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The objective of this paper is to introduce a distance measure for intuitionistic fuzzy numbers.
Firstly the existing distance measures for intuitionistic fuzzy sets are analyzed and compared with
the help of some examples. Then the new distance measure for intuitionistic fuzzy numbers is
proposed based on interval difference. Also in particular the type of distance measure for triangle
intuitionistic fuzzy numbers is described. The metric properties of the proposed measure are also
studied. Some numerical examples are considered for applying the proposed measure and finally
the result is compared with the existing ones.

1. Introduction

The theory of fuzzy set introduced by Zadeh [1] in 1965 has achieved successful applications
in various fields. This is because this theory is an extraordinary tool for representing
human knowledge, perception, and so forth. Nevertheless, Zadeh himself established in 1973
knowledge which is better represented by means of some generalizations of fuzzy sets. The
so-called extensions of fuzzy set theory arise in this way.

Two years after the concept of fuzzy set was proposed, it was generalized by
Gogeun and L-fuzzy set [2] was developed. There are also some other extensions of fuzzy
sets. Out of several higher-order fuzzy sets, the concept of intuitionistic fuzzy sets (IFSs)
proposed by Atanassov [3] in 1986 is found to be highly useful to deal with vagueness.
The major advantage of IFS over fuzzy set is that IFSs separate the degree of membership
(belongingness) and the degree of nonmembership (nonbelongingness) of an element in the
set. Then in 1993, Gau and Buehrer [4] introduced the concept of vague sets, which is another
generalization of fuzzy sets. Bustince and Burillo [5] pointed out that the notion of vague set
is the same as that of IFSs. Another well-known generalization of ordinary fuzzy sets is the
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concept of interval-valued fuzzy set [6–10]. There is a strong relationship between interval-
valued fuzzy sets and IFSs.

Among various extensions of fuzzy sets, IFSs have captured the attention of many
researchers in the last few decades. This is mainly due to the fact that IFSs are consistent
with human behavior, by reflecting and modeling the hesitancy present in real life situations.
Therefore in practice, it is realized that human expressions like perception, knowledge, and
behavior are better represented by IFSs rather than fuzzy sets. IFS theory is applied to many
different fields such as decision making, logic programming, medical diagnosis, and pattern
recognition.

In the application of fuzzy sets as well as IFSs, similarity measures play a very
important role. But the similarity measures bear a relation to distances in many cases.
Therefore the study about the distance measures is very much significant. Developing
distance measures is one of the fundamental problems of fuzzy set theory. A lot of research
has been done to construct the distance measure between fuzzy sets [11]. Recently some
researchers have focused their attention to compute the distances between fuzzy numbers
[12–18] also. As important contents in fuzzy mathematics, distance measures between IFSs
have also attracted many researchers. Several researchers [19–24] focused on computing the
distance between IFSs, which we discuss briefly later in Section 2.4.

It has been observed that all the papers discussed above considered distances between
IFSs on finite universe of discourses only. But construction of distance measures between IFSs
for countable and uncountable universe of discourse is also necessary. With this point of view,
the concept of intuitionistic fuzzy number (IFN) [25–29] with the universe of discourse as the
real line was introduced and studied.

Grzegorzewski [28] introduced two families of metrics in a space of IFNs. A method
of ranking IFNs based on these metrics was also suggested and investigated in that work.
But this distance measure is not effective for some cases. The distance measures proposed
by Grzegorzewski [28] compute crisp distance measures for IFNs. But the well-known fact
that needs to be remembered here is that [17] “if we are not certain about the numbers
themselves, how can we be certain about the distances among them.” This is the reason why
fuzzy distance measure for measuring the distance measure between two fuzzy numbers
came into the field. For the same reason it is not reasonable to define crisp distance
between IFNs. Our intuition says that the uncertainty or hesitation or lack of knowledge
presented in defining IFN should inherently be involved in their corresponding distance
measures. Now it can be assumed that an IFN is a collection of points with different
degrees of membership and corresponding degree of nonmembership. Therefore the distance
between two IFNs is nothing but the distances of pairwise membership and nonmembership
functions of the respective points. With this point of view in this paper a new approach is
introduced to calculate the distance measure between two IFNs. Here the distance measure is
proposed based on interval difference. It is worth noting that the proposed distance measures
between IFNs are direct generalizations of the results obtained for the classical fuzzy
numbers.

The paper is organized as follows. Section 2 briefly describes the basic definition and
notations of IFS, IFN and LR-type IFN. Also some preliminary result is presented in this
section. A short review of the existing distance measures is described in Section 2.4. Section 3
introduces the new distance measure for IFNs. The distance measure for IFNs and TIFNs
is derived in Section 3.1 and Section 3.2, respectively. The metric properties are studied in
Section 3.3. In Section 4, the proposed distance method is illustrated with the help of some
numerical examples. The paper is concluded in Section 5.
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2. Preliminaries

2.1. Intuitionistic Fuzzy Sets—Basic Definition and Notation

Let X denote a universe of discourse. Then a fuzzy set A/ in X is defined as a set of ordered
pairs:

A/ =
{〈
x, μA/(x)

〉
: x ∈ X

}
, (2.1)

where μA/ : X → [0, 1] and μA/(x) is the grade of belongingness of x into A/ [1].
Thus automatically the grade of nonbelongingness of x into A/ is equal to 1 − μA/(x).
However, while expressing the degree of membership of any given element in a fuzzy set,
the corresponding degree of nonmembership is not always expressed as a compliment to
1. The fact is that in real life, the linguistic negation does not always identify with logical
negation [21]. Therefore Atanassov [19, 30–33] suggested a generalization of classical fuzzy
set, called IFS.

An IFS A in X is given by a set of ordered triples:

A =
{〈
x, μA(x), νA(x)

〉
: x ∈ X

}
, (2.2)

where μA, νA : X → [0, 1] are functions such that 0 ≤ μA(x) + νA(x) ≤ 1 for all x ∈ X.
For each x the numbers μA(x) and νA(x) represent the degree of membership and degree of
nonmembership of the element x ∈ X to A ⊂ X, respectively.

It is easily seen that AIFS = {〈x, μA(x), 1 − μA(x)〉 : x ∈ X} is equivalent to (2.1); that
is, each fuzzy set is a particular case of the IFS. We will denote a family of fuzzy sets in X by
FS(X), while IFS(X) stands for the family of all IFSs in X.

For each element x ∈ X we can compute, so called, the intuitionistic fuzzy index of x
in A defined as follows:

πA(x) = 1 − μA(x) − νA(x). (2.3)

The value of πA(x) is called the degree of indeterminacy (or hesitation) of the element x ∈ X
to the IFS A. It is seen immediately thatπA(x) ∈ [0, 1]. IfA ∈ FS(X), thenπA(x) = 0 for all x ∈
X.

