
Internat. J. Math. & Math. Sci.
Vol. 23, No. 1 (2000) 11–20
S0161171200001630

© Hindawi Publishing Corp.

NONLINEAR VARIATIONAL EVOLUTION
INEQUALITIES IN HILBERT SPACES

JIN-MUN JEONG, DOO-HOAN JEONG, and JONG-YEOUL PARK

(Received 31 July 1998)

Abstract. The regular problem for solutions of the nonlinear functional differential equa-
tions with a nonlinear hemicontinuous and coercive operator A and a nonlinear term
f(·,·): x′(t)+Ax(t)+∂φ(x(t))� f(t,x(t))+h(t) is studied. The existence, uniqueness,
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1. Introduction. Let H and V be two real separable Hilbert spaces such that V is a
dense subspace of H. Let the operator A be given a single-valued operator, which is
hemicontinuous and coercive from V to V∗. Here V∗ stands for the dual space of V .
Let φ : V → (−∞,+∞] be a lower semicontinuous, proper convex function. Then the
subdifferential operator ∂φ : V → V∗ of φ is defined by

∂φ(x)= {x∗ ∈ V∗;φ(x)≤φ(y)+(x∗,x−y), y ∈ V}, (1.1)

where (·,·) denotes the duality pairing between V∗ and V . We are interested in the
following nonlinear functional differential equation on H:

dx(t)
dt

+Ax(t)+∂φ(x(t))� f (t,x(t))+h(t), 0< t ≤ T ,
x(0)= x0,

(1.2)

where the nonlinear mapping f is a Lipschitz continuous from R×V into H. Equa-
tion (1.2) is caused by the following nonlinear variational inequality problem:

(
dx(t)
dt

+Ax(t),x(t)−z
)
+φ(x(t))−φ(z)

≤ (f (t,x(t))+h(t),x(t)−z), a.e., 0< t ≤ T , z ∈ V,
x(0)= x0.

(1.3)

If A is a linear continuous symmetric operator from V into V∗ and satisfies the co-
ercive condition, then equation (1.2), which is called the linear parabolic variational
inequality, is extensively studied in Barbu [5, Sec. 4.3.2] (also see [4, Sec. 4.3.1]). The
existence of solutions for the semilinear equation with similar conditions for non-
linear term f have been dealt with in [1, 2, 6]. Using more general hypotheses for
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nonlinear term f(·,x), we intend to investigate the existence and the norm estimate
of a solution of the above nonlinear equation on L2(0,T ;V)∩W 1,2(0,T ;V∗), which is
also applicable to optimal control problem. A typical example was given in the last
section.

2. Perturbation of subdifferential operator. LetH andV be two real Hilbert spaces.
Assume that V is a dense subspace in H and the injection of V into H is continuous.
If H is identified with its dual space we may write V ⊂H ⊂ V∗ densely and the corre-
sponding injections are continuous. The norm on V (respectively H) will be denoted
by ‖·‖ (respectively | · |). The duality pairing between the element v1 of V∗ and the
element v2 of V is denoted by (v1,v2), which is the ordinary inner product in H if
v1,v2 ∈H. For the sake of simplicity, we may consider

‖u‖ ≤ |u| ≤ ‖u‖∗, u∈ V, (2.1)

where ‖·‖∗ is the norm of the element of V∗.

Remark 2.1. If an operator A0 is bounded linear from V to V∗ and generates an
analytic semigroup, then it is easily seen that

H =
{
x ∈ V∗ :

∫ T
0

∥∥A0etA0x∥∥2∗dt <∞
}

for the time T > 0. (2.2)

Therefore, in terms of the intermediate theory we can see that
(
V,V∗

)
1/2,2 =H, (2.3)

where (V ,V∗)1/2,2 denotes the real interpolation space between V and V∗.

We note that nonlinear operator A is said to be hemicontinuous on V if

w-lim
t→0
A(x+ty)=Ax for every x,y ∈ V, (2.4)

where “w-lim” indicates the weak convergence on V . Let A : V → V∗ be given a single
valued and hemicontinuous from V to V∗ such that

A(0)= 0, (Au−Av,u−v)≥ω1‖u−v‖2−ω2|u−v|2,
‖Au‖∗ ≤ω3

(‖u‖+1) (2.5)

for every u,v ∈ V , where ω2 ∈ � and ω1,ω3 are some positive constants. Here, we
note that if A(0) �= 0 we need the following assumption:

(Au,u)≥ω1‖u‖2−ω2|u|2 for every u∈ V. (2.6)

