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ABSTRACT. The regular problem for solutions of the nonlinear functional differential equa-
tions with a nonlinear hemicontinuous and coercive operator A and a nonlinear term
FG):x" () +Ax(t) +0p(x(t)) 2 f(t,x(t)) +h(t) is studied. The existence, uniqueness,
and a variation of solutions of the equation are given.

Keywords and phrases. Nonlinear variational evolution inequality, maximal monotone op-
erator, subdifferential operator, regularity.

2000 Mathematics Subject Classification. Primary 34G20; Secondary 35F25.

1. Introduction. Let H and V be two real separable Hilbert spaces such that V is a
dense subspace of H. Let the operator A be given a single-valued operator, which is
hemicontinuous and coercive from V to V*. Here V* stands for the dual space of V.
Let ¢ : V — (—o00,+00] be a lower semicontinuous, proper convex function. Then the
subdifferential operator d¢: V — V* of ¢ is defined by

0p(x) = {x* eV*p(x) <p(y)+(x*,x-y),y eV}, (1.1

where (-,-) denotes the duality pairing between V* and V. We are interested in the
following nonlinear functional differential equation on H:

dx(t)
T +Ax(t)+0p(x(t)) > f(t,x(t))+h(t), 0<t=<T, 1.2)

X(O) = X0,

where the nonlinear mapping f is a Lipschitz continuous from R x V into H. Equa-
tion (1.2) is caused by the following nonlinear variational inequality problem:

(dx(t)

ar +Ax (t),x(t) —z) +¢(x(t)) —P(2)

< (f(t,x(t))+h(t),x(t)-z), ae,0<t<T,zeV, (1.3)

x(0) = xg.

If A is a linear continuous symmetric operator from V into V* and satisfies the co-
ercive condition, then equation (1.2), which is called the linear parabolic variational
inequality, is extensively studied in Barbu [5, Sec. 4.3.2] (also see [4, Sec. 4.3.1]). The
existence of solutions for the semilinear equation with similar conditions for non-
linear term f have been dealt with in [1, 2, 6]. Using more general hypotheses for
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nonlinear term f(-,x), we intend to investigate the existence and the norm estimate
of a solution of the above nonlinear equation on L2(0, T;V) nW12(0, T;V*), which is
also applicable to optimal control problem. A typical example was given in the last
section.

2. Perturbation of subdifferential operator. Let H and V' be two real Hilbert spaces.
Assume that V is a dense subspace in H and the injection of V into H is continuous.
If H is identified with its dual space we may write V C H C V* densely and the corre-
sponding injections are continuous. The norm on V (respectively H) will be denoted
by || - || (respectively | - |). The duality pairing between the element v; of V* and the
element v, of V is denoted by (v1,v2), which is the ordinary inner product in H if
v1,V2 € H. For the sake of simplicity, we may consider

lull < lul < lullx, uev, (2.1)
where || - ||« is the norm of the element of V*.
REMARK 2.1. If an operator A is bounded linear from V to V* and generates an
analytic semigroup, then it is easily seen that

T
H= {x eEV*: J |Aget o x| dt < oo} for the time T > 0. (2.2)
0

Therefore, in terms of the intermediate theory we can see that
(V,V*)1,0, =H, (2.3)
where (V,V*)1,2, denotes the real interpolation space between V and V*.
We note that nonlinear operator A is said to be hemicontinuous on V if
w—ltin(r)lA(x +ty)=Ax foreveryx,yeV, (2.4)
where “w-lim” indicates the weak convergence on V. Let A:V — V* be given a single
valued and hemicontinuous from V to V* such that
A(0) =0, (Au—-Av,u—-v) = willu-v|*-wlu—v|?

(2.5)
lAulls < ws(llull+1)

for every u,v € V, where w, € ® and wi,w3 are some positive constants. Here, we
note that if A(0) # 0 we need the following assumption:

(Au,u) = w1 l|ull> —w-|ul®> foreveryueV. (2.6)

It is also known that A + w»I is maximal monotone and R(A + w»>I) = V* where R(A+
w>I) is the range of A+ w»I and I is the identity operator.
First, let us be concerned with the following perturbation of subdifferential operator:

dx(t)
dt

To prove the regularity for the nonlinear equation (1.2) without the nonlinear term
f(-,x) we apply the method in [5, Sec. 4.3.2].