2.2. Intuitionistic Fuzzy Numbers

Different research works [25–29] were done over Intuitionistic Fuzzy Numbers (IFNs).
Taking care of those research works in this section the notion of IFNs is studied. IFN is the
generalization of fuzzy number and so it can be represented in the following manner.

Definition 2.1 (Intuitionistic fuzzy numbers). An intuitionistic fuzzy subset A =
{〈x, μA(x), νA(x)〉 : x ∈ X} of the real line R is called an IFN if the following holds.

(i) There exist m ∈ R, μA(m) = 1, and νA(m) = 0, (m is called the mean value of A).

(ii) μA is a continuous mapping from R to the closed interval [0, 1] and for all x ∈ R
the relation 0 ≤ μA(x) + νA(x) ≤ 1 holds.



4 International Journal of Mathematics and Mathematical Sciences

(iii) The membership and nonmembership function of A is of the following form:

μA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < x ≤ m − α,

f1(x) for x ∈ [m − α,m],

1 for x = m,

h1(x) for x ∈
[
m,m + β

]
,

0 for m + β ≤ x <∞,

(2.4)

where f1(x) and h1(x) are strictly increasing and decreasing functions in [m−α,m]
and [m,m + β], respectively:

νA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for −∞ ≤ x ≤ m − α′,

f2(x) for x ∈ [m − α′, m]; 0 ≤ f1(x) + f2(x) ≤ 1,

0 for x = m

h2(x) for x ∈
[
m,m + β′

]
; 0 ≤ h1(x) + h2(x) ≤ 1,

1 for m + β′ ≤ x ≤ ∞.

(2.5)

Here m is the mean value of A. α and β are called left and right spreads
of membership function μA(x), respectively. α′ and β′ represented left and
right spreads of nonmembership function νA(x), respectively. Symbolically the
intuitionistic fuzzy number is represented as AIFN = (m;α, β;α′, β′).

It is to be noted here that the IFN A = {〈x, μA(x), νA(x)〉 : x ∈ R}, that is, AIFN =
(m;α, β;α′, β′) is a conjunction of two fuzzy numbers: A+ = (m;α, β) with a membership
function μA+(x) = μA(x) and A− = (m;α′, β′) with a membership function μA−(x) = 1 − νA(x).

Definition 2.2 (LR-type Intuitionistic fuzzy number). An IFN AIFN is LR-type IFN such that
for membership and nonmembership functions 0 ≤ μA(x) + νA(x) ≤ 1 holds and may be
defined as follows.

Membership function is of the form as follows:

μA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < x ≤ m − α,

L

(
m − x
α

)
for m − α ≤ x ≤ m, α > 0,

1 for x = m,

R

(
x −m
β

)
for m ≤ x ≤ m + β, β > 0,

0 for m + β ≤ x <∞.

(2.6)
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Nonmembership function is of the form:

νA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for −∞ ≤ x ≤ m − α′,

1 − L
(
m − x
α/

)
for m − α′ ≤ x ≤ m, α′ > 0,

0 for x = m,

1 − R
(
x −m
β/

)

for m ≤ x ≤ m + β′, β′ > 0,

1 for m + β′ ≤ x ≤ ∞.

(2.7)

Provided L(1) = R(1) = 0, L is for left, and R is for right reference, m is the mean value of
A. αand β are called left and right spreads of membership functions, respectively. α′ and β′

represented left and right spreads of nonmembership functions, respectively. Symbolically,
we write AIFN = (m;α, β;α′, β′)LR. Here for L(x) and R(x) different functions may be chosen.
For example, L(x) = R(x) = max(0, 1 − |x|p), p ≥ 0, and so forth (Figure 1).

Definition 2.3 (Triangle Intuitionistic fuzzy number). An IFN AIFN = (m; α, β; α′, β′) may
be defined as a triangle intuitionistic fuzzy number (TIFN) if and only if its membership and
nonmembership functions take the following form:

μA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < x ≤ m − α,

1 − m − x
α

for m − α ≤ x ≤ m, α > 0,

1 for x = m,

1 − x −m
β

for m ≤ x ≤ m + β, β > 0,

0 for m + β ≤ x <∞,

(2.8)

νA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for −∞ ≤ x ≤ m − α′,
m − x
α′

for m − α′ ≤ x ≤ m, α′ > 0,

0 for x = m,
x −m
β′

for m ≤ x ≤ m + β′, β′ > 0,

1 for m + β′ ≤ x ≤ ∞.

(2.9)

Now for a TIFN, we can prove the following result.

Proposition 2.4. Let one consider a TIFN of the form ATIFN = (m;α, β;α′, β′); then α′ > α and
β′ > β.

Proof. The membership and nonmembership functions of ATIFN is given above in (2.8) and
(2.9), respectively.
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Membership
function (μA)

Non-membership
function (vA)

m + β́m + βmm − αm − ά

1

Figure 1: The LR- representation of intuitionistic fuzzy number A

From (2.8) and (2.9), for m − α ≤ x ≤ m, we can write

vA(x) + 1 − m − x
α

≤ 1;
(
since μA(x) + νA(x) ≤ 1

)

⇐⇒ νA(x) ≤
m − x
α

;

⇐⇒ m − x
α′

≤ m − x
α

;

⇐⇒ (m − x)
(

1
α′
− 1
α

)
≤ 0.

(2.10)

Since x ≤ m, therefore the following can be written:

(
1
α′
− 1
α

)
≤ 0⇐⇒

(
α − α′

)
≤ 0⇐⇒ α ≤ α′. (2.11)

Similarly for m ≤ x ≤ m + β, we can write

νA(x) + 1 − x −m
β

≤ 1;
(
since μA(x) + νA(x) ≤ 1

)

⇐⇒ νA(x) ≤
x −m
β

;

⇐⇒ x −m
β′

≤ x −m
β

;

⇐⇒ (x −m)
(

1
β′
− 1
β

)
≤ 0.

(2.12)

Since x ≥ m, therefore the following can be written:

(
1
β′
− 1
β

)
≤ 0⇐⇒

(
β − β′

)
≤ 0⇐⇒ β ≤ β′. (2.13)

Therefore symbolically a TIFN is represented as ATIFN = (m; α, β;α′, β′ : α′ > α, β′ > β).
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Definition 2.5 (Positive Intuitionistic fuzzy number). (i) An IFN denoted as AIFN =
(m;α, β;α/, β/) is said to be positive if both m − α ≥ 0 and m − α′ ≥ 0.

