THE RELATIVE DIHEDRAL HOMOLOGY OF INVOLUTIVE ALGEBRAS

Y. Gh. GOUDA

(Received 23 October 1996 and in revised form 19 May 1997)

Abstract

Let $f: A \rightarrow B$ be a homomorphism of involutive algebras A, B. The purpose of this paper is to define a free involutive algebra resolution of algebra B over f and use it to define and study the relative dihedral homology.

Keywords and phrases. Dihedral homology, free involutive algebra, relative dihedral homology.

1991 Mathematics Subject Classification. Primary 55N91; Secondary 55P91, 55Q91.

1. Introduction. Let A, B be involutive algebras (an involution $*$ is an anti-automorphism of degree zero and order 2) and let $f: A \rightarrow B$ be a homomorphism. Our first aim is to find a free involutive algebra resolution R of algebra B over the homomorphism $f: A \xrightarrow{i} R \xrightarrow{\pi} B$, where i is an inclusion and π is a quasi-isomorphism. The second aim is to define the relative dihedral homology as

$$
\begin{equation*}
\epsilon \mathscr{H}_{\bullet}(A \xrightarrow{f} B)=\mathscr{H}_{\bullet}\left(\frac{R}{\left(A+[R, R]+\operatorname{Im}\left(1-r^{\epsilon}\right)\right.}\right), \tag{1.1}
\end{equation*}
$$

where $[R, R]$ is the commutant of algebra R, r^{ϵ} is the involution on R, and study its main properties.

First, we recall some definitions and facts from [4, 5]. Let A be an associative algebra over a field $k(k=\mathbb{R}$ or $\mathbb{C})$. Define the complex $C(A)=\left(C_{\bullet}(A), \mathscr{C}_{\bullet}\right)$, where $C_{n}(A)=$ $A \otimes \cdots \otimes A$ is the tensor product of algebra $A\left(n+1\right.$ times) and $\mathscr{C}_{n}: C_{n}(A) \rightarrow C_{n-1}(A)$ is the boundary operator

$$
\begin{equation*}
\mathscr{C}_{n}\left(a_{0} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}+(-1)^{n} a_{n} a_{0} \otimes \cdots \otimes a_{n+1} . \tag{1.2}
\end{equation*}
$$

It is well known that $\mathscr{C}_{n-1} \mathscr{C}_{n}=0$, that is, the complex $C(A)$ is a chain complex. This complex is called the Hochschild (simplicial) complex and its homology is called the Hochschild homology $(\mathscr{H}$. (A)). If A is a unital involutive algebra, then on the complex $C(A)$, one acts by the operators $t_{n}, r_{n}: C_{n}(A) \rightarrow C_{n}(A)$ by means of

$$
\begin{align*}
& t_{n}\left(a_{0} \otimes \cdots \otimes a_{n}\right)=(-1)^{n} a_{n} \otimes a_{0} \otimes \cdots \otimes a_{n-1} \\
& r_{n}\left(a_{0} \otimes \cdots \otimes a_{n}\right)=(-1)^{n(n+1) / 2} \epsilon a_{0}^{*} \otimes a_{n}^{*} \otimes \cdots \otimes a_{1}^{*}, \quad \epsilon= \pm 1 \tag{1.3}
\end{align*}
$$

Consider the quotient complex $C \mathscr{D}_{n}(A)=C_{n}(A) / \operatorname{Im}\left(1-t_{n}\right)+\operatorname{Im}\left(1-r_{n}\right)$ of a complex $C_{n}(A)$. Following [3] the dihedral homology of algebra, A is the homology of the complex $C \mathscr{D}$ • (A).
2. Free involutive algebra resolution. In this part, we discuss the existence of the free involutive algebra resolution. Let $E=\sum_{n=0}^{\infty} E_{n}$ be a graded involutive vector space over a field K. Suppose that R is a differential graded (in short DG) involutive K-algebra and let $R\langle E\rangle=R * T_{k}(E)$ be the free product of algebras, where $T_{k}(E)=\sum_{j \geq 0} E^{\otimes j}$ is the tensor algebra over K. We define an involution on algebra $R\langle E\rangle$ to be the unique anti-automorphism on $R\langle E\rangle$ which restricts to the given involution on R and E (this is enough thanks to the universal property of the tensor algebra and the free product). The product in $R\langle E\rangle$ is given by