It is also known that A+ω2I is maximal monotone and R(A+ω2I)= V∗ where R(A+
ω2I) is the range of A+ω2I and I is the identity operator.
First, let us be concernedwith the following perturbation of subdifferential operator:

dx(t)
dt

+Ax(t)+∂φ(x(t))� h(t), 0< t ≤ T , x(0)= x0. (2.7)

To prove the regularity for the nonlinear equation (1.2) without the nonlinear term
f(·,x) we apply the method in [5, Sec. 4.3.2].
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Proposition 2.1. Let h∈ L2(0,T ;V∗) and x0 ∈ V satisfying that φ(x0) <∞. Then
(2.7) has a unique solution

x ∈ L2(0,T ;V)∩C
(
[0,T ];H

)
(2.8)

which satisfies

‖x‖L2∩C ≤ C1
(
1+‖x0‖+‖h‖L2(0,T ;V∗)

)
, (2.9)

where C1 is a constant and L2∩C = L2(0,T ;V)∩C([0,T ];H).
Proof. Substituting v(t)= eω2tx(t) we can rewrite (2.7) as follows:

dv(t)
dt

+(A+ω2I)v(t)+e−ω2t∂φ
(
v(t)

)� e−ω2th(t), 0< t ≤ T ,
v(0)= eω2tx0.

(2.10)

Then the regular problem for (2.7) is equivalent to that for (2.10). Consider the oper-
ator L :D(L)⊂H →H

Lv = {Av+e−ω2t ∂φ(v)+ω2v
}∩H ∀v ∈D(L),

D(L)=
{
v ∈ V ;{Av+e−ω2t ∂φ(v)+ω2v

}∩H �= 0}. (2.11)

Since A+ω2I is a monotone, hemicontinuous and bounded operator from V into
V∗ and e−ω2t∂φ is maximal monotone, we infer in [4, Cor. 1.1 of Ch. 2] that L is
maximal monotone. Then in [5, Thm. 1.4] (also see [4, Thm. 2.3, Cor. 2.1]), for every
x0 ∈ D(L) and h ∈ W 1.1([0,T ];H), the Cauchy problem (2.10) has a unique solution
v ∈W 1,∞([0,T ];H). Let us assume that x0 ∈D(L) and h ∈W 1,2(0,T ;H). Multiplying
(2.7) by x−x0 and using (2.5) and the maximal monotonicity of ∂φ it holds

1
2
d
dt
∣∣x(t)−x0∣∣2+ω1

∥∥x(t)−x0∥∥2
≤ω2

∣∣x(t)−x0∣∣+(h(t)−Ax0−∂φ(x0),x(t)−x0). (2.12)

Since(
h(t)−Ax0−∂φ(x0),x(t)−x0

)≤ ∥∥h(t)−Ax0−∂φ(x0)∥∥∗∥∥x(t)−x0∥∥
≤ 1
2c
∥∥h(t)−Ax0−∂φ(x0)∥∥2∗+ c2

∥∥x(t)−x0∥∥2
(2.13)

for every real number c, so using Gronwall’s inequality, the inequality (2.12) implies
that

∣∣x(t)−x0∣∣2+
∫ t
0

∥∥x(s)−x0∥∥2ds ≤ C1
(∫ t

0
‖h(s)‖2∗ds+‖x0‖2+1

)
(2.14)

for some positive constant C1, that is,

‖x‖L2(0,T ;V)∩C([0,T ];H) ≤ C1
(
1+‖x0‖+‖h‖L2(0,T ;V∗)

)
. (2.15)

Hence we have proved (2.9). Let x0 ∈ V such that ∂φ(x0) < ∞ and h ∈ L2(0,T ;V∗).
Then there exist sequences {x0n} ⊂D(L) and {hn} ⊂W 1,2(0,T ;H) such that x0n→ x0
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in V and hn → h in L2(0,T ;V∗) as n → ∞. Let xn ∈ W 1,∞(0,T ;H) be the solution of
(2.7) with initial value x0n and with hn instead of h. Since ∂φ is monotone, we have

1
2
d
dt
∣∣xn(t)−xm(t)∣∣2+ω1

∥∥xn(t)−xm(t)∥∥2
<
(
hn(t)−hm(t),xn(t)−xm(t)

)+ω2
∣∣xn(t)−xm(t)∣∣2

≤ 1
2c
‖hn(t)−hm(t)‖2∗+

c
2
‖xn(t)−xm(t)‖2

+ω2
∣∣xn(t)−xm(t)∣∣2, a.e., t ∈ (0,T )