(ii) A TIFN denoted as ATIFN = (m;α, β;α′, β′ : α′ > α, β′ > β) is called positive if
m − α′ ≥ 0 (follows from Proposition 2.4).

2.3. ε-Cut Representation of IFN

Let us consider an IFN AIFN = (m;α, β;α′, β′) defined on the real line R as described before.
The ε cut of IFN AIFN is defined by

Aε =
{〈
x, μA(x), νA(x)

〉
| μA(x) ≥ ε & νA(x) ≤ 1 − ε

}
∀ε ∈ [0, 1]. (2.14)

The ε cut representation of IFN AIFN generates the following pair of intervals and is denoted
by

[AIFN]ε =
{[
AL
μ(ε), A

R
μ (ε)
]
;
[
AL

1−ν(ε), A
R
1−ν(ε)

]}
, (2.15)

where the interval [AL
μ(ε), A

R
μ (ε)] is defined in the following way:

AR
μ (ε) =

⎧
⎨

⎩

sup
{
x | x ∈ με

}
if ε > 0,

sup
{
x | x ∈

[
m − α,m + β

]}
if ε = 0,

AL
μ(ε) =

⎧
⎨

⎩

inf
{
x | x ∈ με

}
if ε > 0,

inf
{
x | x ∈

[
m − α,m + β

]}
if ε = 0.

(2.16)

Here με is defined by με = {x | μA(x) ≥ ε}.
And in a similar manner the interval [AL

1−ν(ε), A
R
1−ν(ε)] can be defined as follows:

AL
1−ν(ε) =

⎧
⎨

⎩

inf {x | x ∈ vε} if ε > 0,

inf
{
x | x ∈

[
m − α′, m + β′

]}
if ε = 0,

AR
1−ν(ε) =

⎧
⎨

⎩

sup {x | x ∈ νε} if 1 − ε > 0,

sup
{
x | x ∈

[
m − α′, m + β′

]}
if 1 − ε = 0,

(2.17)

where νε is defined by νε = {x | νA(x) ≤ 1 − ε} = {x | 1 − νA(x) ≥ ε}.

2.4. Overview of the Existing Distance Measures

2.4.1. Notes on the Distance Measures for IFSs

Let us consider two A,B ∈ IFS(X) with membership functions μA(x), μB(x) and
nonmembership functions νA(x), νB(x), respectively.
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Atanassov [19] suggested the distance measures as follows.
The normalized Hamming distance dA(A,B) is

dA(A,B) =
1

2n

n∑

i=1

[∣∣μA(xi) − μB(xi)
∣
∣ + |νA(xi) − νB(xi)|

]
. (2.18)

The normalized Euclidean distance ρA(A,B) is

ρA(A,B) =

√√
√
√ 1

2n

n∑

i=1

[(
μA(xi) − μB(xi)

)2 + (νA(xi) − νB(xi))2
]
. (2.19)

Then in 2000, it was shown by Szmidt and Kacprzyk [20] that on computing distance
for IFSs, all the three parameters, the degree of membership μ, the degree of non membership
ν and the hesitation π describing IFSs, should be taken into account. And therefore they
modified the concept of distances proposed by Atanassov [19]. The definition of distances
presented by Szmidt and Kacprzyk [20] is given as following:

The normalized Hamming distance dSK(A,B) is

dSK(A,B) =
1

2n

n∑

i=1

[∣∣μA(xi) − μB(xi)
∣∣ + |νA(xi) − νB(xi)| + |πA(xi) − πB(xi)|

]
. (2.20)

The normalized Euclidean distance ρSK(A,B) is

ρSK(A,B) =

√√√
√ 1

2n

n∑

i=1

[(
μA(xi) − μB(xi)

)2 + (νA(xi) − νB(xi))2
]
+ (πA(xi) − πB(xi))2. (2.21)

Developing the above distance measures, Szmidt and Kacprzyk [20] claim that as their
distance measures for IFSs are calculated incorporating all the three parameters describing
IFSs, it reflects distances in three-dimensional spaces. On the other hand, the distance
measures proposed by Atanassov [19] are the orthogonal projections of the real distances.
And in this respect in their opinion their distance measures for IFSs are better than that of
Atanassov.

But Grzegorzewski [21] was not convinced with the point of view of Szmidt and
Kacprzyk [20]. And based on Hausdorff metric, Grzegorzewski [21] proposed another group
of distance measures for IFSs as follows.

Normalized Hamming distance dG(A,B) is

dG(A,B) =
1
n

n∑

i=1

max
{∣∣μA(xi) − μB(xi)

∣∣, |νA(xi) − νB(xi)|
}
. (2.22)
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The normalized Euclidean distance ρG(A,B) is

ρG(A,B) =

√√
√
√ 1
n

n∑

i=1

max
{(
μA(xi) − μB(xi)

)2
, (νA(xi) − νB(xi))2

}
. (2.23)

Obviously, the above distance measures proposed by Grzegorzewski [21] are easy for
application. But in reality it may not fit so well. For example, let us consider three IFSs
A,B,C ∈ IFS(X) where X = {x1} and using the notation in (2.2) IFSs A, B, and C are of
the following form: A = {〈x1, 1, 0〉}, B = {〈x1, 0, 1〉}, and C = {〈x1, 0, 0〉}. If we use the
ten-person-voting model to interpret, it would be noted that A = {〈x1, 1, 0〉} represents ten
personwho all vote for a person; B = {〈x1, 0, 1〉} represents ten persons who all vote against
him; whereas C = {〈x1, 0, 0〉} represents ten personswho all hesitate. So it is quite reasonable
for us to think that the difference between A and C is lesser than the difference between A
and B. But for the distances defined above, the difference between A and C is just equal to the
difference between A and B, which is not so reasonable for us. This is the shortcomings of the
distance measures proposed by Grzegorzewski [21].

