}
\end{array}
$$

For all $n \in \mathbb{Z}$ and $x \in \mathbb{R}$ with $\sin x \neq 0$, (4) gives

$$
\begin{equation*}
\frac{\sin n x}{\sin x}=n-\frac{n^{3}-n}{6} x^{2}+v(n, x), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
v(n, x)=\frac{-\left(\left(n^{3}-n\right) / 36\right) x^{5}+\left(\left(n^{3}-n\right) / 6\right) x^{2} r(x)+r(n x)-n r(x)}{x-\left(x^{3} / 6\right)+r(x)}, \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
|v(n, x)| \leq \frac{n^{4} x^{4} / 23}{5 x / 6}=\frac{6}{115} n^{4} x^{3} \quad \text { for } x \in[0,1] \text { and } n \geq 20 . \tag{12}
\end{equation*}
$$

(Naturally, we define $\sin n x / \sin x=n$ when $x=0$ to remove that discontinuity.) We require the following result (see [2] for a statement of a version of (a)).

Lemma. (a) For $(\pi / 2 n) \leq x \leq \pi / 2$ and $n \geq 4$,

$$
\begin{equation*}
\left|\frac{\sin n x}{\sin x}\right| \leq \frac{2 n}{3} . \tag{13}
\end{equation*}
$$

(b) For $0 \leq x \leq(\pi / 2 n)$ and $n \geq 20$,

$$
\begin{equation*}
\left|\frac{\sin n x}{\sin x}\right| \leq n-\frac{n^{3} x^{2}}{12} . \tag{14}
\end{equation*}
$$

Proof. (a) First, (4) gives $\sin (\pi / 2 n) \geq(\pi / 2 n)-\left(\pi^{3} / 48 n^{3}\right) \geq(3 / 2 n)$ for $n \geq 4$. Hence,

$$
\begin{equation*}
\left|\frac{\sin n x}{\sin x}\right|=\frac{|\sin n x|}{\sin x} \leq \frac{1}{\sin (\pi / 2 n)} \leq \frac{2 n}{3} . \tag{15}
\end{equation*}
$$

(b) Next, (10) gives $n-\left(\left(n^{3}-n\right) / 6\right) x^{2}+v(n, x) \leq n-n^{3} x^{2}\left((1 / 6)-\left(1 / 6 n^{2}\right)-\right.$ $(6 / 115) n x) \leq n-\left(n^{3} x^{2} / 12\right)$ for $n \geq 20$. Hence,

$$
\begin{equation*}
\left|\frac{\sin n x}{\sin x}\right|=\frac{\sin n x}{\sin x} \leq n-\frac{n^{3} x^{2}}{12} \tag{16}
\end{equation*}
$$

For all $x \in \mathbb{R}$ and $n \geq 1$, (9) gives (see [2])

$$
\begin{align*}
0 \leq \prod_{k=1}^{n} \cos ^{2} k x & =\prod_{k=1}^{n}\left(1-\sin ^{2} k x\right) \leq \exp \left(-\sum_{k=1}^{n} \sin ^{2} k x\right)  \tag{17}\\
& =\exp \left(-\frac{n}{2}+\frac{\sin n x \cos (n+1) x}{2 \sin x}\right) \leq \exp \left(-\frac{n}{2}+\frac{1}{2}\left|\frac{\sin n x}{\sin x}\right|\right)
\end{align*}
$$

Hence, for all $m \in \mathbb{N}$ and $n \geq 20$, the lemma and (17) now give

$$
\begin{equation*}
\left|\int_{\pi / 2 n}^{\pi / 2} \cos 2 m x \prod_{k=1}^{n} \cos ^{2} k x d x\right| \leq 2 e^{-n / 6} \tag{18}
\end{equation*}
$$

and, for all $0 \leq c \leq n^{1 / 2}$,

$$
\begin{equation*}
\left|\int_{c n^{-3 / 2}}^{\pi / 2 n} \cos 2 m x \prod_{k=1}^{n} \cos ^{2} k x d x\right| \leq \int_{c n^{-3 / 2}}^{\pi / 2 n} e^{-n^{3} x^{2} / 24} d x \leq e^{-c^{2} / 24} \tag{19}
\end{equation*}
$$

If $k \in \mathbb{Z}$ and $x \in \mathbb{R}$, (6) and (7) give

$$
\begin{equation*}
\cos ^{2} k x=e^{-k^{2} x^{2}}(1+w(k, x)) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
w(k, x)=e^{k^{2} x^{2}}\left(t(k x)-u\left(k^{2} x^{2}\right)\right) \tag{21}
\end{equation*}
$$

is infinitely-differentiable on $\mathbb{R}$ for each integer $k$ and, for $1 \leq k \leq n, 0 \leq x \leq n^{-1}$,

$$
\begin{equation*}
|w(k, x)| \leq 4 k^{3} x^{3} \tag{22}
\end{equation*}
$$

Now, for $0 \leq x \leq a n^{-1} \leq 0.5 n^{-1}$ and $n \geq 7$,

$$
\begin{equation*}
\sum_{k=1}^{n}\left(|w(k, x)|+|w(k, x)|^{2}\right) \leq 6 x^{3} \sum_{k=1}^{n} k^{3} \leq 2 n^{4} x^{3} \leq 2 a^{3} n \tag{23}
\end{equation*}
$$

so that (8) gives

$$
\begin{equation*}
e^{-2 a^{3} n} \leq \prod_{k=1}^{n}(1+w(k, x)) \leq e^{2 a^{3} n} \tag{24}
\end{equation*}
$$