$$
\begin{gather*}
\left(r_{1} e_{1} \cdots r_{n} e_{n} r_{n+1}\right) \cdot\left(\hat{r}_{1} \hat{e}_{1} \cdots \hat{r}_{k} \hat{e}_{k} \hat{r}_{k+1}\right)=\left(r_{1} e_{1} \cdots r_{n} e_{n}\left(r_{n+1} \hat{r}_{1}\right) \hat{e}_{1} \cdots \hat{r}_{k} \hat{e}_{k} \hat{r}_{k+1}\right), \\
r_{i}, \hat{r}_{j} \in R, \quad e_{i}, \hat{e}_{j} \in T_{k}(E), \quad\left(r^{*}\right)^{*}=\left(e^{*}\right)^{*}=e . \tag{2.1}
\end{gather*}
$$

DEFINITION 2.1. Let $f: R_{1} \rightarrow R_{2}$ be a homomorphism of involutive differential graded K-algebras. An algebra R_{2} is a free algebra over the homomorphism f if there exists an isomorphism $\alpha: R_{1}\langle E\rangle \simeq R_{2}$, where E is an involutive differential graded vector space with the following commutative diagram:

where i is the inclusion map.
Lemma 2.2. Let $f: A \rightarrow B$ be a morphism of involutive K-algebra. Then there exists an involutive differential graded algebra $R=\sum_{i=0} R_{i}$ with the following properties
(i) π is surjection and the following diagram is commutative

where i is an inclusion map.
There is an amorphism $j: R \rightarrow A$ such that $j \circ i=1_{A}$.
(ii) π is quasi-isomorphism, i.e., $\pi_{0}: \mathscr{H}_{.}(R) \rightarrow \mathcal{H}_{.}(B)=B$, where B is a differential graded algebra,

$$
(B)_{i}= \begin{cases}B, & i=0 \tag{2.4}\\ 0, & i>0,\end{cases}
$$

(iii) The involutive DG algebra R is free over the homomorphism $i: A \rightarrow R$.

Definition 2.3. The involutive DG algebra which satisfies the conditions (i), (ii), and (iii) of Lemma 2.2 is called a free involutive algebra resolution of algebra B over f.

Proof of Lemma 2.2.

First step. We construct a commutative diagram of involutive algebra

where $R^{(0)}$ is free over the homomorphism $i_{0}: A \rightarrow R^{(0)}, \pi_{0}$ an involutive surjection. Define $A\left\langle t_{i}\right\rangle=A\left\langle E\left(t_{i}\right)\right\rangle$, where $E\left(t_{i}\right)$ is an involutive vector space generated by $\left\{t_{i}\right\}$, or generated by the family $\left\{t_{i}, t_{i}^{*}\right\}$. The automorphism $*: E\left(t_{i}\right) \rightarrow E\left(t_{i}\right)$ is given as follows: $*\left(t_{i}\right)=\left(t_{i}^{*}\right), *\left(t_{i}^{*}\right)=t_{i}$. We choose a system $\left\{\mathscr{C}_{i}^{(0)}\right\}$ of generators in algebra B. This family is assumed to be closed under an involutive on B.
Now, let $R^{(0)}=A\left\langle t_{i}^{(0)}\right\rangle$, where $t_{i}^{(0)}$ is equivalent to the generator $\left\{\mathscr{C}_{i}^{(0)}\right\}$ of algebra B, and suppose that $\beta_{i}^{(0)}=t_{i}^{(0)}$ or $\left(t_{i}^{(0)}\right)^{*}$. We may define π_{0} using the universal property of $R^{(0)}$. Let π_{0} be the unique homomorphism of involutive algebras $R^{(0)} \rightarrow B$ which restricts to f on A and sends $t_{i}^{(0)}$ to $\mathscr{C}_{i}^{(0)}$.
Since $i_{0}: A \rightarrow A\left\langle t_{i}^{(0)}\right\rangle$ is an inclusion map, $i_{0}(a)=a, i_{0}$ is an involutive algebra homomorphism and $\pi_{0} i_{0}(a)=\pi_{0}(a)=f(a)$. Hence, diagram (2.5) is commutative and π_{0} is surjective.
Let $j_{0}: R^{(0)} \rightarrow A$ be the unique homomorphism involutive algebra restricting to the identity on A and mapping the $t_{n}^{(0)}$ to zero. $R^{(0)}$ is a DG involutive k-algebra: $\left(R^{(0)}\right)_{0}=R^{(0)}, i=0,\left(R^{(0)}\right)_{i}=0, i>0, \partial^{R^{(0)}} B_{i_{j}}^{(0)}=0$. The algebra $R^{(0)}$ is free over the homomorphism $i_{0}: A \rightarrow R^{(0)}$ since $R^{(0)}=A\left\langle t^{(0)}\right\rangle$.
Second step. We construct the second commutative diagram