(2.16)

for every real number c. Therefore, if we choose ω1−(c/2) then by integrating over
[0,T ] and using Gronwall’s inequality it follows that

∣∣xn(t)−xm(t)∣∣+2
(
ω1− c2

)∥∥∥xn(t)−xm(t)∥∥∥L2(0,T ;V)
≤ e2ω2T1

(
|x0n−x0m|+c−1

∥∥hn−hm∥∥L2(0,T ;V∗)
)
,

(2.17)

and hence, we have that limn→∞xn(t) = x(t) exists in H. Furthermore, x satisfies
(2.7). Indeed, for all 0 ≤ s < t ≤ T and y ∈ ∂φ(x), multiplying (2.7) by x(t)−x and
integrating over [s,t] we have

1
2

(∣∣x(t)−x∣∣2−∣∣x(s)−x∣∣2)≤
∫ t
s

(
h(τ)−Ax−y,x(τ)−x)dτ

+ω2

∫ t
s

∣∣x(τ)−x∣∣2dτ,
(2.18)

and, therefore,(
x(t)−x(s)

t−s , x(s)−x
)
≤ 1
t−s

∫ t
s

(
h(τ)−Ax−y, x(τ)−x)dτ

+ ω2

t−s
∫ t
s

∣∣x(τ)−x∣∣2dτ.
(2.19)

This implies(
d
dt
x(t), x(t)−x

)
≤ (h(t)−Ax−y+ω2

(
x(t)−x), x(t)−x), (2.20)

a.e., t ∈ (0,T ), that is,(
d
dt
x(t)−h(t)−ω2x(t)+

(
Ax+y+ω2x

)
, x(t)−x

)
≤ 0. (2.21)

Since A+∂φ+ω2I is maximal monotone, we have

d
dt
x(t)−h(t)−ω2x(t)∈−

(
A+∂φ+ω2I

)
x(t), a.e., t ∈ (0,T ). (2.22)

Thus, the proof is complete.

Corollary 2.1. Assume the hypotheses as in Proposition 2.1, in addition, assume
that ∂φ satisfies the growth condition as follows:

‖z‖∗ ≤M
(|x|+1), a.e., x ∈D(φ), z ∈ ∂φ(x). (2.23)
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Then equation (2.7) has a unique solution

x ∈ L2(0,T ;V)∩W 1,2(0,T ;V∗)∩C([0,T ];H) (2.24)

which satisfies

‖x‖L2∩W1,2∩C ≤ C
(
1+‖x0‖+‖h‖L2(0,T ;V∗)

)
. (2.25)

Proof. From (2.7) and (2.23) it follows that∥∥∥∥ ddtx(t)
∥∥∥∥∗+ω1‖x(t)‖ ≤ω2

∣∣x(t)∣∣+M(|x(t)|+1)+‖h(t)‖∗. (2.26)

Hence, by virtue of (2.15) we have that

‖x‖W1,2(0,T ;H) ≤ C2
(
1+‖x0‖+‖h‖L2(0,T ;V∗)

)
. (2.27)

Remark 2.2. IfV is compactly imbedded inH, the imbedding L2(0,T ;V)∩W 1,2(0,T ;
V∗)⊂ L2(0,T ;H) is compact in Aubin [3, Rem. 1, Thm. 2]. Hence, the mapping h� x
is compact from L2(0,T ;H) to L2(0,T ;H).

3. Nonlinear integrodifferential equation. Let f : [0,T ]×V → H be a nonlinear
mapping satisfying the following variational evolution inequality:

∣∣f(t,x)−f(t,y)∣∣≤ L‖x−y‖, f (t,0)= 0 (3.1)

for a positive constant L.

Theorem 3.1. Let (2.5) and (3.1) be satisfied. Then (1.2) has a unique solution

x ∈ L2(0,T ;V)∩C([0,T ];H). (3.2)

Furthermore, there exists a constant C2 such that

‖x‖L2∩C ≤ C2
(
1+‖x0‖+‖h‖L2(0,T ;V∗)

)
. (3.3)

If (x0,h)∈ V ×L2(0,T ;V∗), then x ∈ L2(0,T ;V)∩C([0,T ];H) and the mapping

V ×L2(0,T ;V∗)� (x0,h) � �→ x ∈ L2(0,T ;V)∩C
(
[0,T ];H

)
(3.4)

is continuous.

