
Internat. J. Math. & Math. Sci.
Vol. 23, No. 1 (2000) 69–76
S0161171200000715

© Hindawi Publishing Corp.

RANDOM TRILINEAR FORMS AND THE SCHUR
MULTIPLICATION OF TENSORS

IBRAHIM ALMASRI, JINLU LI, and ANDREW TONGE

(Received 27 November 1996 and in revised form 3 March 1998)

Abstract. We obtain estimates for the distribution of the norm of the random trilinear
form A : �Mr ×�Np ×�Kq → C, defined by A(ei,ej ,ek) = aijk, where the aijk’s are uniformly
bounded, independent, mean zero random variables. As an application, we make progress
on the problem when �r ⊗̆�p⊗̆�q is a Banach algebra under the Schur multiplication.
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1. Introduction and notation. We adopt the standard notation �Np (1 ≤ p <∞) for
the complex vector space CN equipped with the norm

‖x‖p :=

 N∑
n=1

|xn|p


1/p

. (1.1)

The usual modifications are made to define �N∞ and the infinite dimensional sequence
spaces �p(1≤ p ≤∞). All of these are Banach spaces.
Let A : �Np → �Mq (1≤ p,q ≤∞) be a linear map and define the operator norm by

‖A‖p→q := sup
{‖Ax‖q : ‖x‖p = 1}. (1.2)

The map A can be represented as an M×N matrix (aij) with respect to the standard
bases. Motivated by problems on absolutely summing operators, Bennett [1] and Ben-
nett, Goodman and Newman [2] obtained estimates for the probability distribution
of ‖A‖p→q when the aij ’s are independent, mean zero random variables bounded by
(2.3). They showed that, for all 1≤ p, q ≤∞, the expectation �

(‖A‖p→q) is of the same
order as the smallest possible value of ‖A‖p→q when all the matrix entries aij are ±1.
Notice that these results can also be interpreted as estimates for the norms of ran-

dom bilinear forms. Problems involving the von Neumann inequality led Varopoulos
[9] to work with norms of random trilinear forms on �N2 . His results were extended and
refined by Mantero and Tonge [7]. Let A : �Np1×···×�Npn → C be an n-linear form with
A(ek1 , . . . ,ekn) = ak1,...,kn , where the ek’s are the standard unit basis vectors. There is
a natural norm

‖A‖p1,...,pn := sup
{
|A(x1, . . . ,xn)| : ‖xi‖pi ≤ 1(1≤ i≤n)

}
. (1.3)

In [7], it was shown that when the ak1,...,kn ’s are independent random variables taking
the values ±1 with equal probability, the expectation �(‖A‖p1,...,pn) is of the same
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order as the smallest conceivable value: the least possible value of ‖A‖p1,...,pn when
each ak1···kn is±1. These results turned out to be useful in the study of Banach algebra
structures on the tensor products �p1⊗···⊗�pn . However, open problems were left,
even in the case n= 3.
We address these problems. They involve the Schur product of tensors A, B ∈ �r ⊗

�p⊗�q when A= (aijk) and B = (bijk) this is given by

A∗B := (aijkbijk). (1.4)

The injective tensor product �r ⊗̆�p⊗̆�q is the completion of �r ⊗�p ⊗�q under the
norm

∥∥(aijk)∥∥rpq := sup


∣∣∣∣∣∣
∑
ijk
aijkxiyjzk

∣∣∣∣∣∣ : ‖x‖r ′ ≤ 1, ‖y‖p′ ≤ 1, ‖z‖q′ ≤ 1

 . (1.5)

Here, the indexp′ is the one conjugate top, that is 1/p+1/p′ = 1. Notice that ‖A‖rpq =
‖A‖r ′,p′,q′ .
In [7], it was shown that the Schur product extends continuously to �r ⊗̆�p⊗̆�q when
(i) the sum of the reciprocals of any two of p,q, and r is at least 3/2,
(ii) 1≤ p, q,r ≤ 2 and the sum of the reciprocals of all three is at least 2, or
(iii) at least one of p, q, and r is 1 or ∞.
Cases were also identified where the Schur product did not extend continuously

to �r ⊗̆�p⊗̆�q. We extend knowledge of such cases by providing an estimate for the
distribution of ‖A‖rpq when the aijk’s are uniformly bounded, independent, mean
zero random variables. Our methods build on the techniques of [1, 2, 7].
Although the problem we consider is relevant to many issues in the geometry of

Banach spaces or Banach algebras (see, for example, Diestel, Jarchow, and Tonge [4]),
we are not aware of any progress in the last few years. Recent work on the Schur
product (see, for example, Horn and Johnson [6]) or on random matrices (see, for
example, Girko [5]) mostly focuses on other issues. There is one notable exception,
namely, the body of work on completely bounded operators. The basic theory can be
found in Paulsen [8], and interesting results closely related to the operator algebra
theory, developed by Varopoulos [9] and his group appear in Blecher and Le Merdy [3]
and references therein. None of this, however, appears to be directly applicable to the
problem we treat in this paper.