where $R^{(1)}$ is a free algebra over i_{1} and π_{1} is an involutive surjection. Choose a system $\mathscr{C}_{j}^{(1)}$ of generators of $\operatorname{ker} \pi_{0}$ which is closed under the involution. Let $t_{j}^{(1)}$ be indeterminates which are in bijection with the $\mathscr{C}_{j}^{(1)}$. Define $R^{(1)}=A\left\langle t_{i}^{(0)}, t_{j}^{(1)}\right\rangle$, where $t_{i}^{(0)}$ is defined above. Suppose that $\beta_{j}^{(1)}$ denotes $t_{j}^{(1)}$ or $\left(t_{j}^{(1)}\right)^{*}$. The homomorphism π_{1} is defined to be the unique homomorphism of involutive algebra $R^{(1)} \rightarrow B$ restricting to π_{0} on $R^{(0)}$ and sending $t_{j}^{(1)}$ to 0 . We can see, from the above discussion, that the homomorphism π_{1} can be defined as π_{0} and that π_{1} is surjective since $\pi_{1}\left(\beta_{1}^{(0)}\right)=\mathscr{C}_{i}$, $\pi_{1}\left(\beta_{j}^{(1)}\right)=0$. The homomorphism $i_{1}: A \rightarrow A\left\langle t_{i}^{(0)}, t_{j}^{(1)}\right\rangle$ is inclusion. The diagram (2.6) is commutative since $\left(\pi_{1} i_{1}\right)(a)=\pi_{1}(a)=f(a)$. The homomorphism j_{1} is defined to be unique homomorphisms: $R^{(1)} \rightarrow A$, of involutive algebras restricting to identity on A and mapping $t_{i}^{(1)}$ to zero. The algebra $R^{(1)}=A\left\langle t_{i}^{(0)}, t_{j}^{(1)}\right\rangle$ is free over i_{1}. Finally, we have a differential graded algebra

$$
\begin{equation*}
R^{(1)}=\left(R^{(1)}\right)_{0} \oplus\left(R^{(1)}\right)_{0} \oplus \cdots, \quad \operatorname{deg} \beta_{i}^{(1)}=0, \quad \operatorname{deg} \beta_{j}^{(1)}=1 . \tag{2.7}
\end{equation*}
$$

Note that the algebra $R^{(1)}$ also has a universal property with respect to derivations (not only homomorphism). This property should be used to define the differential. The differential $\partial^{R^{(1)}}$ of $R^{(1)}$ is the unique derivation on $R^{(1)}$ satisfying the graded Leibniz rule and commuting with the involution which restricts to zero on $R^{(1)}$ and sends $t_{j}^{(1)}$ to $\mathscr{C}_{j}^{(1)}$. So, $\partial^{R^{(1)}} \beta_{i}^{(0)}=0, \partial^{R^{(1)}} \beta_{i}^{(0)}=\mathscr{C}_{j}^{(1)} \in \operatorname{ker} \pi_{0}, \partial_{i}^{R^{(1)}}=0, i>1$.
In the same manner, we can construct the commutative diagram

where $R^{(2)}=A\left\langle t_{i}^{(0)}, t_{j}^{(1)}, t_{k}^{(2)}\right\rangle$ is a DG algebra, free over $i_{2}, R^{(2)}=\left(R^{(2)}\right)_{0} \oplus\left(R^{(2)}\right)_{1} \oplus$ $\left(R^{(2)}\right)_{2} \oplus \cdots, \operatorname{deg} \beta_{i}^{(0)}=0, \operatorname{deg} \beta_{j}^{(1)}=1, \operatorname{deg} \beta_{k}^{(2)}=2$, the differential of algebra $R^{(2)}$ is also defined by using a universal property and, hence, $\partial_{0}^{R^{(2)}} \beta_{i}^{(0)}=0, \partial_{1}^{R^{(2)}} \beta_{j}^{(0)}=\mathscr{C}_{j}^{(1)}$, $\partial_{1}^{R^{(2)}} \beta_{j}^{(2)}=\mathscr{L}_{k}^{(2)}, \partial_{i}^{R^{(2)}}=0, i>2$.
Consequently, we can construct an involutive algebra $R^{(i)}, i \geq 0$ with the following commutative diagram:

where π_{i} is an involutive surjection, $i \geq 0, i_{n}=P_{n-1} \circ \cdots \circ P_{0} \circ i_{0}$ is an inclusion map from A to $R^{(n)}, P_{i}$ is also an inclusion map from

$$
\begin{equation*}
P_{i}: A\left\langle t_{m_{0}}^{(0)}, t_{m_{1}}^{(1)}, \ldots, t_{m_{i}}^{(i)}\right\rangle \quad \text { to } \quad A\left\langle t_{m_{0}}^{(0)}, t_{m_{1}}^{(1)}, \ldots, t_{m_{i}}^{(i)}, t_{m_{i}+1}^{(i+1)}\right\rangle \tag{2.10}
\end{equation*}
$$

Define $i_{n}=q_{n} \circ \cdots \circ q_{i} \circ j_{0}$, where q_{n} is the projection of the map from $A\left\langle t_{m_{0}}^{(0)}, t_{m_{1}}^{(1)}, \ldots\right.$, $\left.t_{m_{i}}^{(i)}\right\rangle$ on $A\left\langle t_{m_{0}}^{(0)}, t_{m_{1}}^{(1)}, \ldots, t_{m_{i}}^{(i)}, t_{m_{i+1}}^{(i+1)}\right\rangle$. The diagram (2.9) is commutative since $i_{n+1}\left(\beta_{i}^{(n)}\right)=$ $\pi_{n}\left(\beta_{i}^{(n)}\right)=0, n \geq 0$. Define $R=\lim R_{n}, \pi=\lim \pi_{n}, i=\lim i_{n}, j=\lim j_{n}$. Then the DG algebra R satisfies the items of Lemma 2.2 since
(1) $\pi=\lim i_{n}$ is an involutive surjection, the diagram

is commutative since $i(a)=a, \pi(a)=f(a)$.
(2) π is a quasi-isomorphism of DG algebras

where $\partial_{i}^{R}=\lim \partial_{i}^{R},(R)_{0}=\operatorname{ker}(\pi)_{0}=B, \operatorname{Im} \partial^{R}=\operatorname{ker} \partial_{0}^{R}$, i.e., $\mathscr{H}_{0}(R)=B, \mathscr{H}_{i}(R)=0$.
(3) The DG involutive algebra R is free over the homomorphism $i: A \rightarrow R$ since $R=\langle E\rangle, E$ is an involutive vector space generated by the system

$$
\begin{equation*}
\left\{t_{i_{0}}^{(0)}, t_{i_{1}}^{(1)}, \ldots, t_{i_{n}}^{(n)}, \ldots\right\} . \tag{2.13}
\end{equation*}
$$

3. The relative dihedral homology. In this part, we define the relative dihedral homology and study its properties. Let f be a morphism of involutive algebras A and B over a field K with characteristic zero. Let R_{f}^{B} be a free involutive algebra resolution of algebra B over f and, for $r_{1}, r_{2} \in R_{f}^{B}$, let $\left[r_{1}, r_{2}\right]=r_{1} r_{2}-(-1)^{\left|r_{1}\right|\left|r_{2}\right|} r_{2} r_{1}$, where $\left|r_{i}\right|=$ $\operatorname{deg} r_{i}, i=1,2$. Let $\mathscr{C}=\left[R_{f}^{B}, R_{f}^{B}\right]$ be the linear space generated by $\left[r_{1}, r_{2}\right], r_{1}, r_{2} \in R_{f}^{B}$. It is clear that, $\mathscr{C}=\left[R_{f}^{B}, R_{f}^{B}\right]$ is a K-submodule of a K-module R_{f}^{B}. We construct the complex $\left(\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\epsilon}\right)\right)$, where $r^{\epsilon}(P)=\epsilon(-1)^{|P|(|P|-1) / 2} P^{*}$, $*$ is an involutive on $R_{f}^{B}, \epsilon= \pm 1$. It is clear, from the definition of R_{f}^{B}, that $\operatorname{Im}\left(1-r^{\epsilon}\right)$ is a subcomplex of R_{f}^{B}. We have

