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Abstract. Let f : A→ B be a homomorphism of involutive algebras A,B. The purpose of
this paper is to define a free involutive algebra resolution of algebra B over f and use it
to define and study the relative dihedral homology.
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1. Introduction. LetA,B be involutive algebras (an involution∗ is an anti-automor-
phism of degree zero and order 2) and let f :A→ B be a homomorphism. Our first aim
is to find a free involutive algebra resolution R of algebra B over the homomorphism

f :A i
�������������������→ R π

�������������������→ B, where i is an inclusion and π is a quasi-isomorphism. The second aim
is to define the relative dihedral homology as

ε��•
(
A

f
�→ B

)=�•

(
R(

A+[R,R]+ Im(1−rε)
)
, (1.1)

where [R,R] is the commutant of algebra R, rε is the involution on R, and study its
main properties.

First, we recall some definitions and facts from [4, 5]. Let A be an associative algebra
over a field k(k = R or C). Define the complex C(A) = (C•(A),�•), where Cn(A) =
A⊗···⊗A is the tensor product of algebra A(n+1 times) and �n : Cn(A)→ Cn−1(A)
is the boundary operator

�n
(
a0⊗···⊗an

)= n−1∑
i=0

(−1)ia0⊗···⊗aiai+1⊗···⊗an+(−1)nana0⊗···⊗an+1.

(1.2)

It is well known that �n−1�n = 0, that is, the complex C(A) is a chain complex. This
complex is called the Hochschild (simplicial) complex and its homology is called the
Hochschild homology (��•(A)). If A is a unital involutive algebra, then on the com-
plex C(A), one acts by the operators tn, rn : Cn(A)→ Cn(A) by means of

tn
(
a0⊗···⊗an

)= (−1)nan⊗a0⊗···⊗an−1,

rn
(
a0⊗···⊗an

)= (−1)n(n+1)/2εa∗0 ⊗a∗n⊗···⊗a∗1 , ε=±1.
(1.3)

Consider the quotient complex C�n(A) = Cn(A)/ Im(1− tn)+ Im(1− rn) of a com-
plex Cn(A). Following [3] the dihedral homology of algebra, A is the homology of the
complex C�•(A).
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2. Free involutive algebra resolution. In this part, we discuss the existence of the
free involutive algebra resolution. Let E =∑∞n=0En be a graded involutive vector space
over a fieldK. Suppose thatR is a differential graded (in short DG) involutiveK-algebra
and let R〈E〉 = R∗Tk(E) be the free product of algebras, where Tk(E) =

∑
j≥0E⊗j is

the tensor algebra over K. We define an involution on algebra R〈E〉 to be the unique
anti-automorphism on R〈E〉 which restricts to the given involution on R and E (this is
enough thanks to the universal property of the tensor algebra and the free product).
The product in R〈E〉 is given by(

r1e1 ···rnenrn+1
)·(r̂1ê1 ··· r̂kêkr̂k+1

)= (r1e1 ···rnen(rn+1r̂1)ê1 ··· r̂kêkr̂k+1
)
,

ri, r̂j ∈ R, ei, êj ∈ Tk(E), (r∗)∗ = (e∗)∗ = e.
(2.1)

Definition 2.1. Let f : R1 → R2 be a homomorphism of involutive differential
graded K-algebras. An algebra R2 is a free algebra over the homomorphism f if there
exists an isomorphism α : R1〈E〉 � R2, where E is an involutive differential graded
vector space with the following commutative diagram:

R1

i ����������
f �� R2�

α

R1〈E〉,

(2.2)

where i is the inclusion map.

Lemma 2.2. Let f :A→ B be a morphism of involutive K-algebra. Then there exists
an involutive differential graded algebra R =∑i=0Ri with the following properties

(i) π is surjection and the following diagram is commutative

R

π
��

A

i
���������

f
�� B,

(2.3)

where i is an inclusion map.
There is an amorphism j : R→A such that j◦i= 1A.
(ii) π is quasi-isomorphism, i.e., π• : �•(R) → �•(B) = B, where B is a differential

graded algebra,

(B)i =
B, i= 0,

0, i > 0, and the differential ∂B = 0.
(2.4)

(iii) The involutive DG algebra R is free over the homomorphism i :A→ R.