Again in 2005, Wang and Xin [22] first with help of some examples had shown that
the distance measure proposed by Szmidt and Kacprzyk [20] is not reasonable for some cases
and then developed the following distance measures:

dWX(A,B) =
1
n

n∑

i=1

[∣∣μA(xi) − μB(xi)
∣∣ + |νA(xi) − νB(xi)|
4

+
max

(∣∣μA(xi) − μB(xi)
∣∣, |νA(xi) − νB(xi)|

)

2

]

,

(2.24)

ρ
p

WX(A,B) =
1
p√n

p

√√√
√

n∑

i=1

[∣∣μA(xi) − μB(xi)
∣∣

2
+
|νA(xi) − νB(xi)|

2

]p
. (2.25)

Though the above distance measures satisfy the properties of a distance measures, but in
practice it is realized that the second one is not suitable for some cases. For example, consider
three IFSs A,B,C ∈ IFS(X) where X = {x1} and A,B, and C are of the following form:
A = {〈x1, 1, 0〉}, B = {〈x1, 0, 0〉}, and C = {〈x1, 0.5, 0.5〉}. If we use the ten-person-voting
model to interpret, it would benoted that A = {〈x1, 1, 0〉} represents ten personswho all vote
for a person; B = {〈x1, 0, 0〉} represents ten person all hesitate; whereas C = {〈x1, 0.5, 0.5〉}
represents half of ten person all vote for a person and the rest vote against him; no one is
in hesitation. So it is quite reasonable for us to think that the difference between A and C is
lesser than the difference between A and B. But for the second distance defined above, the
difference between A and C is just equal to the difference between A and B, which is not so
reasonable for us. This is the shortcomings of the distance measure (2.25) proposed by Wang
and Xin [22].

Now in 2005, Huang et al. [23] suggested several distance measures for IFSs. At first
they developed a group of distance measures to unify the distances proposed by Atanassov
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[19] and Grzegorzewski [21]. After that they proposed the following group of distance
measures for IFSs:

dLW(A,B) =
1
n

∑n
i=1 2
(∣∣μA(xi) − μB(xi)

∣
∣ + |νA(xi) − νB(xi)|

)

2 +
(∣∣μA(xi) − μB(xi)

∣
∣ + |νA(xi) − νB(xi)|

) ,

ρLW(A,B) =
2
∑n

i=1
(∣∣μA(xi) − μB(xi)

∣
∣ + |νA(xi) − νB(xi)|

)

2n +
∑n

i=1
(∣∣μA(xi) − μB(xi)

∣
∣ + |νA(xi) − νB(xi)|

) ,

ρ′LW(A,B) =
2
∑n

i=1
(∣∣μA(xi) − μB(xi)

∣
∣p + |νA(xi) − νB(xi)|p

)1/p

(2n)1/p +
∑n

i=1
(∣∣μA(xi) − μB(xi)

∣
∣p + |νA(xi) − νB(xi)|p

)1/p .

(2.26)

In 2006, based on Lp metric Hung and Yang [24] defined the following distance measure:

d
p

HY(A,B) =
1
n

n∑

i=1

(
|μA(xi) − μB(xi)|p + |νA(xi) − νB(xi)|p

)1/p
. (2.27)

Now after analyzing the above four distance measures we can say that these measures only
reflect the difference between μA(x) and νA(x) and their influence to measure the distances;
they do not reflect the influence of degree of indeterminacy or hesitation.

So after a short review of the existing measures between IFSs, in our opinion, all the
measures have some advantages as well as some disadvantages. Therefore we cannot say
that one particular distance measure is the best and should replace others. In our opinion all
existing distance measures are valuable. From application point of view it can be said that
depending on the characteristics of the data and the specific requirements of the problem, we
need to decide what measure should be used.

However, after reviewing the existing measures it is seen that the distance measures
mentioned above calculate distance measures for IFSs of finite universe of discourse.
Therefore the problem of developing distance measures for IFNs was an open problem. Then
Grzegorzewski [28] investigated two families of metrics in space of IFNs as given in the next
section.

2.4.2. The Distance Measures between IFNs

Consider that A = {〈x, μA(x), νA(x)〉 : x ∈ R} and B = {〈x, μB(x), νB(x)〉 : x ∈ R} are two
intuitionistic fuzzy numbers. Now ε cut representation of the IFNs AIFN and BIFN is denoted
by

[AIFN]ε =
{[
AL
μ(ε), A

R
μ (ε)
]
;
[
AL

1−ν(ε), A
R
1−ν(ε)

]}
,

[BIFN]ε =
{[
BLμ(ε), B

R
μ (ε)
]
;
[
BL1−ν(ε), B

R
1−ν(ε)

]}
∀ε ∈ [0, 1].

(2.28)

Then Grzegorzewski [28] proposed the distance measures as follows.
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For 1 ≤ p ≤ ∞

d
p

G(A,B) =

(
1
4

∫1

0

∣
∣
∣AL

μ(ε) − BLμ(ε)
∣
∣
∣
p
dε +

1
4

∫1

0

∣
∣
∣AR

μ (ε) − BRμ (ε)
∣
∣
∣
p
dε

+
1
4

∫1

0

∣
∣
∣AL

1−ν(ε) − B
L
1−ν(ε)

∣
∣
∣
p
dε +

1
4

∫1

0

∣
∣
∣AR

1−ν(ε) − B
R
1−ν(ε)

∣
∣
∣
p
dε

)1/p

.

(2.29)

And for p =∞

d
p

G(A,B) =
1
4

sup
0<ε≤1

∣
∣
∣AL

μ(ε) − BLμ(ε)
∣
∣
∣ +

1
4

sup
0<ε≤1

∣
∣
∣AR

μ (ε) − BRμ (ε)
∣
∣
∣

+
1
4

sup
0<ε≤1

∣
∣∣AL

1−ν(ε) − B
L
1−ν(ε)

∣
∣∣ +

1
4

sup
0<ε≤1

∣
∣∣AR

1−ν(ε) − B
R
1−ν(ε)

∣
∣∣.

(2.30)

For 1 ≤ p ≤ ∞

ρ
p

G(A,B) = max

⎛

⎝
p

√∫1

0

∣∣AL
μ(ε) − BLμ(ε)

∣∣pdε ,
p

√∫1

0

∣∣AR
μ (ε) − BRμ (ε)

∣∣pdε,

p

√∫1

0

∣∣AL
1−ν(ε) − B

L
1−ν(ε)

∣∣pdε,
p

√∫1

0

∣∣AR
1−ν(ε) − B

R
1−ν(ε)

∣∣pdε

⎞

⎠.

(2.31)

And for p =∞

ρ
p

G(A,B) = max

{

sup
0<ε≤1

∣∣∣AL
μ(ε) − BLμ(ε)

∣∣∣, sup
0<ε≤1

∣∣∣AR
μ (ε) − BRμ (ε)

∣∣∣ ,

sup
0<ε≤1

∣∣∣AL
1−ν(ε) − B

L
1−ν(ε)

∣∣∣, sup
0<ε≤1

∣∣∣AR
1−ν(ε) − B

R
1−ν(ε)

∣∣∣

}

.

(2.32)

After reviewing the existing measures we realize the need to explore new points of view and
the need to develop new distance measures that contain more information if we want them to
be more logical. We believe that the distance between two uncertain numbers never generates
a crisp value. The uncertainty inherent in the number should be intrinsically connected with
their distance value. With this point of view in the next section we define new distance
measure for IFNs based on the interval difference.

