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We consider a new system of generalized variational inequalities (SGVI). Using the penalty
methods, we prove the existence of solution of SGVI in Hilbert spaces. Our results extend and
improve some known results.

1. Introduction

Throughout this work, let H be real Hilbert space with a norm ‖ · ‖ and inner product
〈·, ·〉. Let K be a nonempty closed and convex subset of H. Given nonlinear mappings
T1(x, y), T2(x, y) : H ×H → H, and ω1, ω2 ∈ H, we consider the following problem:

〈
rT1

(
x, y

) −ω1, u − x
〉 ≥ 0, ∀u ∈ K,

〈
sT2

(
x, y

) −ω2, u − y
〉 ≥ 0, ∀u ∈ K,

(1.1)

which is called the system of generalized variational inequality problem (SGVI), where r > 0
and s > 0 are constants. An element (x∗, y∗) ∈ K ×K is called a solution of the problem (1.1)
if

〈
rT1

(
x∗, y∗) −ω1, u − x∗〉 ≥ 0, ∀u ∈ K,

〈
sT2

(
x∗, y∗) −ω2, u − y∗〉 ≥ 0, ∀u ∈ K.

(1.2)

Special cases of problem (1.1) are as follows.
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(1) If T1(x, y) = T2(x, y) = Tx, s = 1, r = 0, and ω2 = ω, ω1 = θ, then problem (1.1)
reduces to the variational inequality

〈Tx −ω, u − x〉 ≥ 0, ∀u ∈ K. (1.3)

Problem (1.3) was introduced by Browder [1, 2] and studied by many authors (e.g., see [3–
7]).

(2) If T1(x, y) = Tx + x − y, T2(x, y) = Ty + y − x, T : H → H, and ω1 = ω2 = θ, then
problem (1.1) reduces to the system of variational inequality problem

〈
Tx + x − y, u − x

〉 ≥ 0, ∀u ∈ K,
〈
Ty + y − x, u − y

〉 ≥ 0, ∀u ∈ K.
(1.4)

Problem (1.4) was introduced and studied by Verma [8].
(3) If T1(x, y) = T(x, y)+x−y, T2(x, y) = T(y, x)+y−x, andω1 = ω2 = θ, then problem

(1.1) becomes the following system of nonlinear variational inequalities

〈
T
(
x, y

)
+ x − y, u − x

〉 ≥ 0, ∀u ∈ K,

〈
T
(
y, x

)
+ y − x, u − y

〉 ≥ 0, ∀u ∈ K,
(1.5)

which was considered by Chang et al. [9].

Remark 1.1. For a suitable choice of T1 and T2, the problem (1.1) includes many kinds of
known systems of variational inequalities as special case (see [4–10] and the references
therein). In this work, by using the penalty method, we study the existence of solutions for
SGVI.

2. Preliminaries

In the sequel, we give some definitions and lemmas. In what follows, → and ⇀ stand for
strong and weak convergence, respectively.

Definition 2.1 (see [11, pages 96–105]). Let T : H → H be a mapping.
(i) The mapping T is said to be pseudo-monotone if D(T) is closed convex set and

its restrictions to finite-dimensional subspaces are demicontinuous, and for every
sequence {xn} ⊂ D(T), xn ⇀ x in H, the inequality lim supn→∞〈Txn, xn − x〉 ≤ 0
implies that

〈
Tx, x − y

〉 ≤ lim inf
n→∞

〈
Txn, xn − y

〉
, ∀y ∈ D(T). (2.1)

(ii) The mapping T is said to have the generalized pseudo-monotone property if for
any sequence {[xn, Txn]}with xn ⇀ x in X and Txn ⇀ f in H such that

lim sup
n→∞

〈Txn, xn − x〉 ≤ 0, (2.2)

we have f = Tx and 〈Txn, xn〉 → 〈f, x〉 as n → ∞.
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(iii) The mapping T is said to be monotone if for any x, y ∈ D(T), the inequality 〈Tx −
Ty, x − y〉 ≥ 0 holds.

(iv) The monotone mapping T is said to be maximal if the inequality 〈Tx − g, x −y〉 ≥ 0
for all [x, Tx] ∈ G(T)(graph of T) implies [y, g] ∈ G(T).