2. The probabilistic estimate. We consistently use � to denote probability and �

to denote mathematical expectation.

Proposition 2.1. Let 1≤ p ≤ 2 and 2≤ q, r <∞. Let A= (aijk)∈ �Mr ⊗̆�Np ⊗̆�Kq and
suppose that the aijk’s are independent, mean zero random variables, and that each
|aijk| ≤ 1. Then there are positive constants C1 and C2, independent of M , N , and K,
such that

�
(
‖A‖rrpq ≥ C1MN(r/p)−(r/2)+C2(N+K)N(r/p)−1K(r/q)−(2/q)

)
< 1. (2.1)
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Proof. Our argument is an adaptation of the work in [1, 2]. Note that

‖A‖rrpq = sup


M∑
i=1

∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣
r

: ‖y‖p′ ≤ 1,‖z‖q′ ≤ 1

 . (2.2)

As in [1] or [2], for any positive λ and any nonzero (yj)Nj=1 and (zk)
K
k=1, we have

�



∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣≥ λ

≤ 2exp


−λ2

4

N,K∑
j,k=1

y2j z
2
k


 . (2.3)

If µ > 0, then

�


exp


µ

∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣
r 


=

∫∞
0
eµλ

r
d�



∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣≤ λ



= 1+
∫∞
0
µrλr−1eµλ

r
�



∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣> λ

dλ,

(2.4)

and an application of (2.3) gives

�


exp


µ

∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣
r


≤ 1+

∫ N1/pK1/q
0

µrλr−1eµλ
r ·2e−λ2/4

∑N,K
j,k=1y

2
j z

2
kdλ. (2.5)

Since 2 ≤ r < ∞, if 0 ≤ µ ≤ (N1/pK1/q)2−r /8
∑N,K
j,k=1y

2
j z

2
k, we can find a constant C1,

independent of M , N , or K, such that

�


exp


µ

∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣
r


≤ 1+2µr

∫∞
0
λr−1e−λ

2/8
∑N,K
j,k=1y

2
j z

2
kdλ

= 1+C1µ

 N,K∑
j,k=1

y2j z
2
k



r/2

.

(2.6)

Next, applying independence, we obtain

�


exp


µ M∑

i=1

∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣
r


= M∏

i=1
�


exp


µ

∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣
r 




≤
M∏
i=1


1+C1µ


 N,K∑
j,k=1

y2j z
2
k



r/2



≤ exp

C1Mµ


 N,K∑
j,k=1

y2j z
2
k



r/2

 .

(2.7)

Consequently, for any ν > 0, we have

�


µ M∑

i=1

∣∣∣∣∣∣
N,K∑
j,k=1

aijkyjzk

∣∣∣∣∣∣
r

≥ C1Mµ

 N,K∑
j,k=1

y2j z
2
k



r/2

+ν

≤ e−ν . (2.8)
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Now, if ‖y‖p′ ≤ 1 and ‖z‖q′ ≤ 1, then since 1≤ p ≤ 2≤ q <∞, we have
∑N,K
j,k=1y

2
j z

2
k ≤

N(2/p)−1. Using the result of the entropy argument in the proof [7, Thm. 1], we get

�

(
‖a‖rrpq ≥ C1MN(r/p)−(r/2)+

ν
µ

)
≤ eD(N+K)e−ν/2(3r+1) , (2.9)

where D is some positive constant independent of M , N , and K.
Take µ = 1/8(N1/pK1/q)2−rN−(2/p)+1 and ν = 23r+2D(N+K), and set C2 = 23r+5D in

(2.9) to get

�
(
‖A‖rrpq ≥ C1MN(r/p)−(r/2)+C2(N+K)(N1/pK1/q)r−2N(2/p)−1

)
≤ e−D(N+K). (2.10)

Since e−D(N+K) < 1 for large N and K, the result follows.

What we need later is an immediate corollary.

Corollary 2.2. Let 1 ≤ p ≤ 2 and 2 ≤ q, r < ∞. Then there is an A = (aijk) ∈
�Mr ⊗̆�Np ⊗̆�Kq , with each aijk =±1, such that

‖A‖2rpq < C max
(
M2/rN(2/p)−1, N2/pK(2/q)(1−2/r), N(2/p)−(2/r)K(2/r)+(2/q)(1−2/r)

)
,

(2.11)

where C is a positive constant independent of M , N , and K.

The next proposition and its corollary are obtained by making minor adjustments
to the arguments above. We present them without proof.

Proposition 2.3. Let 2 ≤ p, q, r < ∞. Let A = (aijk) ∈ �Mr ⊗̆�Np ⊗̆�Kq and suppose
that the aijk’s are independent, mean zero random variables, and that each |aijk| ≤ 1.
Then there are positive constants C1 and C2, independent of M , N and K, such that

�
(
‖A‖rrpq ≥ C1M+C2(N+K)N(r/p)−(2/p)K(r/q)−(2/q)

)
< 1. (2.12)

Corollary 2.4. Let 2≤ p, q, r <∞. Then there is an A= (aijk)∈ �Mr ⊗̆�Np ⊗̆�Kq , with
each aijk =±1, such that
‖A‖2rpq < Cmax

(
M2/r , N(2/r)+(2/p)(1−2/r), K(2/q)(1−2/r), N(2/p)(1−2/r)K(2/r)+(2/q)(1−2/r)

)
,

(2.13)

where C is a positive constant independent of M , N , and K.