Definition 2.3. The involutive DG algebra which satisfies the conditions (i), (ii),
and (iii) of Lemma 2.2 is called a free involutive algebra resolution of algebra B over f .



THE RELATIVE DIHEDRAL HOMOLOGY . . . 809

Proof of Lemma 2.2.

First step. We construct a commutative diagram of involutive algebra

R(0)

π0

��
A

i0
����������

f
�� B,

(2.5)

where R(0) is free over the homomorphism i0 : A→ R(0), π0 an involutive surjection.
Define A〈ti〉 = A〈E(ti)〉, where E(ti) is an involutive vector space generated by {ti},
or generated by the family {ti, t∗i }. The automorphism ∗ : E(ti) → E(ti) is given as

follows:∗(ti)= (t∗i ),∗(t∗i )= ti. We choose a system {�(0)
i } of generators in algebra B.

This family is assumed to be closed under an involutive on B.
Now, let R(0) =A〈t(0)i 〉, where t(0)i is equivalent to the generator {�(0)

i } of algebra B,

and suppose that β(0)i = t(0)i or (t(0)i )∗. We may define π0 using the universal property
of R(0). Let π0 be the unique homomorphism of involutive algebras R(0) → B which
restricts to f on A and sends t(0)i to �(0)

i .

Since i0 : A → A〈t(0)i 〉 is an inclusion map, i0(a) = a, i0 is an involutive algebra
homomorphism and π0i0(a) = π0(a) = f(a). Hence, diagram (2.5) is commutative
and π0 is surjective.

Let j0 : R(0) → A be the unique homomorphism involutive algebra restricting to
the identity on A and mapping the t(0)n to zero. R(0) is a DG involutive k-algebra:
(R(0))0 = R(0), i = 0, (R(0))i = 0, i > 0, ∂R(0)B(0)ij = 0. The algebra R(0) is free over the

homomorphism i0 :A→ R(0) since R(0) =A〈t(0)〉.
Second step. We construct the second commutative diagram

R(1)

π1

��
A

i1
����������

f
�� B,

(2.6)

where R(1) is a free algebra over i1 and π1 is an involutive surjection. Choose a system
�(1)
j of generators of kerπ0 which is closed under the involution. Let t(1)j be indeter-

minates which are in bijection with the �(1)
j . Define R(1) = A〈t(0)i ,t(1)j 〉, where t(0)i is

defined above. Suppose that β(1)j denotes t(1)j or (t(1)j )∗. The homomorphism π1 is

defined to be the unique homomorphism of involutive algebra R(1) → B restricting
to π0 on R(0) and sending t(1)j to 0. We can see, from the above discussion, that the

homomorphism π1 can be defined as π0 and that π1 is surjective since π1(β
(0)
1 )=�i,

π1(β
(1)
j )= 0. The homomorphism i1 :A→A〈t(0)i , t(1)j 〉 is inclusion. The diagram (2.6)

is commutative since (π1i1)(a)=π1(a)= f(a). The homomorphism j1 is defined to
be unique homomorphisms: R(1)→A, of involutive algebras restricting to identity on
A and mapping t(1)i to zero. The algebra R(1) =A〈t(0)i , t(1)j 〉 is free over i1. Finally, we
have a differential graded algebra

R(1) = (R(1))
0⊕

(
R(1))

0⊕··· , degβ(1)i = 0, degβ(1)j = 1. (2.7)



810 Y. Gh. GOUDA

Note that the algebra R(1) also has a universal property with respect to derivations
(not only homomorphism). This property should be used to define the differential.
The differential ∂R(1) of R(1) is the unique derivation on R(1) satisfying the graded
Leibniz rule and commuting with the involution which restricts to zero on R(1) and

sends t(1)j to �(1)
j . So, ∂R(1)β(0)i = 0, ∂R(1)β(0)i =�(1)

j ∈ kerπ0, ∂R
(1)

i = 0, i > 1.
In the same manner, we can construct the commutative diagram

R(2)