(v) The mapping T is said to be coercive if there exists a continuous increasing function
C : R+ → R+ with C(r) → ∞ as r → ∞ such that for x ∈ D(T)

〈Tx, x〉 ≥ C(‖x‖)‖x‖. (2.3)

Definition 2.2. Let T : H ×H → H be a mapping.

(i) The mapping T is said to be (ξ, η)-Lipschitz continuous if there exist constants ξ >
0, η > 0 such that

∥∥T
(
x1, y1

) − T
(
x2, y2

)∥∥ ≤ ξ‖x1 − x2‖ + η
∥∥y1 − y2

∥∥, ∀x1, x2, y1, y2 ∈ H. (2.4)

(ii) Themapping T is said to be α-stronglymonotone in the first argument if there exists
α > 0 such that for each fixed y ∈ H, we have

〈
T
(
x1, y

) − T
(
x2, y

)
, x1 − x2

〉 ≥ α‖x1 − x2‖2, ∀x1, x2 ∈ H. (2.5)

(iii) The mapping T is said to be β-strongly monotone in the second argument if there
exists β > 0 such that for each fixed x ∈ H, we have

〈
T
(
x, y1

) − T
(
x, y2

)
, y1 − y2

〉 ≥ β
∥∥y1 − y2

∥∥2
, ∀y1, y2 ∈ H. (2.6)

(iv) The mapping T is said to be coercive in the first (second) argument if there exists
a continuous increasing function C1 : R+ → R+(C2 : R+ → R+) with C1(r) →
∞(C2(r) → ∞) as r → ∞ such that for each fixed y ∈ H(x ∈ H), we have

〈
T
(
x, y

)
, x

〉 ≥ C1(‖x‖)‖x‖, ∀x ∈ H,

〈
T
(
x, y

)
, y

〉 ≥ C2
(∥∥y

∥∥)∥∥y
∥∥, ∀y ∈ H.

(2.7)

Definition 2.3 (see [11]). (i) A single-valued bounded demicontinuous monotone operator
P : H → H with the property that K = kerP = N(P) = {x ∈ H : Px = 0} is said to be the
penalty operator of K ⊂ H.

(ii) P is demicontinuous if xn → x implies that Pxn ⇀ Px.
(iii) P is hemicontinuous if h ∈ H, tn > 0, x+ tnh ∈ H, tn → 0 implies that P(x+ tnh) ⇁

Px, where ⇁ stands for weak∗ convergence in H.

Lemma 2.4 (see [11, page 267]). Let PK : H → K be the projection on K, then the mapping
P = I − PK is a penalty operator of K.
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Lemma 2.5 (see [11, page 98]). (i) Any maximal monotone mapping T : H → H withD(T) = H
is a pseudo-monotone one.

(ii) Any pseudo-monotone mapping has the generalized pseudo-monotone property.
(iii) The monotone mapping T is maximal if and only if R(I + λT) = H, for all λ > 0.

3. Main Results

We consider first the problem of finding (x, y) ∈ H ×H such that

ω1 = rT1
(
x, y

)
+
1
ε
Px,

ω2 = sT2
(
x, y

)
+
1
δ
Py,

(3.1)

which is called the system of nonlinear variational equation, where r > 0, s > 0, ε > 0, δ > 0
and ω1, ω2 ∈ H, P = I − PK is the penalty operator of K (see Lemma 2.4). We will prove the
existence of solutions for problem (3.1).

Lemma 3.1. Let H be real Hilbert space and K ⊂ H be a nonempty closed convex subset of H.
Let mapping T1 : H × H → H be (ξ1, η1)-Lipschitz continuous and α1-strongly monotone in the
first argument and mapping T2 : H × H → H be (ξ2, η2)-Lipschitz continuous and α2-strongly
monotone in the second argument. If

γ1 =
√
1 − 2α1r + ξ21r

2 + sξ2 < 1,

γ2 =
√
1 − 2α2s + η2

2s
2 + rη1 < 1,

(3.2)

then for each ε > 0, δ > 0, problem (3.1) admits a solution (xε, yδ).