3. Application to the question of the continuity of Schur multiplication. Now, we
turn to the problem left unsolved in Mantero and Tonge [7]: under what circumstances
is �r ⊗̆�p⊗̆�q a Banach algebra under Schur multiplication? We give further instances
when this is not a Banach algebra. To do this, we use the previous results to show that
the following is true for appropriate values of p, q, and r :
For each positive B, it is possible to find integers M , N , and K and an A = (aijk) ∈

�Mr ⊗̆�Np ⊗̆�Kq , with each aijk =±1 for which ‖A∗A‖rpq > B‖A‖2rpq.
For this, it is important to note that, trivially, if A = (aijk) ∈ �Mr ⊗̆�Np ⊗̆�Kq has each

aijk =±1, then
‖A∗A‖rpq =M1/rN1/pK1/q. (3.1)
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Proposition 3.1. Let 1 < min(p,q) ≤ 2 ≤ max(p,q) < ∞ and 2 ≤ r < ∞. Then
�r ⊗̆�p⊗̆�q is not a Banach algebra under Schur multiplication when

1
min(p,q)

<
2
r
· 1
max(p,q)

+ 1
2
. (3.2)

Proof. We consider the case where 1<p ≤ 2≤ q <∞. The other case is similar.
Fix B > 0. By (3.1) and Corollary 2.2, it is enough to show that we can find positive

integers M , N , and K with

M1/rN1/pK1/q

> BCmax
(
M2/rN(2/p)−1, N2/pK(2/q)(1−2/r), N(2/p)−(2/r)K(2/r)+(2/q)(1−2/r)

)
,
(3.3)

where C is a fixed positive number, independent of B,M , N , or K. We can achieve this
with N =K =Mt , where t > 0 provided that

Mt/q > BCM(1/r)+t((1/p)−1),

M1/r > BCMt((1/p)+(1/q)−(4/qr)).
(3.4)

Inequalities (3.4) hold simultaneously for large M if there is a t > 0 that satisfies

t
(
1
p
+ 1
q
− 4
qr

)
<
1
r
< t

(
1
q
− 1
p
+1

)
. (3.5)

Such a positive t exists if and only if

1
p
<
2
r
· 1
q
+ 1
2
. (3.6)

This result is illustrated in Figure 1. Mantero and Tonge [7] showed that, for 2≤ r <
∞, �r ⊗̆�p⊗̆�q is a Banach algebra under Schur multiplication in the diagonally shaded
region, but is not in the horizontally shaded region. Our results assert that �r ⊗̆�p⊗̆�q
is not a Banach algebra under Schur multiplication in the heavily shaded region. We
use the same shading conventions in all subsequent figures.
If we change the role of the indices p, q, and r , we obtain the following result which

is illustrated and compared to existing knowledge in Figure 2.

Proposition 3.2. Let 1< r ≤ 2≤ p, q <∞. Then �r ⊗̆�p⊗̆�q is not a Banach algebra
under Schur multiplication when

1
p
· 1
q
>
1
2r
− 1
4
. (3.7)

Next, we make use of Corollary 2.4.

Proposition 3.3. Let 2 ≤ p, q, r < ∞. Then �r ⊗̆�p⊗̆�q is not a Banach algebra
under Schur multiplication when

1
p
+ 1
q
>
1
2
,

1
q
+ 1
r
>
1
2
, or

1
r
+ 1
p
>
1
2
. (3.8)
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Figure 1 Figure 2
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Proof. Fix B > 0. By (3.1) and Corollary 2.4, it is enough to show that we can find
positive integers M , N , and K, with

M1/rN1/pK1/q

> BCmax
(
M2/r ,N(2/r)+(2/p)(1−2/r)K(2/q)(1−2/r),N(2/p)(1−2/r)K(2/r)+(2/q)(1−2/r)

)
,

(3.9)

where C is a fixed positive constant, independent of B, M , N , or K. We can achieve
this with N =K =Mt , where t > 0 provided that

Mt(1/p+1/q) > BCM1/r ,

M1/r > BCM(2t/r)+t(1/p+1/q)(1−4/r).
(3.10)

Inequalities (3.10) hold simultaneously for large M if there is a t > 0 that satisfies

t


2
r
+
(
1
p
+ 1
q

)(
1− 4

r

)< 1
r
< t

(
1
p
+ 1
q

)
. (3.11)

Such a positive t exists if and only if

1
p
+ 1
q
>
1
2
. (3.12)

The other results follow in a similarmanner when the roles ofp, q, and r are permuted.

The results in Proposition 3.3 are illustrated and compared to previous knowledge in
Figures 3 and 4. The special case when r = 2 is worth recording separately in Figure 5.
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