Hence, for all $m \in \mathbb{N}, 0 \leq b \leq 0.5 n^{1 / 2}, n \geq 7$, (20) and (24) give with $\sigma=\sigma(n)=$ $n(n+1)(2 n+1) / 6$,

$$
\begin{equation*}
\left|\int_{0}^{b n^{-3 / 2}} \cos 2 m x \prod_{k=1}^{n} \cos ^{2} k x d x\right| \leq \int_{0}^{b n^{-3 / 2}} e^{-\sigma x^{2}+2 b^{3} n^{-1 / 2}} d x \leq \frac{b e^{2 b^{3} n^{-1 / 2}}}{n^{3 / 2}} \tag{25}
\end{equation*}
$$

For $0 \leq b n^{-3 / 2} \leq c n^{-3 / 2} \leq 0.5 n^{-1}, n \geq 7, t \in \mathbb{Z}$, (20) and (24) give

$$
\begin{align*}
e^{-2 c^{3} n^{-1 / 2}} \int_{b n^{-3 / 2}}^{c n^{-3 / 2}} x^{t} e^{-\sigma x^{2}} d x & \leq \int_{b n^{-3 / 2}}^{c n^{-3 / 2}} x^{t} \prod_{k=1}^{n} \cos ^{2} k x d x  \tag{26}\\
& \leq e^{2 c^{3} n^{-1 / 2}} \int_{b n^{-3 / 2}}^{c n^{-3 / 2}} x^{t} e^{-\sigma x^{2}} d x
\end{align*}
$$

Hence,

$$
\begin{equation*}
\int_{b n^{-3 / 2}}^{c n^{-3 / 2}} \prod_{k=1}^{n} \cos ^{2} k x d x \sim \frac{(3 \pi)^{1 / 2}}{2} n^{-3 / 2} \tag{27}
\end{equation*}
$$

and, for all $m \in \mathbb{N}$,

$$
\begin{equation*}
\int_{b n^{-3 / 2}}^{c n^{-3 / 2}} s(2 m x) \prod_{k=1}^{n} \cos ^{2} k x d x=O\left(m n^{-3}\right), \tag{28}
\end{equation*}
$$

since

$$
\begin{gather*}
\int_{b n^{-3 / 2}}^{c n^{-3 / 2}} e^{-\sigma x^{2}} d x \sim \frac{(3 \pi)^{1 / 2}}{2} n^{-3 / 2}  \tag{29}\\
\int_{b n^{-3 / 2}}^{c n^{-3 / 2}} x e^{-\sigma x^{2}} d x \sim \frac{3}{2} n^{-3} \tag{30}
\end{gather*}
$$

and (26) holds for all sufficiently large $n$ provided $b=b(n) \rightarrow 0, c=c(n) \rightarrow \infty$ with $c=o\left(n^{1 / 6}\right)$ as $n \rightarrow \infty$.

Consequently, (5), (18), (19), (25), (27), and (28) give

$$
\begin{align*}
\int_{0}^{\pi / 2} \cos 2 m x \prod_{k=1}^{n} \cos ^{2} k x d x= & \int_{(\ln n)^{-1 / 2} n^{-3 / 2}}^{7(\ln n)^{1 / 2} n^{-3 / 2}} \prod_{k=1}^{n} \cos ^{2} k x d x \\
& +\int_{(\ln n)^{-1 / 2} n^{-3 / 2}}^{7(\ln n)^{1 / 2} n^{-3 / 2}} s(2 m x) \prod_{k=1}^{n} \cos ^{2} k x d x  \tag{31}\\
& +O\left((\ln n)^{-1 / 2} n^{-3 / 2}\right) \\
& \sim \frac{(3 \pi)^{1 / 2}}{2} n^{-3 / 2} \text { as } n \rightarrow \infty,
\end{align*}
$$

for all $m=m(n)=o\left(n^{3 / 2}\right)$ (our error term being adequate for our analysis which indicates where the integral is concentrated). Hence, (3) gives

$$
\begin{equation*}
A(n, m) \sim\left(\frac{3}{\pi}\right)^{1 / 2} 2^{2 n+1} n^{-3 / 2} \quad \text { as } n \rightarrow \infty \tag{32}
\end{equation*}
$$

for all $m=m(n)=o\left(n^{3 / 2}\right)$. This completes the proof.

## References

[1] R. C. Entringer, Representation of m as $\sum_{k=-n}^{n} \epsilon_{k} k$, Canad. Math. Bull. 11 (1968), 289-293. MR 37\#5138. Zbl 164.05003.
[2] J. H. van Lint, Representation of 0 as $\sum_{K=-N}^{N} \epsilon_{k} k$, Proc. Amer. Math. Soc. 18 (1967), 182184. MR 34\#5789. Zbl 152.03401.

Clark: Department of Mathematics, Southern Illinois University at Carbondale, CARbONDALE, IL 62901-4408, USA