π2

��
A

i2
����������

f
�� B,

(2.8)

where R(2) = A〈t(0)i , t(1)j , t(2)k 〉 is a DG algebra, free over i2, R(2) = (R(2))0⊕ (R(2))1⊕
(R(2))2⊕··· , degβ(0)i = 0, degβ(1)j = 1, degβ(2)k = 2, the differential of algebra R(2) is

also defined by using a universal property and, hence, ∂R
(2)

0 β(0)i = 0, ∂R
(2)

1 β(0)j = �(1)
j ,

∂R
(2)

1 β(2)j =�(2)
k , ∂R

(2)
i = 0, i > 2.

Consequently, we can construct an involutive algebra R(i), i ≥ 0 with the following
commutative diagram:

R(0)

π0

��

P0 �� R(1)

πi
��

P1 �� . . . Pn−1 �� R(n)

πn

��

P0 �� . . .

A

i0
����������
�� B B .. . B . . . ,

(2.9)

where πi is an involutive surjection, i ≥ 0, in = Pn−1 ◦···◦P0 ◦i0 is an inclusion map
from A to R(n),Pi is also an inclusion map from

Pi :A
〈
t(0)m0

, t(1)m1
, . . . , t(i)mi

〉
to A

〈
t(0)m0

, t(1)m1
, . . . , t(i)mi

,t(i+1)
mi+1

〉
. (2.10)

Define in = qn◦···◦qi◦j0, where qn is the projection of the map from A〈t(0)m0 , t
(1)
m1 , . . . ,

t(i)mi〉 on A〈t(0)m0 , t
(1)
m1 , . . . , t

(i)
mi ,t

(i+1)
mi+1 〉. The diagram (2.9) is commutative since in+1(β

(n)
i )=

πn(β
(n)
i )= 0, n≥ 0. Define R = limRn, π = limπn, i= limin, j = limjn. Then the DG

algebra R satisfies the items of Lemma 2.2 since
(1) π = limin is an involutive surjection, the diagram

R(2)

π2

��
A

i2
����������

f
�� B

(2.11)

is commutative since i(a)= a, π(a)= f(a).
(2) π is a quasi-isomorphism of DG algebras

(R)0

π0

��

(R)1

∂R0��

π1

��

. . .
∂R1�� (R)n

∂Rn��

πn

��

. . .
∂Rn+1��

B 0�� . . .�� 0�� . . . ,��

(2.12)
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where ∂Ri = lim∂Ri , (R)0 = ker(π)0 = B, Im ∂R = ker ∂R0 , i.e., �0(R)= B, �i(R)= 0.
(3) The DG involutive algebra R is free over the homomorphism i : A → R since

R = 〈E〉, E is an involutive vector space generated by the system{
t(0)i0 , t(1)i1 , . . . , t(n)in , . . .

}
. (2.13)

3. The relative dihedral homology. In this part, we define the relative dihedral
homology and study its properties. Let f be a morphism of involutive algebras A and
B over a field K with characteristic zero. Let RB

f be a free involutive algebra resolution

of algebra B over f and, for r1, r2 ∈ RB
f , let [r1,r2]= r1r2−(−1)|r1||r2|r2r1, where |ri| =

degri, i = 1,2. Let � = [RB
f ,R

B
f ] be the linear space generated by [r1,r2], r1, r2 ∈ RB

f .

It is clear that, � = [RB
f ,R

B
f ] is a K-submodule of a K-module RB

f . We construct the

complex ([RB
f ,R

B
f ]+ Im(1−rε)), where rε(P) = ε(−1)|P |(|P |−1)/2P∗, ∗ is an involutive

on RB
f , ε=±1. It is clear, from the definition of RB

f , that Im(1−rε) is a subcomplex of

RB
f . We have

∂[r1r2]= r1r2−(−1)|r1||r2|r2r1

= ∂r1r2+(−1)|r1|r1∂r2−(−1)|r1||r2|(∂r2r1+(−1)|r2|r2∂r1
)

= ∂r1r2−(−1)|r2|(|r1|+1)r2∂r1+(−1)|r1|(r1∂r2−(−1)|r1|(|r2|+1)∂r2r1
)

= [∂r1,r2]+(−1)|r1|[r1,∂r2],|∂ri| = |ri|−1, i= 1,2.