Proof. Lety ∈ L2(0,T ;V). Then from (3.1), f (·,y(·))∈ L2(0,T ;H). Thus, by virtue
of Proposition 2.1 we know that the problem

dx(t)
dt

+Ax(t)+∂φ(x(t))� f (t,y(t))+h(t), 0< t ≤ T ,
x(0)= x0

(3.5)

has a unique solution xy ∈ L2(0,T ;V)∩C
(
[0,T ];H

)
, where xy is the solution of (3.5).

Let us choose a constant c > 0 such that

ω1− c2 > 0, (3.6)
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and let us fix T0 > 0 so that (
2cω1−c2

)−1e2ω2T0L < 1. (3.7)

Let xi,i= 1,2, be the solution of (3.5) corresponding to yi. Then, by the monotonicity
of ∂φ, it follows that(

ẋ1(t)− ẋ2(t), x1(t)−x2(t)
)+(Ax1(t)−Ax2(t), x1(t)−x2(t))
≤ (f (t,y1(t))−f (t,y2(t)), x1(t)−x2(t)), (3.8)

and hence, using the assumption (2.5), we have that

1
2
d
dt
∣∣x1(t)−x2(t)∣∣2+ω1

∥∥x1(t)−x2(t)∥∥2
≤ω2

∣∣x1(t)−x2(t)∣∣2+∥∥f (t,y1(t))−f (t,y2(t))∥∥∗∥∥x1(t)−x2(t)∥∥.
(3.9)

Since∥∥f (t,y1(t))−f (t,y2(t))∥∥∗∥∥x1(t)−x2(t)∥∥
≤ 1
2c
‖f (t,y1(t))−f (t,y2(t))‖2∗+ c2

∥∥x1(t)−x2(t)∥∥2 (3.10)

for every c > 0 and by integrating (3.9) over (0,T0) we have

∣∣x1(T0)−x2(T0)∣∣2+(2ω1−c)
∫ T0
0

∥∥x1(t)−x2(t)∥∥2dt
≤ 1
c

∥∥∥f(t,y1)−f(t,y2)∥∥∥L2(0,T0;V∗)+2ω2

∫ T0
0

∣∣x1(t)−x2(t)∣∣2dt,
(3.11)

and by Gronwall’s inequality,
∥∥x1−x2∥∥2L2(0,T0;V) ≤ (2cω1−c2

)−1e2ω2T0∥∥f(t,y1)−f(t,y2)∥∥2L2(0,T0;V∗). (3.12)

Thus, from (3.1) it follows that

‖x1−x2‖L2 ≤
(
2cω1−c2

)−1e2ω2T0 L∥∥y1−y2∥∥L2(0,T0;V). (3.13)

Hence we have proved that y � x is a strictly contraction from L2(0,T0;V) to itself if
condition (3.7) is satisfied. It shows that (1.2) has a unique solution in [0,T0].
Let y be the solution of

dy(t)
dt

+Ay(t)+∂φ(y(t))� 0, 0< t ≤ T0, y(0)= x0. (3.14)

Then, since

d
dt
(
x(t)−y(t))+(Ax(t)−Ay(t))+(∂φ(x(t))−∂φ(y(t)))� f (t,x(t))+h(t),

(3.15)

multiplying by x(t)−y(t) and using the monotonicity of ∂φ, we obtain
1
2
d
dt
∣∣x(t)−y(t)∣∣2+ω1

∥∥x(t)−y(t)∥∥2
≤ω2

∣∣x(t)−y(t)∣∣2+∥∥f (t,x(t))+h(t)∥∥∗∥∥x(t)−y(t)∥∥.
(3.16)
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Therefore, putting

N = (2cω1−c2
)−1e2ω2T0 , (3.17)

from (3.1), it follows that

‖x−y‖L2(0,T0;V) ≤N
∥∥f(·,x)+h∥∥L2(0,T0;V∗)

≤NL‖x‖L2(0,T0;V)+N‖h‖L2(0,T0;V∗),
(3.18)

and hence

‖x‖L2(0,T0;V) ≤
1

1−NL‖y‖L2(0,T0;V)+N‖h‖L2(0,T0;V∗)

≤ C1
1−NL

(
1+‖x0‖+N‖h‖L2(0,T0;V∗)

)

≤ C2
(
1+‖x0‖+‖h‖L2(0,T0;V∗)

)
(3.19)

for some positive constant C2. Since condition (3.7) is independent of the initial values,
the solution of (1.2) can be extended to the interval [0,nT0] for natural number n,
i.e., for the initial value x(nT0) in the interval

[
nT0,(n+1)T0

]
, as analogous estimate

(3.19) holds for the solution in [0,(n+1)T0]. Furthermore, similar to (2.12) and (2.15)
in Section 2, the estimate (3.3) is easily obtained.
Nowwe prove the last result.If (x0,h)∈ V×L2(0,T ;V∗) thenx belongs to L2(0,T ;V).