3. New Distance Measure for IFNs

Human intuition says that the distances between two uncertain numbers should also be an
uncertain number. In view of this the distance measure for IFNs is defined here. The proposed
distance measure is an extension of the fuzzy distance measure [34] in which the degree
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of rejection (that is degree of nonmembership) is considered with degrees of satisfaction
(degree of membership). It is also seen that when there is no degree of hesitation; that is,
when intuitionistic fuzzy number become fuzzy number, this new distance measure converts
to the fuzzy distance measure for normalized fuzzy number [34].

3.1. Construction of the Distance Measure for IFNs

Let us consider two IFNs AIFN and BIFN as follows:

AIFN =
(
m1;α1, β1;α1

′, β1
′), BIFN =

(
m2;α2, β2;α2

′, β2
′). (3.1)

Therefore, ε cut representation of the IFNs AIFN and BIFN is denoted by

[AIFN]ε =
{[
AL
μ(ε), A

R
μ (ε)
]
;
[
AL

1−ν(ε), A
R
1−ν(ε)

]}
,

[BIFN]ε =
{[
BLμ(ε), B

R
μ (ε)
]
;
[
BL1−ν(ε), B

R
1−ν(ε)

]} ∀ε ∈ [0, 1]. (3.2)

From mathematical point of view we can say that sinceAIFN and BIFN are IFNs, therefore their
distance measure should also have membership and nonmembership part.

Let us denote the distance measure between AIFN and BIFN as dIFN = (d; θ1, σ1; θ2, σ2),
where d is the mean value of the distance measure dIFN, θ1, σ1 and θ2, σ2 are the left spread
and right spread of the membership function and nonmembership function of the distance
measure dIFN, respectively.

And denote the ε cut of dIFN in the following way:

[dIFN]ε =
{[
dLμ(ε), d

R
μ (ε)
]
;
[
dL1−ν(ε), d

R
1−ν(ε)

]}
∀ε ∈ [0, 1]. (3.3)

To calculate the value of d, θ1, σ1, we have to formulate the membership function of the
distance between AIFN and BIFN.

Clearly ε (for 0 ≤ ε ≤ 1) cut representation of the membership function of AIFN and
BIFN is [AL

μ(ε), A
R
μ (ε)] and [BLμ(ε), B

R
μ (ε)], respectively.

Now, the distance between [AL
μ(ε), A

R
μ (ε)] and [BLμ(ε), B

R
μ (ε)] for all ε ∈ [0, 1] is one of

the following:

(a)
[
AL
μ(ε), A

R
μ (ε)
]
−
[
BLμ(ε), B

R
μ (ε)
]

if m1 ≥ m2,

or (b)
[
BLμ(ε), B

R
μ (ε)
]
−
[
AL
μ(ε), A

R
μ (ε)
]

if m1 < m2.

(3.4)
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In order to consider both the notations together, an indicator variable η is introduced such
that

η
([
AL
μ(ε), A

R
μ (ε)
]
−
[
BLμ(ε), B

R
μ (ε)
])

+
(
1 − η
)([

BLμ(ε), B
R
μ (ε)
]
−
[
AL
μ(ε), A

R
μ (ε)
])

=
[
Lμ(ε), Rμ(ε)

]
, for η =

⎧
⎨

⎩

1 if m1 ≥ m2,

0 if m1 ≥ m2,

(3.5)

where

Lμ(ε) = η
(
AL
μ(ε) − BLμ(ε) +AR

μ (ε) − BRμ (ε)
)
+
(
BLμ(ε) −AR

μ (ε)
)
,

Rμ(ε) = η
(
AL
μ(ε) − BLμ(ε) +AR

μ (ε) − BRμ (ε)
)
+
(
BRμ (ε) −AL

μ(ε)
)
.

(3.6)

Thus

[
dLμ(ε), d

R
μ (ε)
]
=

⎧
⎨

⎩

[
L(ε), Rμ(ε)

]
; for Lμ(ε) ≥ 0,

[
0,
∣∣Lμ(ε)

∣∣ ∨ Rμ(ε)
]
; for Lμ(ε) ≤ 0 ≤ Rμ(ε)

∀ε ∈ [0, 1]. (3.7)

Now using (3.7) θ1, σ1 are defined as follows:

θ1 = dLμ(1) −max

{∫1

0
dLμ(ε)dε, 0

}

, σ1 =
∫1

0
dRμ (ε) dε − dRμ (1). (3.8)

Similarly θ2, σ2 are of the following form:

θ2 = dL1−ν(1) −max

{∫1

0
dL1−ν(ε)dε, 0

}

, σ2 =
∫1

0
dR1−ν(ε)dε − d

R
1−ν(1), (3.9)

where

[
dL1−ν(ε), d

R
1−ν(ε)

]
=

⎧
⎨

⎩

[L1−ν(ε), R1−ν(ε)]; for L1−ν(ε) ≥ 0,

[0, |L1−ν(ε)| ∨ R1−ν(ε)]; for L1−ν(ε) ≤ 0 ≤ R1−ν(ε).
(3.10)
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As L1−ν(ε) and R1−ν(ε) take the following form:

L1−ν(ε) = η
(
AL

1−ν(ε) − B
L
1−ν(ε) +A

R
1−ν(ε) − B

R
1−ν(ε)

)

+
(
BL1−ν(ε) −A

R
1−ν(ε)

)
,

R1−ν(ε) = η
(
AL

1−ν(ε) − B
L
1−ν(ε) +A

R
1−ν(ε) − B

R
1−ν(ε)

)

+
(
BR1−ν(ε) −A

L
1−ν(ε)

)
.

(3.11)

From (3.7) and (3.10), we can find d = dLμ(1) = dRμ (1) = dL1−ν(1) = dR1−ν(1). Therefore finally
the distance measure between AIFN and BIFN is obtained as

dIFN = (d; θ1, σ1; θ2, σ2). (3.12)

3.2. Distance Measure for TIFNs

If AIFN and BIFN are two TIFNs, then their distance measure with the help of the above
approach (Section 3.1) should be a TIFN. It can be proved by the following proposition:

Proposition 3.1. Let one consider two TIFNs as follows:

ATIFN =
(
m1;α1, β1;α1

/, β1
/ : α1

/ > α1, β1
/ > β1

)
,

BTIFN =
(
m2;α2, β2;α2

/, β2
/ : α2

/ > α2, β2
/ > β2

)
.

(3.13)

Then their distance measure dIFN = (d; θ1, σ1; θ2, σ2) is a TIFN.