+Ax(t)+0p(x(t)) 2 h(t), 0<t<T, x(0) = xo. 2.7)
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PROPOSITION 2.1. Leth € L%(0,T;V*) and xo € V satisfying that ¢ (xg) < . Then
(2.7) has a unique solution

x €L2(0,T;V)nC([0,T1;H) (2.8)
which satisfies
Ixllz2ne < Co(1+lIxoll + IRz 0, ). (2.9)
where C; is a constant and L° nC = L%2(0,T;V)nC([0,T];H).

PROOF. Substituting v (t) = e®2tx(t) we can rewrite (2.7) as follows:

dz(tt) +(A+w2Dv(t) +e 2o (v(t)) 3 e 2 h(t), 0<t<T, (2.10)

v(0) = e®2txy.

Then the regular problem for (2.7) is equivalent to that for (2.10). Consider the oper-
ator L:D(L)cH - H

Lv = {Av+e @29 (v)+wv}nH Vv eD(L),
(2.11)
D(L) = {v eV;{Av+e 23 (v) + wov}NH # 0}.

Since A + w>I is a monotone, hemicontinuous and bounded operator from V into
V* and e~®2!9¢ is maximal monotone, we infer in [4, Cor. 1.1 of Ch. 2] that L is
maximal monotone. Then in [5, Thm. 1.4] (also see [4, Thm. 2.3, Cor. 2.1]), for every
xo € D(L) and h € W1([0,T];H), the Cauchy problem (2.10) has a unique solution
v € WH=([0,T];H). Let us assume that xg € D(L) and h € W1-2(0,T;H). Multiplying
(2.7) by x — xo and using (2.5) and the maximal monotonicity of d¢ it holds

1d 2 2
EE‘X(”_M‘ + w1 ||x(t) = x0]] (212)
<wz|x(t)—x0| + (h(t) —Axo— 0 (x0),x(t) — X0).

Since

(h(t) —Axo—0¢(x0),x(t) —x0) < ||[R(t) —Axo— 0P (x0)||,||x (£) — x0|

1
= 52 lIR () = Axo =3 (xo)|[5 + 5 (0) = o
(2.13)

for every real number c, so using Gronwall’s inequality, the inequality (2.12) implies
that

t t
|x(t) - x0|° +JO || (s) = x0||° ds < C1<L h(s)1I12 ds + [ x0 12 +1> (2.14)
for some positive constant C;, that is,

1112 07y ncto, i < Ca( L+ ol + IRl z o7 )- (2.15)

Hence we have proved (2.9). Let xo € V such that d¢p(xp) < o0 and h € L2(0,T;V*).
Then there exist sequences {xo,} C D(L) and {h,} c WY2(0, T;H) such that xo, — Xo
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inV and h,, — h in L2(0,T;V*) as n — . Let x,, € WL* (0, T;H) be the solution of
(2.7) with initial value x¢, and with h,, instead of h. Since d¢ is monotone, we have
1d
5 ¢ X0 =xm (O] + 1l xn (0 = xm (O]
< (R () = Ran (), X0 (£) = Xm (£)) + W2 | X0 (£) = Xm (£) | *
1 (2.16)
c
= Z”hn(t) _hm(t)lli + E”xn(t) _xm(t)”Z

+ Wz | X (£) =X (t) |2, ae.,te(0,T)
for every real number c. Therefore, if we choose w; — (c/2) then by integrating over
[0, T] and using Gronwall’s inequality it follows that

| 20 (£) = xm () | +2(w1 - %)Hx"(t) _Xm(t)HLZ(O,T;V)

(2.17)

< p2w2Ti (|x0n—x0m\ +C71||hn_hm||L2(0,T;V*)>'

and hence, we have that lim,_. x,(t) = x(t) exists in H. Furthermore, x satisfies
(2.7). Indeed, forall 0 < s <t < T and y € d¢(x), multiplying (2.7) by x(t) — x and
integrating over [s,t] we have

t
%(|x(t) —x|*- |x(s)—x|2) < J (h(T)-Ax-y,x(T)-x)dT

. (2.18)
+w2J |x('r)—x|2d'r,
S
and, therefore,
_ t
(x(t;_f(s),x(s)—x) < %J (h(T)-Ax -y, x(T)-x)dT
’ (2.19)
w»? t
+th‘ |X(T)—X| aTt
This implies
(;tx(t),x(t) —x) <(h(t)-Ax—y+w(x(t)—x),x(t)-x), (2.20)
a.e.,, t € (0,T), that is,
(;tx(t) —h(t) —woex(t)+ (Ax +y +w2x), x(t) —x) <0. (2.21)
Since A+ 0¢ + w>I is maximal monotone, we have
%x(t)—h(t)—wzx(t) € —(A+0¢p+wI)x(t), ae.,te(0,T). (2.22)
Thus, the proof is complete. O