(3.1)

Then
[
RB
f ,R

B
f
]

is a subcomplex in RB
r . Therefore, the chain complex of the K-module[

RB
f ,R

B
f
]+ Im(1−rε) is a subcomplex of RB

f .

Definition 3.1. Let f : A → B be an involutive K-algebra (charK = 0) homomor-
phism, RB

f be a free involutive algebra resolution of algebra B over f . Then the relative
dihedral homology is defined as follows:

ε��i

(
A

f
��������������������������������������→ B

)
=�i

 RB
f[

RB
f ,R

B
f

]
+ Im(1−rε)

 . (3.2)

The main properties of the relative dihedral homology are submitted in Theorems 3.2,
3.6, and 3.7.

Theorem 3.2. Let A be an involutive algebra. Then ε��i(A → 0) = ε��i−1(A),
where ε��i(A) is the dihedral homology of k-algebra A (char(k)= 0).

Proof. To do this, we need the following definition and lemmas.

Definition 3.3. The K-algebra A〈t〉, generated by the elements a0ta1t ···tan,
n≥ 0, can be considered as an involutive DG algebra by requiring that the morphism
A → A〈t〉 is a morphism of involutive differential graded algebras (A is viewed as a
DG algebra concentrated in degree 0) and that degt = 1, ∂t = 0, and t∗ = t.

Lemma 3.4. The algebra A〈t〉 is splitable and is a free involutive algebra resolution
of the algebra B = 0 over the homomorphism A→ 0.
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Proof. Define the following chain complex

A ∂←������������������������������������������������� AtA ∂←������������������������������������������������� AtAtA ∂←������������������������������������������������� ··· ∂←������������������������������������������������� At ···tA ∂←������������������������������������������������� ··· , (3.3)

where At ···tA (t-n-times) is a K-module and the boundary operator ∂ is given by

∂
(
a0ta1t ···tan−1tan

)= n−1∑
i=0

(−1)ia0ta1t ···tai(∂t)ai+1t ···tan

=
n−1∑
i=0

(−1)ia0ta1t ···t
(
aiai+1

)
t ···tan.

(3.4)

Note that the differential ∂ in a〈t〉 is equivalent to the operator �′n : Cn(A)→ Cn−1(A)
(see [4]), defined by

�′n
(
a0⊗···⊗an

)= n−1∑
i=0

(−1)ia0⊗···⊗aiai+1⊗···⊗an. (3.5)

Following [4], the complex (Cn(A),�′n) is splitable and so the complex A〈t〉 is also
splitable, that is, �•(A〈t〉)= 0. Therefore, the algebra A〈t〉 is a free involutive algebra
resolution of the algebra B = 0 over the homomorphism A→ 0.

Lemma 3.5. The complexA〈t〉/[A,A〈t〉] is the standard simplicial (Hochschild) com-
plex.

Proof. Consider the factor complex A〈t〉/[A,A〈t〉]. The complex A〈t〉/[A,A〈t〉]
is generated by the elements a0ta1t ···an−1t, since a0ta1t ···tan−1tan = ana0 ×
ta1t ···tan−1t(mod[A,A〈t〉]). The action of the differential ∂ on the complex
A〈t〉/[A,A〈t〉] is given by

∂
(
a0ta1t ···tan−1tan

)= n−1∑
i=0

(−1)ia0ta1t ···t(aiai+1)t ···an−1tant

+(−1)na0ta1t ···an−1tan

=
n−1∑
i=0

(−1)ia0ta1t ···t(aiai+1)t ···an−1tant

+(−1)nana0ta1t ···an−1t.