$$
\begin{align*}
\partial\left[r_{1} r_{2}\right] & =r_{1} r_{2}-(-1)^{\left|r_{1}\right|\left|r_{2}\right|} r_{2} r_{1} \\
& =\partial r_{1} r_{2}+(-1)^{\left|r_{1}\right|} r_{1} \partial r_{2}-(-1)^{\left|r_{1}\right|\left|r_{2}\right|}\left(\partial r_{2} r_{1}+(-1)^{\left|r_{2}\right|} r_{2} \partial r_{1}\right) \\
& =\partial r_{1} r_{2}-(-1)^{\left|r_{2}\right|\left(\left|r_{1}\right|+1\right)} r_{2} \partial r_{1}+(-1)^{\left|r_{1}\right|}\left(r_{1} \partial r_{2}-(-1)^{\left|r_{1}\right|\left(\left|r_{2}\right|+1\right)} \partial r_{2} r_{1}\right) \tag{3.1}\\
& =\left[\partial r_{1}, r_{2}\right]+(-1)^{\left|r_{1}\right|}\left[r_{1}, \partial r_{2}\right],\left|\partial r_{i}\right|=\left|r_{i}\right|-1, \quad i=1,2 .
\end{align*}
$$

Then $\left[R_{f}^{B}, R_{f}^{B}\right]$ is a subcomplex in R_{r}^{B}. Therefore, the chain complex of the K-module $\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\epsilon}\right)$ is a subcomplex of R_{f}^{B}.
Definition 3.1. Let $f: A \rightarrow B$ be an involutive K-algebra (char $K=0$) homomorphism, R_{f}^{B} be a free involutive algebra resolution of algebra B over f. Then the relative dihedral homology is defined as follows:

$$
\begin{equation*}
\operatorname{\epsilon H\mathscr {L}}_{i}(A \xrightarrow{\stackrel{f}{\longrightarrow}} B)=\mathscr{H}_{i}\left(\frac{R_{f}^{B}}{\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\epsilon}\right)}\right) . \tag{3.2}
\end{equation*}
$$

The main properties of the relative dihedral homology are submitted in Theorems 3.2, 3.6, and 3.7.

Theorem 3.2. Let A be an involutive algebra. Then $\epsilon \mathscr{H}_{i}(A \rightarrow 0)=\epsilon_{\mathscr{E}}{ }_{i-1}(A)$, where $\epsilon_{\mathscr{H}}{ }_{i}(A)$ is the dihedral homology of k-algebra $A(\operatorname{char}(k)=0)$.

Proof. To do this, we need the following definition and lemmas.
Definition 3.3. The K-algebra $A\langle t\rangle$, generated by the elements $a_{0} t a_{1} t \cdots t a_{n}$, $n \geq 0$, can be considered as an involutive DG algebra by requiring that the morphism $A \rightarrow A\langle t\rangle$ is a morphism of involutive differential graded algebras (A is viewed as a DG algebra concentrated in degree 0) and that $\operatorname{deg} t=1, \partial t=0$, and $t^{*}=t$.

Lemma 3.4. The algebra $A\langle t\rangle$ is splitable and is a free involutive algebra resolution of the algebra $B=0$ over the homomorphism $A \rightarrow 0$.

Proof. Define the following chain complex

$$
\begin{equation*}
A \stackrel{\partial}{-} A t A \stackrel{\partial}{-} A t A t A \stackrel{\partial}{\leftrightarrows} \cdots \stackrel{\partial}{-} A t \cdots t A \stackrel{\partial}{\leftrightarrows} \cdots, \tag{3.3}
\end{equation*}
$$

where $A t \cdots t A(t-n$-times) is a K-module and the boundary operator ∂ is given by

$$
\begin{align*}
\partial\left(a_{0} t a_{1} t \cdots t a_{n-1} t a_{n}\right) & =\sum_{i=0}^{n-1}(-1)^{i} a_{0} t a_{1} t \cdots t a_{i}(\partial t) a_{i+1} t \cdots t a_{n} \\
& =\sum_{i=0}^{n-1}(-1)^{i} a_{0} t a_{1} t \cdots t\left(a_{i} a_{i+1}\right) t \cdots t a_{n} \tag{3.4}
\end{align*}
$$