COROLLARY 2.1. Assume the hypotheses as in Proposition 2.1, in addition, assume
that 0¢ satisfies the growth condition as follows:

Izllx <M(|x|+1), ae.,xeD(¢), zedp(x). (2.23)
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Then equation (2.7) has a unique solution
x € L>(0,T;V)nWbh2(0,T;V*)nC([0,T1;H) (2.24)
which satisfies
Xl zawizae < C(1+ X0l + IRl 20+ )- (2.25)

PROOF. From (2.7) and (2.23) it follows that

[

+wrllxO w2 | x @) | +M(Ix@®)+1) + 1R () [l . (2.26)
*
Hence, by virtue of (2.15) we have that

I w120,z < Co (1+ ol + IRl 2 010 )- (2.27)
O

REMARK 2.2. If Vis compactly imbedded in H, the imbedding L?(0, T;V)nW12(0,T;
V*) c L?(0,T;H) is compact in Aubin [3, Rem. 1, Thm. 2]. Hence, the mapping h ~ x
is compact from L?(0,T;H) to L?(0,T;H).

3. Nonlinear integrodifferential equation. Let f : [0,T] XV — H be a nonlinear
mapping satisfying the following variational evolution inequality:

|ft,x)-ft, )| <Llx-yl, f(t,0) =0 (3.1)
for a positive constant L.

THEOREM 3.1. Let (2.5) and (3.1) be satisfied. Then (1.2) has a unique solution
x e L?(0,T;V)nC([0,T;H). (3.2)
Furthermore, there exists a constant C, such that
120 < Co(1+ X0l + 1l 20 1% )- (3.3)
If (x0,h) € VxL2(0,T;V*), then x € L2(0,T;V)nC([0,T];H) and the mapping
VXL%(0,T;V*) 3 (x0,h) — x € L2(0,T;V)nC([0,T];H) (3.4)
is continuous.

PROOF. Lety € L?(0,T;V).Thenfrom (3.1), f(-,v(-)) € L?(0,T;H). Thus, by virtue
of Proposition 2.1 we know that the problem

dx(t)
' +Ax(t)+0p(x(t)) 2 f(t,y ) +h(t), 0<t<T, 3.5)

x(0) = x9

has a unique solution x,, € L%(0,T;V)nC([0,T];H), where X, is the solution of (3.5).
Let us choose a constant ¢ > 0 such that

wl—% >0, (3.6)
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and let us fix Ty > 0 so that

-1

(2cwy —c?)  e?w2Top <1, (3.7)

Let x;,i = 1,2, be the solution of (3.5) corresponding to ;. Then, by the monotonicity
of d¢, it follows that
(%1 (8) = X2(8), x1(t) = x2(t)) + (Ax1 () — Ax2 (L), X1 (1) — x2(1))
< (f(t,1 (1) = f(t,2(1)), x1 (1) = x2(1)),

and hence, using the assumption (2.5), we have that

1d
5 37 10 =% ] +wlxi (0) ~x2 (0] (3.9)

< wa | x1 () =x2(t) |2+ || £ (£, (1)) = F (£, 72 ()] |31 () = x2 ()]

(3.8)

Since
I1LF(t,1() = F (£, 72 )] []x1 () = x2 (1) ]|

1 (3.10)
< Ellf(t,yl(t))—f(t y2 (1)) 1I% + *||X1(t) X (8|
for every ¢ > 0 and by integrating (3.9) over (0, Ty) we have
|x1(To) = x2(To) |2 + (2w, —c)JTO 1 (8) =2 (0) | dit
To (3.11)
<P = £ g 202 | IO 2200,
and by Gronwall’s inequality,
[|x1 — x2||L2<0T0v) (2cw1—c ) leszTOHf(ts)’l)—f(t,yZ)HiZ(o,To;V*)- (3.12)
Thus, from (3.1) it follows that
Ix1 = X2ll2 < (2cwi —c?) 220 L[ y1 = va |2 0 o) - (3.13)