(3.6)

Consider the complex

A id←�������������������������������������������������������������������� A �←������������������������������������������������������ A⊗2 �←������������������������������������������������������ ··· �←������������������������������������������������������ A⊗n �←������������������������������������������������������ ··· , (3.7)

where � is the differential in the standard Hochschild complex (see [4]). Since the
space (A〈t〉/[A,A〈t〉])n+1 identifies with the space

A⊗n+1 : a0ta1 ···tant �→ a0⊗a1⊗···⊗an, (3.8)

and the differential in A〈t〉/[A,A〈t〉] identifies with the differential in the standard
Hochschild complex, A〈t〉/A+[A,A〈t〉] is the Hochschild (simplicial) complex of al-
gebra A.
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Now, we prove Theorem 3.2. Consider the factor complex:A〈t〉/[A〈t〉,A〈t〉]+Im(1−
rε), such that

a0ta1t ···tan−1t = (−1)nanta0ta1t ···an−1t,

a0ta1t ···tan−1t = (−1)n(n+1)/2εta∗nta
∗
n−1 ···ta∗1 ta∗0

= (−1)n(n+1)/2εta∗0 ta
∗
nt ···ta∗1 t,

(3.9)

where ε=±1, dega0ta1t ···tan−1t =n, deg(ant)= 1, deg(a∗n)= 0, dega0t ···ant =
n+1. The dihedral homology of 〈t〉 is the homology of the factor complexA〈t〉/[A〈t〉,
A〈t〉]+ Im(1−rε). By factoring A〈t〉, first by the subcomplex A ← 0 ← 0 ← ··· and
then by the subcomplex [A〈t〉,A〈t〉]+Im(1−rε), we get a homomorphism εC�•(A→
0) → εC�•−1(A), which induces an isomorphism in the dihedral homology groups
ε��i(A→ 0)→ ε��−1(A).

Theorem 3.6. Let f :A→ B be a homomorphism of involutive algebras over a field

K (charK = 0). Then the relative dihedral homology ε��i(A
f
�������������������→ B) does not depend on

the choice of the resolution.

Proof. The homomorphism f induces a homomorphism of chain complexes

f• : εC�•(A) �→ εC�•(B), (3.10)

where εC�•(A) is the dihedral complex. Consider the diagram

RB
f

π

��
A

i
���������

f
�� B,

(3.11)

where RB
f is defined above, i is the inclusion map. The idea of the proof is to show

that the cone of the map i is quasi-isomorphic to an arbitrary category (see [2]), to the
complex: RB

f /
[
RB
f ,R

B
f
]+ Im(1−rε). Since

�i
(
RB
f
)=

B, i= 0,

0, i > 0,
(3.12)

then the isomorphism π• : εC�•(RB
f )→ εC�•(B) induces an isomorphism of the ho-

mology of these complexes. Since i• : εC�•(A) → εC�•(RB
f ) is an inclusion, then

M(i•)≈ εC�•(RB
f )/

εC�(A), where M(i•) is the cone of the map i (see [6]).
Note that the symbol ≈ always denotes a quasi-isomorphism. It is clear, from the

above discussion, that the following diagram is commutative

εC�•
(
RB
f
)

π•
��

εCD•(A)

i•
������������

f•
�� εC�•(B),

(3.13)
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and, hence, M(f•) ≈ εC�•(RB
f )/

εC�•(A). Following [1], we have CC•(RB
f )/CC•(A) ≈

RB
f /A + [RB

f ,R
B
f ] and by using the spectral sequence E2

ij = ε�•(Z/2,�Cj(RB
f )) =

ε�Di+j(RB
f ), we have

εC�•
(
RB
f

)
εC�•(A)

≈ RB
f

A+
[
RB
f ,R

B
f

]
+ Im(1−rε)

. (3.14)

So, M(f•)≈ RB
f /A+[RB

f ,R
B
f ]+ Im(1−rε). Then ε��i(A

f
�������������������→ B) does not depend on the

choice of RB
f .