Note that the differential ∂ in $a\langle t\rangle$ is equivalent to the operator $\mathscr{C}_{n}^{\prime}: C_{n}(A) \rightarrow C_{n-1}(A)$ (see [4]), defined by

$$
\begin{equation*}
\mathscr{C}_{n}^{\prime}\left(a_{0} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n} \tag{3.5}
\end{equation*}
$$

Following [4], the complex ($\left.C_{n}(A), \mathscr{C}_{n}^{\prime}\right)$ is splitable and so the complex $A\langle t\rangle$ is also splitable, that is, $\mathscr{H} .(A\langle t\rangle)=0$. Therefore, the algebra $A\langle t\rangle$ is a free involutive algebra resolution of the algebra $B=0$ over the homomorphism $A \rightarrow 0$.

Lemma 3.5. The complex $A\langle t\rangle /[A, A\langle t\rangle]$ is the standard simplicial (Hochschild) complex.

Proof. Consider the factor complex $A\langle t\rangle /[A, A\langle t\rangle]$. The complex $A\langle t\rangle /[A, A\langle t\rangle]$ is generated by the elements $a_{0} t a_{1} t \cdots a_{n-1} t$, since $a_{0} t a_{1} t \cdots t a_{n-1} t a_{n}=a_{n} a_{0} \times$ $t a_{1} t \cdots t a_{n-1} t(\bmod [A, A\langle t\rangle])$. The action of the differential ∂ on the complex $A\langle t\rangle /[A, A\langle t\rangle]$ is given by

$$
\begin{align*}
\partial\left(a_{0} t a_{1} t \cdots t a_{n-1} t a_{n}\right)= & \sum_{i=0}^{n-1}(-1)^{i} a_{0} t a_{1} t \cdots t\left(a_{i} a_{i+1}\right) t \cdots a_{n-1} t a_{n} t \\
& +(-1)^{n} a_{0} t a_{1} t \cdots a_{n-1} t a_{n} \\
= & \sum_{i=0}^{n-1}(-1)^{i} a_{0} t a_{1} t \cdots t\left(a_{i} a_{i+1}\right) t \cdots a_{n-1} t a_{n} t \tag{3.6}\\
& +(-1)^{n} a_{n} a_{0} t a_{1} t \cdots a_{n-1} t .
\end{align*}
$$

Consider the complex

$$
\begin{equation*}
A \stackrel{\mathrm{id}}{\leftrightarrows} A \stackrel{\mathscr{\&}}{-} A^{\otimes 2} \stackrel{\mathscr{C}}{-} \cdots \frac{\mathscr{\&}}{-} A^{\otimes n} \stackrel{\mathscr{C}}{-} \cdots, \tag{3.7}
\end{equation*}
$$

where \mathscr{C} is the differential in the standard Hochschild complex (see [4]). Since the space $(A\langle t\rangle /[A, A\langle t\rangle])_{n+1}$ identifies with the space

$$
\begin{equation*}
A^{\otimes n+1}: a_{0} t a_{1} \cdots t a_{n} t \rightarrow a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n} \tag{3.8}
\end{equation*}
$$

and the differential in $A\langle t\rangle /[A, A\langle t\rangle]$ identifies with the differential in the standard Hochschild complex, $A\langle t\rangle / A+[A, A\langle t\rangle]$ is the Hochschild (simplicial) complex of algebra A.

Now, we prove Theorem 3.2. Consider the factor complex: $A\langle t\rangle /[A\langle t\rangle, A\langle t\rangle]+\operatorname{Im}(1-$ r^{ϵ}), such that

$$
\begin{align*}
a_{0} t a_{1} t \cdots t a_{n-1} t & =(-1)^{n} a_{n} t a_{0} t a_{1} t \cdots a_{n-1} t, \\
a_{0} t a_{1} t \cdots t a_{n-1} t & =(-1)^{n(n+1) / 2} \epsilon t a_{n}^{*} t a_{n-1}^{*} \cdots t a_{1}^{*} t a_{0}^{*} \tag{3.9}\\
& =(-1)^{n(n+1) / 2} \epsilon t a_{0}^{*} t a_{n}^{*} t \cdots t a_{1}^{*} t,
\end{align*}
$$