Hence we have proved that y — x is a strictly contraction from L2 (0, To; V) to itself if
condition (3.7) is satisfied. It shows that (1.2) has a unique solution in [0, Ty ].
Let y be the solution of

dy(t)
dt

+Ay () +0p(y(t)) 20, 0<t=<Ty, v(0) = xo. (3.14)

Then, since

d

at (x (&) =y () + (Ax(t) —Ay (1)) + (3 (x (1)) =0 (¥ (1)) 2 f(t,x (1)) +h(t),

(3.15)

multiplying by x(t) — v (t) and using the monotonicity of d¢, we obtain

2dt|x(t)—y(t)\ +aw|x () -y ()] (3.16)

< wo | x(t) =y ) [P +||f(t,x () +h)||, ] |x ) =y (D).
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Therefore, putting
N = (2cw; —c?) 'e2w2To, (3.17)
from (3.1), it follows that

lx =V llL20,10v) < N||f(,x) + h||12<0,ro;v*)

(3.18)
< NLIIx|I 12019y + NI 12 0,700+
and hence
1
111 2 0, Tpv) = m\lyllmo,w) +NlRll20.1y)
G
< TN (1+ lxoll + Nl 2(0,7050)) (3.19)

< Co(1+lIxoll + Iz 0,1 )

for some positive constant C,. Since condition (3.7) is independent of the initial values,
the solution of (1.2) can be extended to the interval [0,nTy] for natural number n,
i.e., for the initial value x(nTp) in the interval [nTy, (n+1)Ty], as analogous estimate
(3.19) holds for the solution in [0, (7 + 1) Ty ]. Furthermore, similar to (2.12) and (2.15)
in Section 2, the estimate (3.3) is easily obtained.

Now we prove the last result.If (xo,h) € VxL?(0,T;V*) then x belongs to L>(0,T;V).
Let (xoi,h;) € VxL2(0,T;V*) and x; be the solution of (1.2) with (x;, h;) in place of
(x0,u) for i = 1,2. Multiplying (1.2) by x; (t) — x2(t), we have

1 B
LG ACI RN PR AGI
< w2 |x1(t) —x2(t) |2+||f(t,x1(t)) = F(t,x20)]]l|x1(8) —x2(0)]|  (3.20)

+[h1 () —ha (D] |]x1 () — x2(1)]].

If w;—c/2 >0, we can choose a constant ¢; > 0 so that

C C1
w1 — E — ? > 0,
1 c (3.21)
[|h1 () —ho (B)]]]]%1 (8) — x2(8)]] < Tcluhl(t)_hZ(t)Hi+?1||Xl(t)_X2(t)H2'
Let T; < T be such that
2w, —c—cy—c tetwif 5 . (3.22)

Integrating (3.20) over [0, T, ], where T; < T and as seen in the first part of the proof,
it follows that
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Qw1 —c—c1)||x _XZHiZ(O,To;V)
. 1 1
< et {||X01 = oz|[+_[1f (&, x1) —F x|l 0w + a”hl - hZHLZ((),To;V*)}

1 1
< ezw?Tl{HXm = X2l + ZLIX1 = X2 122 g gy + 1 = Rallz o rve
ot g

(3.23)
Putting
Ny =2w;—-c—c;—c te?weip (3.24)
we have
eszTl 1
31 =212 < (||x01—xoz||+a||h1—hz||). (3.25)

Suppose (Xon,hn) — (x0,h) in V xL%(0,T;V*), and let x,, and x be the solutions of
(1.2) with (xon,hy) and (xg,h), respectively. Then, by virtue of (3.25) and (3.20), we
see that x,, — x in L?(0,T1,V) nC([0,T1];H). This implies that x, (T;) — x(T1) in V.
Therefore the same argument shows that x,, — x in

L2(Ty,min{2Ty, THV) n C([ Ty, min{2Ty, TH:H). (3.26)

Repeating this process, we conclude that x, — x in L2(0,T;V) nC([0, T];H).
If 0¢p satisfies the growth condition (2.23) as is seen in Corollary 2.1, we can obtain
the following result. O

COROLLARY 3.1. Let (2.5), (3.1), and the growth condition (2.23) be satisfied. Then
(1.2) has a unique solution

x € L2(0,T;V)nWh2(0,T;V*) c C([0,T];H). (3.27)
Furthermore, there exists a constant C, such that
Il 2 0. 7:vy w12 0,Tv %) < Cz(l + llxoll + HhHLZ(O,T;V*)>- (3.28)
If (xo,h) € VXL2(0,T;V*), then x € L?(0,T;V) nW12(0,T;V*) and the mapping
VXL2(0,T;V*) 2 (x9,h) — x € L*(0, T;V)nW'2(0,T; V*) (3.29)
is continuous.