Proof. Here we have considered two TIFNs A and B. Therefore the ε cut representation of
ATIFN and BTIFN is as follows:

[ATIFN]ε =
{[
AL
μ(ε), A

R
μ (ε)
]
;
[
AL

1−ν(ε), A
R
1−ν(ε)

]}
,

[BTIFN]ε =
{[
BLμ(ε), B

R
μ (ε)
]
;
[
BL1−ν(ε), B

R
1−ν(ε)

]} ∀ε ∈ [0, 1]. (3.14)

Now with the help of (2.8) and (2.9), respectively, we can write

[
AL
μ(ε), A

R
μ (ε)
]

=
[
m1 − α1(1 − ε), m1 + β1(1 − ε)

]
, (3.15)

[
AL

1−ν(ε), A
R
1−ν(ε)

]
=
[
m1 − α′1(1 − ε), m1 + β′1(1 − ε)

]
∀ε ∈ [0, 1] . (3.16)
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And in a similar manner

[
BLμ(ε), B

R
μ (ε)
]
=
[
m2 − α2(1 − ε), m2 + β2(1 − ε)

]
, (3.17)

[
BL1−ν(ε), B

R
1−ν(ε)

]
=
[
m2 − α′2(1 − ε), m2 + β′2(1 − ε)

]
∀ε ∈ [0, 1]. (3.18)

Here two possibilities can arise depending on the position of the mean values of ATIFN

and BTIFN, which are given as follows.

Case 1. For η = 1, that is, when m1 ≥ m2, we proceed in the following way.
In (3.6), putting the value from (3.15) and (3.17), we can express Lμ(ε) and Rμ(ε) as

follows:

Lμ(ε) =
[
(m1 −m2) − α1(1 − ε) − β2(1 − ε)

]
,

Rμ(ε) =
[
(m1 −m2) + α2(1 − ε) + β1(1 − ε)

]
.

(3.19)

Similarly from (3.11), with the help of (3.16) and (3.18), L1−ν(ε), R1−ν(ε) can be written in the
following form:

L1−ν(ε) =
[
(m1 −m2) − α′1(1 − ε) − β

′
2(1 − ε)

]
,

R1−ν(ε) =
[
(m1 −m2) + α′2(1 − ε) + β′1(1 − ε)

]
.

(3.20)

Now from (3.7) and (3.10) we have the following distances for ATIFN and BTIFN :

dLμ(ε) =
[
(m1 −m2) − α1(1 − ε) − β2(1 − ε)

]
or 0,

dRμ (ε) =
[
(m1 −m2) + α2(1 − ε) + β1(1 − ε)

]
,

(3.21)

dL1−ν(ε) =
[
(m1 −m2) − α′1(1 − ε) − β

′
2(1 − ε)

]
or 0,

dR1−ν(ε) =
[
(m1 −m2) + α′2(1 − ε) + β′1(1 − ε)

]
.

(3.22)

As given by Section 3.1, using (3.21) we can obtain

θ1 = dLμ(1) −max

{∫1

0
dLμ(ε)dε, 0

}

= (m1 −m2) −max
{[
(m1 −m2) −

(
α1 + β2

)
/2
]
, 0
}
. (3.23)

In a similar way, θ2 can be evaluated as

θ2 = (m1 −m2) −max
{[

(m1 −m2) −
(
α/1 + β/2

)
/2
]
, 0
}
. (3.24)
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Now as α′1 > α1 and β′2 > β2

⇒
(
α′1 + β

′
2
)
/2 >

(
α1 + β2

)
/2

⇒max
{[

(m1 −m2) −
(
α/1 + β/2

)
/2
]
, 0
}
≤ max

{[
(m1 −m2) −

(
α1 + β2

)
/2
]
, 0
}

⇒θ2 > θ1

(3.25)

Similarly for σ1 = (α2 + β1)/2 and σ2 = (α′2 + β′1)/2, it is clear that σ2 > σ1 (as α′1 > α1 and
β′2 > β2). Now from Proposition 2.4, we can conclude that as θ2 > θ1 and σ2 > σ1, dIFN is a
TIFN.

Case 2. For η = 0, the proof can be done in a similar manner as for Case 1. Hence the proof is
completed.

Therefore it is now proved that the distance measure between ATIFN and BTIFN is a
TIFN denoted by dTIFN = (d; θ1, σ1; θ2, σ2 : θ2 > θ1, σ2 > σ1).

3.3. Metric Properties

The new distance measure satisfies the following properties of a distance metric.

(i) The distance measure proposed in the Section 3.1 is a nonnegative intuitionistic
fuzzy number.

(ii) For any two intuitionistic fuzzy numbers A1
IFN and A2

IFN the following holds:

d
(
A1

IFN, A
2
IFN

)
= d
(
A2

IFN, A
1
IFN

)
. (3.26)

(iii) For three IFNs A1
IFN, A

2
IFN, and A3

IFN, the distance measure satisfies the triangle
inequality:

d
(
A1

IFN, A
2
IFN

)
+ d
(
A2

IFN, A
3
IFN

)
≥ d
(
A1

IFN, A
3
IFN

)
. (3.27)

Proof. Proof of property (i) follows from (3.12) and property (ii) can be proved with the help
of (3.5).

Proof of property (iii) is given here.
Let A1

IFN, A2
IFN, and A3

IFN be three IFNs. The ε cut representation of IFNs A1
IFN, A2

IFN
and A3

IFN is expressed as

[
Ai

IFN

]

ε
=
{[
AiL
μ (ε), A

iR
μ (ε)
]
;
[
AiL

1−ν(ε), A
iR
1−ν(ε)

]}
for i = 1, 2, 3 for ε ∈ [0, 1]. (3.28)

In order to prove the triangle inequality of the distance measure for the above three IFNs
A1

IFN, A2
IFN and A3

IFN, we show below that the triangle inequality for the distance measure
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between the membership functions of A1
IFN, A2

IFN and A3
IFN and nonmembership function of

A1
IFN, A2

IFN, and A3
IFN should hold separately.

Hence, for membership function of the distance measure, the triangle inequality is
established in the following way.

From (3.28) consider the interval number [AiL
μ (ε), A

iR
μ (ε)] that is, the ε cut of

membership function of A1
IFN, A2

IFN, and A3
IFN.

Depending on the relative positions of the means of A1
IFN, A2

IFN and A3
IFN, three

situations arise.