where $\epsilon= \pm 1$, $\operatorname{deg} a_{0} t a_{1} t \cdots t a_{n-1} t=n, \operatorname{deg}\left(a_{n} t\right)=1, \operatorname{deg}\left(a_{n}^{*}\right)=0, \operatorname{deg} a_{0} t \cdots a_{n} t=$ $n+1$. The dihedral homology of $\langle t\rangle$ is the homology of the factor complex $A\langle t\rangle /[A\langle t\rangle$, $A\langle t\rangle]+\operatorname{Im}\left(1-r^{\epsilon}\right)$. By factoring $A\langle t\rangle$, first by the subcomplex $A \leftarrow 0 \leftarrow 0 \leftarrow \cdots$ and then by the subcomplex $[A\langle t\rangle, A\langle t\rangle]+\operatorname{Im}\left(1-r^{\epsilon}\right)$, we get a homomorphism ${ }^{\epsilon} C \mathscr{D} .(A \rightarrow$ $0) \rightarrow{ }^{\epsilon} C \mathscr{D} \cdot-1(A)$, which induces an isomorphism in the dihedral homology groups $\epsilon_{\mathscr{H}}{ }_{i}(A \rightarrow 0) \rightarrow{ }^{\epsilon} \mathscr{H}_{-1}(A)$.

THEOREM 3.6. Let $f: A \rightarrow B$ be a homomorphism of involutive algebras over a field K (char $K=0$). Then the relative dihedral homology $\operatorname{Heg}_{i}(A \xrightarrow{f} B)$ does not depend on the choice of the resolution.

Proof. The homomorphism f induces a homomorphism of chain complexes

$$
\begin{equation*}
f .:^{\epsilon} C \mathscr{D} .(A) \rightarrow{ }^{\epsilon} C \mathscr{D} \cdot(B), \tag{3.10}
\end{equation*}
$$

where ${ }^{\epsilon} C \mathscr{D}$. (A) is the dihedral complex. Consider the diagram

where R_{f}^{B} is defined above, i is the inclusion map. The idea of the proof is to show that the cone of the map i is quasi-isomorphic to an arbitrary category (see [2]), to the complex: $R_{f}^{B} /\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\epsilon}\right)$. Since

$$
\mathscr{H}_{i}\left(R_{f}^{B}\right)= \begin{cases}B, & i=0, \tag{3.12}\\ 0, & i>0,\end{cases}
$$

then the isomorphism $\pi .:{ }^{\epsilon} C \mathscr{D} .\left(R_{f}^{B}\right) \rightarrow{ }^{\epsilon} C \mathscr{D} .(B)$ induces an isomorphism of the homology of these complexes. Since $i_{\text {. }}:{ }^{\epsilon} C \mathscr{D} .(A) \rightarrow{ }^{\epsilon} C \mathscr{D} .\left(R_{f}^{B}\right)$ is an inclusion, then $M\left(i_{\bullet}\right) \approx{ }^{\epsilon} C \mathscr{D} .\left(R_{f}^{B}\right) /{ }^{\epsilon} C \mathscr{D}(A)$, where $M\left(i_{\bullet}\right)$ is the cone of the map i (see [6]).
Note that the symbol \approx always denotes a quasi-isomorphism. It is clear, from the above discussion, that the following diagram is commutative

and, hence, $M\left(f_{\bullet}\right) \approx{ }^{\epsilon} C \mathscr{D} .\left(R_{f}^{B}\right) /{ }^{\epsilon} C \mathscr{D} .(A)$. Following [1], we have $C C .\left(R_{f}^{B}\right) / C C .(A) \approx$ $R_{f}^{B} / A+\left[R_{f}^{B}, R_{f}^{B}\right]$ and by using the spectral sequence $E_{i j}^{2}=\epsilon \mathscr{H} \cdot\left(\mathbb{Z} / 2, \mathscr{H} C_{j}\left(R_{f}^{B}\right)\right)=$ ${ }^{\epsilon} \mathscr{H} D_{i+j}\left(R_{f}^{B}\right)$, we have

$$
\begin{equation*}
\frac{{ }^{\epsilon} C \mathscr{D} \cdot\left(R_{f}^{B}\right)}{{ }^{\epsilon} C \mathscr{D} \cdot(A)} \approx \frac{R_{f}^{B}}{A+\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\epsilon}\right)} . \tag{3.14}
\end{equation*}
$$

So, $M\left(f_{\mathbf{\bullet}}\right) \approx R_{f}^{B} / A+\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\epsilon}\right)$. Then $\mathscr{H}_{\mathscr{D}}^{i}(A \xrightarrow{f} B)$ does not depend on the choice of R_{f}^{B}.