Proof. Since P is continuous monotone operator, P is hemicontinuous monotone operator. By
Corollary 2.3 in [11], P is maximal monotone. So, problem (3.1) is equivalent to the following
problem

x = JεP
[
x − rT1

(
x, y

)
+ω1

]
,

y = JδP
[
y − sT2

(
x, y

)
+ω2

]
,

(3.3)

where JεP = (I + (1/ε)P)−1, JδP = (I + (1/δ)P)−1, and I is the identity mapping on H.
For any given x0 ∈ H,y0 ∈ H, we can compute the sequences {xn} and {yn} by Picard

iterative schemes:

xn+1 = JεP
(
xn − rT1

(
xn, yn

)
+ω1

)
, n ≥ 0, (3.4)

yn = JδP
(
xn − sT2

(
xn, yn

)
+ω2

)
, n ≥ 0. (3.5)
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Since JεP is nonexpansive [11] and T1 is (ξ1, η1)-Lipschitz continuous and α1-strongly
monotone in the first argument, then by (3.4), we have

‖xn+1 − xn‖ =
∥
∥JεP

(
xn − rT1

(
xn, yn

)
+ω1

) − JεP
(
xn−1 − rT1

(
xn−1, yn−1

)
+ω1

)∥∥

≤ ∥
∥xn − xn−1 − r

(
T1
(
xn, yn

) − T1
(
xn−1, yn−1

))∥∥

≤ ∥
∥xn − xn−1 − r

(
T1
(
xn, yn

) − T1
(
xn−1, yn

))∥∥

+ r
∥
∥T1

(
xn−1, yn

) − T1
(
xn−1, yn−1

)∥∥

≤
√
1 − 2α1r + ξ21r

2‖xn − xn−1‖ + rη1
∥
∥yn − yn−1

∥
∥.

(3.6)

Similarly, we get from (3.5)

∥∥yn+1 − yn

∥∥ ≤
√
1 − 2α2s + η2

2s
2
∥∥yn − yn−1

∥∥ + sξ2‖xn − xn−1‖. (3.7)

By (3.6) and (3.7), we have

‖xn+1 − xn‖ +
∥∥yn+1 − yn

∥∥ ≤
(√

1 − 2α1r + ξ21r
2 + sξ2

)
‖xn − xn−1‖

+
(√

1 − 2α2s + η2
2s

2 + rη1

)∥∥yn − yn−1
∥∥

= γ1‖xn − xn−1‖ + γ2
∥∥yn − yn−1

∥∥

≤ γ
(‖xn − xn−1‖ +

∥∥yn − yn−1
∥∥),

(3.8)

where γ = max(γ1, γ2). By (3.2), we know that 0 < γ < 1, and (3.8) implies that {xn} and {yn}
are both Cauchy sequences. Thus, there exist xε ∈ H, yδ ∈ H such that xn → xε, yn → yδ(as
n → ∞). By continuity of JεP , J

δ
P , T1, and T2 and algorithm (3.4) and (3.5), we know that

(xε, yδ) satisfies the following relation:

xε = JεP
(
xε − rT1

(
xε, yδ

)
+ω1

)
,

yδ = JδP
(
yδ − sT2

(
xε, yδ

)
+ω2

)
.

(3.9)

Therefore, (xε, yδ) is a solution of problem (3.1). This completes the proof of Lemma 3.1.

Remark 3.2. If T is (s, t)-Lipschitz continuous, then T is bounded, that is, T map bounded set
to bounded set.

Now, we give our main results.