Situation (I)

When mean of A1
IFN is less than mean of A2

IFN which is less than mean of A3
IFN

A1L
μ (1) +A1R

μ (1)

2
≤
A2L
μ (1) +A2R

μ (1)

2
≤
A3L
μ (1) +A3R

μ (1)

2
. (3.29)

From (3.7), we have the following distances for

(I.a) A1
IFN, A

2
IFN :

⎧
⎨

⎩

dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε),

dRμ (ε) = A
2R
μ (ε) −A1L

μ (ε),

(I.b) A2
IFN, A

3
IFN :

⎧
⎪⎨

⎪⎩

d
L

μ(ε) = A
3L
μ (ε) −A2R

μ (ε) or 0,

d
R

μ (ε) = A
3R
μ (ε) −A2L

μ (ε),

(I.c) A1
IFN, A

3
IFN :

⎧
⎨

⎩

d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε) or 0,

d̂Rμ (ε) = A
3R
μ (ε) −A1L

μ (ε).

(3.30)

Therefore we have to prove that

dR + dL + d
R
+ d

L
≥ d̂R + d̂L. (3.31)

From the above three options (I.a), (I.b) and (I.c), the following eight combinations are
possible:

(i) dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε), d
L

μ(ε) = 0, d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε),

(ii) dLμ(ε) = 0, d
L

μ(ε) = A
3L
μ (ε) −A2R

μ (ε), d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε),

(iii) dLμ(ε) = 0, d
L

μ(ε) = 0, d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε),

(iv) dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε), d
L

μ(ε) = 0, d̂Lμ(ε) = 0,
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(v) dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε), d
L

μ(ε) = A
3L
μ (ε) −A2R

μ (ε), d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε),

(vi) dLμ(ε) = 0, d
L

μ(ε) = 0, d̂Lμ(ε) = 0,

(vii) dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε), d
L

μ(ε) = A
3L
μ (ε) −A2R

μ (ε), d̂Lμ(ε) = 0,

(viii) dLμ(ε) = 0, d
L

μ(ε) = A
3L
μ (ε) −A2R

μ (ε), d̂Lμ(ε) = 0.

Now, from the above eight combinations, (vii) and (viii) are not possible.
As from (vii), the following can be seen that.

(i) The membership functions of A1
IFN and A2

IFN are disjoint.

(ii) The membership functions of A2
IFN and A3

IFN are disjoint.

(iii) The membership functions of A1
IFN and A3

IFN intersect.

It is very clear that the above situation cannot be happened.
From (viii), we observe the following.

(i) The membership functions of A1
IFN and A2

IFN intersect.

(ii) The memberships functions of A2
IFN and A3

IFN are disjoint.

(iii) The memberships functions of A1
IFN and A3

IFN intersect.

The situation (viii) is also not possible.
Therefore, for the rest six different cases, the proof of inequality (3.31) is given as

follows:

(i) dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε), d
L

μ(ε) = 0, d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε),

dR + dL + d
R
+ d

L

=
∫1

0

[
A2L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A2R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A2L

μ (ε)
]
dε

=
∫1

0

[
A2L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A2R
μ (ε) −A2L

μ (ε)
]
dε

=
∫1

0

[
A2R
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A2L
μ (ε) −A2L

μ (ε)
]
dε

≥
∫1

0

[
A3L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥ d̂L + d̂R[Proved].

(3.32)
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(ii) dLμ(ε) = 0, d
L

μ(ε) = A
3L
μ (ε) −A2R

μ (ε), d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε)

dR + dL + d
R
+ d

L

=
∫1

0

[
A2R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A3L
μ (ε) −A2R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A2L

μ (ε)
]
dε

=
∫1

0

[
A3L
μ (ε) −A2L

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A2R
μ (ε) −A2R

μ (ε)
]
dε

≥
∫1

0

[
A3L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥ d̂L + d̂R[Proved].

(3.33)

(iii) dLμ(ε) = 0, d
L

μ(ε) = 0, d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε),

dR + dL + d
R
+ d

L

=
∫1

0

[
A2R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A2L

μ (ε)
]
dε

=
∫1

0

[
A2R
μ (ε) −A2L

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥
∫1

0

[
A3L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥ d̂L + d̂R[Proved].

(3.34)

(iv) dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε), d
L

μ(ε) = 0, d̂Lμ(ε) = 0,

dR + dL + d
R
+ d

L

=
∫1

0

[
A2L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A2R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A2L

μ (ε)
]
dε

=
∫1

0

[
A2L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A2R
μ (ε) −A2L

μ (ε)
]
dε

≥
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥ d̂L + d̂R[Proved].

(3.35)



20 International Journal of Mathematics and Mathematical Sciences

(v) dLμ(ε) = A
2L
μ (ε) −A1R

μ (ε), d
L

μ(ε) = A
3L
μ (ε) −A2R

μ (ε), d̂Lμ(ε) = A
3L
μ (ε) −A1R

μ (ε),

dR + dL + d
R
+ d

L

=
∫1

0

[
A2L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A2R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A3L
μ (ε) −A2R

μ (ε)
]

+
∫1

0

[
A3R
μ (ε) −A2L

μ (ε)
]
dε

=
∫1

0

[
A2L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3L
μ (ε) −A2R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥
∫1

0

[
A3L
μ (ε) −A1R

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥ d̂L + d̂R[Proved].

(3.36)

(vi) dLμ(ε) = 0, d
L

μ(ε) = 0, d̂Lμ(ε) = 0,

dR + dL + d
R
+ d

L

=
∫1

0

[
A2R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A3R
μ (ε) −A2L

μ (ε)
]
dε

=
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε +
∫1

0

[
A2R
μ (ε) −A2L

μ (ε)
]
dε

≥
∫1

0

[
A3R
μ (ε) −A1L

μ (ε)
]
dε

≥ d̂L + d̂R[Proved].

(3.37)

The proof is similar for the following two cases:

(I) ([A1L
μ (1) +A1R

μ (1)]/2) ≤ ([A3L
μ (1) +A3R

μ (1)]/2) ≤ ([A2L
μ (1) +A2R

μ (1)]/2),

(II) ([A2L
μ (1) +A2R

μ (1)]/2) ≤ ([A1L
μ (1) +A1R

μ (1)]/2) ≤ ([A3L
μ (1) +A3R

μ (1)]/2).

With the help of (3.28), considering the interval number [AiL
1−ν(ε), A

iR
1−ν(ε)] for all

ε ∈ [0, 1], we can prove the triangle inequality for nonmembership function of the distance
measure, in same way as for membership function.

4. Numerical Illustration

Here we have considered the following numerical examples to illustrate the proposed
measure.
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Example 4.1. Let us consider two IFSs A and B defined over the universe of discourse X where
X = {x1} is as follows: A = {〈x1, 0.6, 0.3〉} and B = {〈x1, 0.7, 0.2〉}.