Theorem 3.7. Let A, B, and C be involutive algebras. Then the following sequence $A \xrightarrow{f} B \xrightarrow{g} C$ induces the long exact sequence of the relative dihedral homology

$$
\begin{equation*}
\cdots \rightarrow \operatorname{\epsilon \mathscr {X}}_{i}(A \xrightarrow{f} B) \rightarrow^{\epsilon \mathscr{H} \mathscr{D}_{i}}(A \xrightarrow{g \circ f} C) \rightarrow \operatorname{\epsilon \mathscr {L}}_{i}(B \xrightarrow{g} C) \rightarrow^{\epsilon \mathscr{H} \mathscr{D}_{i-1}}(A \xrightarrow{f} B) \rightarrow \cdots . \tag{3.15}
\end{equation*}
$$

Proof. In Theorem 3.6, it has been proved that any homomorphism $f: A \rightarrow B$ of involutive algebras in an arbitrary category is equivalent to an inclusion $i: A \rightarrow R_{f}^{B}$

Then, for an arbitrary sequence $A \xrightarrow{f} B \xrightarrow{g} C$ of involutive algebras, we have the following complex

Consider the following sequence of mapping cones

$$
\begin{equation*}
0 \longrightarrow M\left(i_{\bullet}\right) \longrightarrow M\left(i_{\bullet}^{\prime}\right) \longrightarrow M\left(i_{\bullet}^{\prime} 0 i_{\bullet}\right) \longrightarrow 0 \tag{3.18}
\end{equation*}
$$

In general, the sequence (3.18) is not exact. In fact, the composition of two morphisms will be non zero. However, the cone over the morphism $M\left(i_{\mathbf{\bullet}}\right) \rightarrow M\left(i_{\text {。 }}^{\prime}\right)$ is canonically homotopy equivalent to $M\left(i_{\mathbf{\prime}} 0 i_{\text {. }}\right)$. So, we get the following long exact sequence of the relative dihedral homology

$$
\begin{align*}
\cdots & \rightarrow^{\epsilon} \mathscr{H}_{i}(A \xrightarrow{f} B) \rightarrow^{\epsilon} \mathscr{H}_{\mathscr{D}_{i}}(A \xrightarrow{g \circ f} C) \\
& \rightarrow \epsilon \mathscr{H P}_{i}(B \xrightarrow{g} C) \rightarrow^{\epsilon} \mathscr{H}_{i-1}(A \xrightarrow{f} B) \longrightarrow \cdots . \tag{3.19}
\end{align*}
$$

Acknowledgement. I would like to express my thanks to L. Debnath and the referee for their valuable comments and help.

References

[1] B. L. Feigin and B. L. Tsygan, Additive K-theory, K-theory, arithmetic and geometry (Berlin, New York), Lecture Notes in Math., vol. 1289, Springer, 1987, pp. 67-209. MR 89a:18017. Zbl 635.18008.
[2] R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, no. 20, Springer-Verlag, Berlin, New York, 1966. MR 36\#5145. Zbl 212.26101.
[3] J.-L. Loday, Homologies diedrale et quaternionique. [Dihedral and quaternionic homologies], Adv. in Math. 66 (1987), no. 2, 119-148 (French). MR 89e:18024. Zbl 627.18006.
[4] J.-L Loday, Cyclic homology, Fundamental Principles of Mathematical Sciences, vol. 301, Springer-Verlag, Berlin, 1992, Appendix E by Maria O. Ronco. MR 94a:19004. Zbl 780.18009.
[5] J. M. Lodder, Dihedral homology and homotopy fixed point sets, Algebraic topology (Providence, RI) (M. C. Tangora, ed.), Contemp. Math., vol. 146, Amer. Math. Soc., 1993, pp. 215-224. MR 94e:55014. Zbl 794.55006.
[6] S. MacLane, Homology, Springer-Verlag, Berlin, New York, 1967. MR 502285.
Gouda: Department of Mathematics, Faculty of Science, South Valley University, Aswan, EGYPT