Let (x0i,hi)∈ V ×L2(0,T ;V∗) and xi be the solution of (1.2) with (x0i,hi) in place of
(x0,u) for i= 1,2. Multiplying (1.2) by x1(t)−x2(t), we have

1
2
d
dt
∣∣x1(t)−x2(t)∣∣2+ω1

∥∥x1(t)−x2(t)∥∥2
≤ω2

∣∣x1(t)−x2(t)∣∣2+∥∥f (t,x1(t))−f (t,x2(t))∥∥∗∥∥x1(t)−x2(t)∥∥
+∥∥h1(t)−h2(t)∥∥∗∥∥x1(t)−x2(t)∥∥.

(3.20)

If ω1−c/2> 0, we can choose a constant c1 > 0 so that

ω1− c2 −
c1
2
> 0,

∥∥h1(t)−h2(t)∥∥∗∥∥x1(t)−x2(t)∥∥≤ 1
2c1

∥∥h1(t)−h2(t)∥∥2∗+ c12
∥∥x1(t)−x2(t)∥∥2.

(3.21)

Let T1 < T be such that

2ω1−c−c1−c−1e2ω2T1L > 0. (3.22)

Integrating (3.20) over [0,T1], where T1 < T and as seen in the first part of the proof,
it follows that
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(2ω1−c−c1)
∥∥x1−x2∥∥2L2(0,T0;V)

≤ e2ω2t1
{∥∥x01−x02∥∥+ 1c

∥∥f(t,x1)−f(t,x2)∥∥2L2(0,T0;V∗)+ 1
c1

∥∥h1−h2∥∥L2(0,T0;V∗)
}

≤ e2ω2T1
{
‖x01−x02‖+ 1c L‖x1−x2‖

2
L2(0,T0;V)

+ 1
c1
‖h1−h2‖L2(0,T0;V∗)

}
.

(3.23)

Putting

N1 = 2ω1−c−c1−c−1e2ω2T1L, (3.24)

we have

∥∥x1−x2∥∥L2 ≤ e2ω2T1N1

(∥∥x01−x02∥∥+ 1
c1
‖h1−h2‖

)
. (3.25)

Suppose (x0n,hn)→ (x0,h) in V ×L2(0,T ;V∗), and let xn and x be the solutions of
(1.2) with (x0n,hn) and (x0,h), respectively. Then, by virtue of (3.25) and (3.20), we
see that xn → x in L2(0,T1,V)∩C

(
[0,T1];H

)
. This implies that xn(T1)→ x(T1) in V .

Therefore the same argument shows that xn→ x in
L2
(
T1,min{2T1,T};V

)
∩C

([
T1,min{2T1,T}

]
;H
)
. (3.26)

Repeating this process, we conclude that xn→ x in L2(0,T ;V)∩C
(
[0,T ];H

)
.

If ∂φ satisfies the growth condition (2.23) as is seen in Corollary 2.1, we can obtain
the following result.

Corollary 3.1. Let (2.5), (3.1), and the growth condition (2.23) be satisfied. Then
(1.2) has a unique solution

x ∈ L2(0,T ;V)∩W 1,2(0,T ;V∗)⊂ C([0,T ];H). (3.27)

Furthermore, there exists a constant C2 such that

‖x‖L2(0,T ;V)∩W1,2(0,T ;V∗) ≤ C2
(
1+‖x0‖+‖h‖L2(0,T ;V∗)

)
. (3.28)

If (x0,h)∈ V ×L2(0,T ;V∗), then x ∈ L2(0,T ;V)∩W 1,2(0,T ;V∗) and the mapping

V ×L2(0,T ;V∗)� (x0,h) � �→ x ∈ L2(0,T ;V)∩W 1,2(0,T ;V∗) (3.29)

is continuous.