Theorem 3.7. Let A, B, and C be involutive algebras. Then the following sequence

A
f
�������������������→ B

g
�������������������→ C induces the long exact sequence of the relative dihedral homology

··· �→ ε��i

(
A

f
�������������������→ B

)
�→ ε��i

(
A

g◦f
������������������������������������������������������→ C

)
�→ ε��i

(
B

g
�������������������→ C

)
�→ ε��i−1

(
A

f
�������������������→ B

)
�→ ··· .

(3.15)

Proof. In Theorem 3.6, it has been proved that any homomorphism f : A→ B of
involutive algebras in an arbitrary category is equivalent to an inclusion i :A→ RB

f

RB
f∼

��
A

i
��������� f �� B.

(3.16)

Then, for an arbitrary sequence A
f
�������������������→ B

g
�������������������→ C of involutive algebras, we have the fol-

lowing complex

A
i ��

f
		�

��
��

��
� RB

f B
i′ ��

g
		�

��
��

��
� RC

g

B C.

(3.17)

Consider the following sequence of mapping cones

0 �→M(i•) �→M
(
i′•
)
�→M

(
i′•0i•

)
�→ 0. (3.18)

In general, the sequence (3.18) is not exact. In fact, the composition of two morphisms
will be non zero. However, the cone over the morphism M(i•)→M(i′•) is canonically
homotopy equivalent to M(i′•0i•). So, we get the following long exact sequence of the
relative dihedral homology

··· �������������������������→ε ��i

(
A

f
��������������������������������������→ B

)
�������������������������→ε ��i

(
A

g◦f
����������������������������������������������������������������������������������������→ C

)
�������������������������→ε ��i

(
B

g
�������������������������������������→ C

)
�������������������������→ε ��i−1

(
A

f
��������������������������������������→ B

)
�������������������������→ ··· .

(3.19)



THE RELATIVE DIHEDRAL HOMOLOGY . . . 815

Acknowledgement. I would like to express my thanks to L. Debnath and the
referee for their valuable comments and help.

References

[1] B. L. Feigin and B. L. Tsygan, Additive K-theory, K-theory, arithmetic and geometry
(Berlin, New York), Lecture Notes in Math., vol. 1289, Springer, 1987, pp. 67–209.
MR 89a:18017. Zbl 635.18008.

[2] R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A.
Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture
Notes in Mathematics, no. 20, Springer-Verlag, Berlin, New York, 1966. MR 36#5145.
Zbl 212.26101.

[3] J.-L. Loday, Homologies diedrale et quaternionique. [Dihedral and quaternionic homologies],
Adv. in Math. 66 (1987), no. 2, 119–148 (French). MR 89e:18024. Zbl 627.18006.

[4] J.-L Loday, Cyclic homology, Fundamental Principles of Mathematical Sciences, vol.
301, Springer-Verlag, Berlin, 1992, Appendix E by Maria O. Ronco. MR 94a:19004.
Zbl 780.18009.

[5] J. M. Lodder, Dihedral homology and homotopy fixed point sets, Algebraic topology (Prov-
idence, RI) (M. C. Tangora, ed.), Contemp. Math., vol. 146, Amer. Math. Soc., 1993,
pp. 215–224. MR 94e:55014. Zbl 794.55006.

[6] S. MacLane, Homology, Springer-Verlag, Berlin, New York, 1967. MR 50 2285.

Gouda: Department of Mathematics, Faculty of Science, South Valley University,
Aswan, Egypt

http://www.ams.org/mathscinet-getitem?mr=89a:18017
http://www.emis.de/cgi-bin/MATH-item?635.18008
http://www.ams.org/mathscinet-getitem?mr=36:5145
http://www.emis.de/cgi-bin/MATH-item?212.26101
http://www.ams.org/mathscinet-getitem?mr=89e:18024
http://www.emis.de/cgi-bin/MATH-item?627.18006
http://www.ams.org/mathscinet-getitem?mr=94a:19004
http://www.emis.de/cgi-bin/MATH-item?780.18009
http://www.ams.org/mathscinet-getitem?mr=94e:55014
http://www.emis.de/cgi-bin/MATH-item?794.55006
http://www.ams.org/mathscinet-getitem?mr=50:2285