Therefore A can be expressed as a conjunction of two fuzzy numbers A+ = (x1; 0, 0)
with membership degree 0.6 and A− = (x1; 0, 0) with membership degree 0.7. And similarly
B can be expressed as a conjunction of B+ = (x1; 0, 0) with membership degree 0.7 and B− =
(x1; 0, 0) with membership degree 0.8.

Applying the proposed distance method we will find the required distance measure
as d = {〈0, 0.6, 0.3〉}. In this way the proposed distance measure covers the case for X = {x1}.

Example 4.2. Let us consider two IFNs say AIFN = (5; 1, 2; 2, 3) and BIFN = (9; 1, 1; 2, 1)
characterized by their membership functions and nonmembership functions as follows:

μA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < x ≤ 4,

1 − (5 − x)3 for 4 ≤ x ≤ 5,

1 for x = 5,

1 − ((x − 5)/2 )3 for 5 ≤ x ≤ 7,

0 for 7 ≤ x <∞,

νA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for −∞ ≤ x ≤ 3,

((5 − x)/2)3 for 3 ≤ x ≤ 5,

0 for x = 5,

((x − 5)/2)3 for 5 ≤ x ≤ 7,

1 for 7 ≤ x ≤ ∞,

μB(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < x ≤ 8,

1 −
√

9 − x for 8 ≤ x ≤ 9,

1 for x = 9,

1 −
√
x − 9 for 9 ≤ x ≤ 10,

0 for 10 ≤ x <∞,

νB(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for −∞ ≤ x ≤ 7,
√
(9 − x)/2 for 7 ≤ x ≤ 9,

0 for x = 9,
√
(x − 9) for 9 ≤ x ≤ 10,

1 for 10 ≤ x ≤ ∞.

(4.1)
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The ε cut representation of AIFN and BIFN is obtained as follows:

[AIFN]ε =
{[

5 − (1 − ε)1/3, 5 + 2 (1 − ε)1/3
]
;
[
5 − 2 (1 − ε)1/3, 5 + 2(1 − ε)1/3

]}
,

[BIFN]ε =
{[

9 − (1 − ε)2, 9 + (1 − ε)2
]
;
[
9 − 2 (1 − ε)2, 9 + 2(1 − ε)2

]} ∀ε ∈ [0, 1].

(4.2)

The ε cut of the distance measure dIFN using (3.7) and (3.10) is obtained as

[dIFN]ε =
{[

4 − (1 − ε)2 − 2 (1 − ε)1/3, 4 + (1 − ε)2 + (1 − ε)1/3
]
;

[
4 − 2 (1 − ε)2 − 2 (1 − ε)1/3, 4 + (1 − ε)2 + 2(1 − ε)1/3

]}
∀ε ∈ [0, 1].

(4.3)

Finally the distance measure of AIFN and BIFN, computed by the proposed method is given
by dIFN = (4; 1.84, 1.08; 2.17, 1.83).

Example 4.3. In the following, 2 sets of TIFNs are given to compare the proposed distance
method with the existing distance measures presented by Grzegorzewski [28]. A comparison
between the results of the proposed distance measure and the results of the existing method
is shown in Table 1.

Set 1. Consider A1
TIFN = (3; 2, 2; 3, 4) and BTIFN = (4; 2, 2; 3, 3). The membership and

nonmembership functions of A1
TIFN and BTIFN are, respectively, of the following form:

μA1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (x − 1)

; 1 ≤ x ≤ 3,

1
2 (5 − x) ; 3 ≤ x ≤ 5,

νA1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
3 (3 − x) ; 0 ≤ x ≤ 3,

1
4 (x − 3)

; 3 ≤ x ≤ 7,

μB(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (x − 2)

; 2 ≤ x ≤ 4,

1
2 (6 − x) ; 4 ≤ x ≤ 6,

νB(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
3 (4 − x) ; 2 ≤ x ≤ 4,

1
3 (x − 4)

; 4 ≤ x ≤ 7.

(4.4)
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Table 1: Here a comparison of the proposed distance measure with the existing distance measure through
the above set of 2 examples is given.

Distance measures Grzegorzewski’s method [28] The Proposed Method
for IFNs Equation (2.29); p = 1 Equation (2.31); 1 ≤ p <∞ Equation (3.12)
Set 1: d(A1

TIFN, BTIFN) 7/8 1 dTIFN = (1; 1, 2; 1, 3)
Set 2: d(A2

TIFN, BTIFN) 5/8 1 d′TIFN = (1; 1, 1.5; 1, 3)

Set 2. Consider A2
TIFN = (3; 1, 3; 3, 4) and BTIFN = (4; 2, 2; 3, 3), where the membership and

nonmembership functions of A2TIFN are given as follows:

μA2(x) =

⎧
⎪⎨

⎪⎩

(x − 2); 1 ≤ x ≤ 3,

1
3(6 − x) ; 3 ≤ x ≤ 6,

νA2(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
3(3 − x) ; 0 ≤ x ≤ 3,

1
4(x − 3)

; 3 ≤ x ≤ 7.

(4.5)

And BTIFN is defined as in Set 1.
Now we have calculated the distance measure between A1

TIFN, BTIFN and A2
TIFN, BTIFN

by applying (2.29), (2.31), and (3.12) and the results are compared in Table 1.

From Table 1 we can see that Set 1 and Set 2 are different sets of TIFNs, but Equation
(2.31) gives the same distance value. Therefore from Table 1, it can be said that Equation
(2.31) is not so well fit in real life applications.

Applying (2.29) and choosing p = 1, we can say from Table 1 that d(A2
TIFN, BTIFN) <

d(A1
TIFN, BTIFN).

Also we utilize (3.12) to find the distance value of A1
TIFN, BTIFN and A2

TIFN, BTIFN

respectively. Then we analyze the results by applying the defuzzification procedure proposed
by Chang et al. [35] to the both distance measures, respectively, and we obtain d(A2

TIFN,
a
b BTIFN) < d(A1

TIFN, BTIFN). This result is matching with the result obtained from (2.29).

5. Conclusion

IFSs theory provides a flexible framework to cope with imperfect and/or imprecise
information often present in real world application. The concept of IFS can be viewed as
an alternative approach to define a fuzzy set in the case when available information is
not sufficient to define a conventional fuzzy set. In this paper a new distance measure
for computing distance for IFNs is introduced. We believe that the distances between two
uncertain numbers should be an uncertain number. If the uncertainty is inherent within the
numbers, this uncertainty should be intrinsically connected with their distance value. With
this view point here a new method to measure the distance for IFNs is presented. What is
important, the proposed distance method gives new viewpoints for the study of similarity of
IFNs. This will be a topic of our future research work.
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