Example. LetΩ be a region in ann-dimensional Euclidean spaceRn with boundary
∂Ω and closure Ω. For an integerm≥ 0, Cm(Ω) is the set of allm-times continuously
differentiable functions in Ω, and Cm0 (Ω) is its subspace consisting of functions with
compact supports in Ω. Ifm≥ 0 is an integer and 1≤ p ≤∞, Wm,p(Ω) is the set of all
functions f whose derivative Dαf up to degreem in the distribution sense belong to
Lp(Ω). As usual, the norm of Wm,p(Ω) is given by

‖f‖m,p =

 ∑
|α|≤m

‖Dαf‖pp


1/p

=


∑

|α|≤m

∫
Ω
|Dαf(x)|p dx



1/p

, (3.30)

where 1 ≤ p <∞ and D0f = f . In particular, W 0,p(Ω) = Lp(Ω) with the norm ‖·‖0,p .
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Wm,p
0 (Ω) is the closure of C∞0 (Ω) inWm,p(Ω). For p′ = p/(p−1), 1<p <∞,W−m,p(Ω)

stands the dual space Wm,p′
0 (Ω) of Wm,p′

0 (Ω) whose norm is denoted by ‖·‖−m,p .
We take V = Wm,2

0 (Ω), H = L2(Ω) and V∗ = W−m,2(Ω) and consider a nonlinear
differential operator of the form

Ax =
∑

|α|≤m
(−D)αAα

(
u,x,. . . ,Dmx

)
, (3.31)

where Aα(u,ξ) are real functions defined on Ω×RN and satisfy the following condi-
tions:
(1)Aα aremeasurable inu and continuous in ξ. There exists k∈ L2(Ω) and a positive

constant C such that

Aα(u,0)= 0, |Aα(u,ξ)≤ C
(|ξ|+k(u))|, a.e., u∈Ω, (3.32)

where ξ = (ξα;|α| ≤m).
(2) For every (ξ,η) ∈ RN ×RN and for almost every u ∈ Ω the following condition

holds:
∑

|α|≤m

(
Aα(u,ξ)−Aα(u,η)

)(
ξα−ηα

)≥ω1
∥∥ξ−η∥∥m,2−ω2

∥∥ξ−η∥∥0,2, (3.33)

where ω2 ∈R and ω1 is a positive constant.
Let the sesquilinear form a : V ×V →R be defined by

a(x,y)=
∑

|α|≤m

∫
Ω
Aα
(
u,x,. . . ,Dmx

)
Dαydu. (3.34)

Then by Lax-Milgram theorem we know that the associated operator A : V → V∗, de-
fined by

(Ax,y)= a(x,y), x,y ∈ V, (3.35)

is monotone and semicontinuous and satisfies conditions (2.5) in Section 2.
Let g(t,u,x,p), p ∈Rm, be assumed that there is a continuous ρ(t,r) :R×R→R+

and a real constant 1≤ γ such that
g(t,u,0,0)= 0,∣∣g(t,u,x,p)−g(t,u,x,q)∣∣≤ ρ(t,|x|)(1+|p|γ−1+|q|γ−1)|p−q|,∣∣g(t,u,x,p)−g(t,u,y,p)∣∣≤ ρ(t,|x|+|y|)(1+|p|γ)|x−y|.

(3.36)

Let

f(t,x)(u)= g(t,u,x,Dx,D2x,. . . ,Dmx). (3.37)

Then noting that

∥∥f(t,x)−f(t,y)∥∥20,2 ≤ 2
∫
Ω

∣∣g(t,u,x,p)−g(t,u,x,q)∣∣2du
+2

∫
Ω

∣∣g(t,u,x,q)−g(t,u,y,q)∣∣2du, (3.38)
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where p = (Dx,. . . ,Dmx) and q = (Dy,. . . ,Dmy), it follows from (3.36) that

∥∥f(t,x)−f(t,y)∥∥20,2 ≤ L
(
‖x‖m,2,‖y‖m,2

)
‖x−y‖m,2, (3.39)

where L(‖x‖m,2,‖y‖m,2) is a constant depending on ‖x‖m,2 and ‖y‖m,2.
Let φ : V → (−∞,+∞] be a lower semicontinuous, proper convex function. Then for

x0 ∈ Wm,2
0 (Ω) satisfying that φ(x0) <∞ and h ∈ L2(0,T ;W−m,2(Ω)

)
, (1.2) is caused

by the following nonlinear variational inequality problem:

(
dx(t)
dt

+Ax(t), x(t)−z
)
+φ(x(t))−φ(z)

≤ (f (t,x(t))+h(t), x(t)−z), a.e.,0< t ≤ T , z ∈Wm,2
0 (Ω),

x(0)= x0

(3.40)

has a unique solution

x ∈ L2
(
0,T ;Wm,2

0 (Ω)
)
∩C

(
[0,T ]; L2(Ω)

)
. (3.41)
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