EXAMPLE. LetQ be aregionin an n-dimensional Euclidean space R™ with boundary
0Q and closure Q. For an integer m > 0, C™(Q) is the set of all m-times continuously
differentiable functions in Q, and C§*(Q) is its subspace consisting of functions with
compact supports in Q. If m > 0 is an integer and 1 < p < o0, W™?(Q) is the set of all
functions f whose derivative D% f up to degree m in the distribution sense belong to
L7 (Q). As usual, the norm of W™ (Q) is given by

I llmp = ( > |D“f|,”;)l/p :{

lax|=m

1/p
« p
> JQ\D £ dx} , (3.30)

la|l=m

where 1 < p < « and D°f = f. In particular, WO (Q) = LP (Q) with the norm || - l|g,p.
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Wo"? (Q) is the closure of CJ (Q) in WP (Q).Forp’ = p/(p—1),1 <p < 0o, WP (Q)
stands the dual space WS"”’/ (Q) of WS"""’ (Q) whose norm is denoted by || - ||y, p-

We take V = W(;"'Z(Q), H =1%2(Q) and V* = W-™2(Q) and consider a nonlinear
differential operator of the form

Ax = > (-D)*Aq(u,x,...,D™x), (3.31)

lx|<m

where Ay (u, &) are real functions defined on Q x RN and satisfy the following condi-
tions:

(1) Ay are measurable in u and continuous in . There exists k € L2(Q) and a positive
constant C such that

Ax(u,0) =0, [Aq(u, &) < C(1E| +k(u))|, ae,ueqQ, (3.32)

where & = (&4 || < m).
(2) For every (&,n) € RN x RN and for almost every u € Q the following condition
holds:

> (Ax(u,8) = Ax(u,m) (Ea—Na) = W1]|E =1l — W2|IE=nllo2, (3.33)

|ax|<m
where w; € R and w; is a positive constant.
Let the sesquilinear form a : V XV — R be defined by

ax,y)= > JQAu(u,x,...,Dmx)D“ydu. (3.34)

lal=m

Then by Lax-Milgram theorem we know that the associated operator A:V — V*, de-
fined by

(Ax,y) =a(x,y), x,y€V, (3.35)

is monotone and semicontinuous and satisfies conditions (2.5) in Section 2.
Let g(t,u,x,p), p € R™, be assumed that there is a continuous p(t,r) :RxR — R*
and a real constant 1 < y such that

9(t,1,0,0) =0,
lg(t,u,x,p) —g(t,u,x,a) | <p(t,Ix)(1+Ip " +lql")Ip-al, (3.36)
lg(t,u,x,p) —g(t,u,y,p)| <p(t,IxI+1y])(1+1p”)Ix-¥I.
Let
ft,x)(u) =g(t,u,x,Dx,D%x,...,D™x). (3.37)

Then noting that

||f(t;X) _f(tay)”(Z),Z = ZJ \g(t,u,x,p)—g(t,u,x,q)|2du
¢ (3.38)
+2J;; lg(t,u,x,q)—gt,u,y,q) |2du,
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where p = (Dx,...,D™x) and g = (Dy,...,D™y), it follows from (3.36) that

1£(6,2) = £ < L{Ix 2, 17 lm2 ) 1 = 3 llm 2, (3.39)

where L([|x[lm,2, | lm,2) is a constant depending on [|x |l;,,2 and ||V [lm,2-

Let ¢p:V — (—o0,+00] be a lower semicontinuous, proper convex function. Then for
Xo € W(;"‘Z(Q) satisfying that ¢(x() < c and h € L2(0, T;W~"2(Q)), (1.2) is caused
by the following nonlinear variational inequality problem:

(d);it) +AX(t),x(t)—2) +p(x(1)—P(2)
< (F(t,x(D) +h(D), x(t)-2), ae,0<t<T, zewr @), 40
x(0) = xo
has a unique solution
x € L2(0, ;W5 (Q)) nC([0, T1; LA(Q)). (3.41)
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