Theorem 3.3. Let H be a real Hilbert space and K ⊂ H be a nonempty closed convex subset with
θ ∈ K. Let T1, T2 : H × H → H be the same as in Lemma 3.1. If the mapping T1 is coercive with
respect to the first argument and the mapping T2 is coercive with respect to the second argument, then
for any ω1 ∈ H,ω2 ∈ H, there exists one solution (x∗, y∗) of the SGVI (1.1).
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Proof. Let ε > 0, δ > 0. Then, by Lemma 3.1, the problem (3.1) has a solution (xε, yδ).
By the monotonicity of P , we have

〈ω1, xε〉 =
〈
T1
(
xε, yδ

)
, xε

〉
+
1
ε
〈Pxε, xε〉

=
〈
T1
(
xε, yδ

)
, xε

〉
+
1
ε
〈Pxε − Pθ, xε − θ〉

≥ 〈
T1
(
xε, yδ

)
, xε

〉

≥ C1(‖xε‖)‖xε‖,

(3.10)

since T1 is coercive with respect to the first argument. Hence {xε | ε > 0} remains bounded as
ε → 0. Similarly, we have

〈
ω2, yδ

〉
=
〈
T2
(
xε, yδ

)
, yδ

〉
+
1
δ

〈
Pyδ, yδ

〉

≥ 〈
T2
(
xε, yδ

)
, yδ

〉 ≥ C2
(∥∥yδ

∥∥)∥∥yδ

∥∥.

(3.11)

Hence {yδ | δ > 0} remains also bounded as δ → 0. The boundedness of T1 and T2 and the
fact that

Pxε = ε
(
ω1 − rT1

(
xε, yδ

))

Pyδ = δ
(
ω2 − sT2

(
xε, yδ

)) (3.12)

implies that ‖Pxε‖ ≤ c and ‖Pyδ‖ ≤ c for some constant c > 0. By reflexivity of H, we can
choose sequences {xn} and {yn}, xn = xεn , yn = yδn such that xn ⇀ x∗ ∈ H,yn ⇀ y∗ ∈ H, and
T1(xn, yn) ⇀ u, T2(xn, yn) ⇀ v as εn → 0 and δn → 0. Using the fact that ‖Pxn‖ → 0 and
‖Pyn‖ → 0 as n → ∞ and taking the limit in the monotonicity relation, we get that

0 ≤ lim
n→∞

〈Px − Pxn, x − xn〉 = 〈Px, x − x∗〉, ∀x ∈ H,

0 ≤ lim
n→∞

〈
Px − Pyn, x − yn

〉
=
〈
Px, x − y∗〉, ∀x ∈ H.

(3.13)

Set x = x∗ + tzwith t > 0 and let z be arbitrarily chosen inH. Then 〈P(x∗ + tz), z〉 ≥ 0 and by
the hemicontinuity of P , we get that 〈Px∗, z〉 ≥ 0 for all z ∈ H. Hence Px∗ = 0, that is, x∗ ∈ K.
Similarly, we have Py∗ = 0, that is, y∗ ∈ K.

By (3.1) and monotonicity of P , we have

〈
rT1

(
xn, yn

) −ω1, x
∗ − xn

〉
=

1
εn

〈Px∗ − Pxn, x
∗ − xn〉 ≥ 0,

〈
sT2

(
xn, yn

) −ω2, y
∗ − yn

〉
=

1
δn

〈
Py∗ − Pyn, y

∗ − yn

〉 ≥ 0.

(3.14)
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Therefore

lim sup
n→∞

〈
rT1

(
xn, yn

)
, xn − x∗〉 ≤ lim sup

n→∞
〈ω1, xn − x∗〉 = 0,

lim sup
n→∞

〈
sT2

(
xn, yn

)
, yn − y∗〉 ≤ lim sup

n→∞

〈
ω2, yn − y∗〉 = 0,

(3.15)

that is,

lim sup
n→∞

〈
T1
(
xn, yn

)
, xn − x∗〉 ≤ 0,

lim sup
n→∞

〈
T2
(
xn, yn

)
, yn − y∗〉 ≤ 0.

(3.16)

By Lemma 2.5(ii) and Definition 2.1, we deduce that

u = T1
(
x∗, y∗),

〈
T1
(
xn, yn

)
, xn

〉 → 〈u, x∗〉 as n → ∞,

v = T2
(
x∗, y∗),

〈
T2
(
xn, yn

)
, yn

〉 → 〈
v, y∗〉 as n → ∞.

(3.17)

By (3.1), (3.17), and monotonicity of P , we have

〈
rT1

(
x∗, y∗), x∗ − u

〉
= lim

n→∞
〈
rT1

(
xn, yn

)
, x∗ − u

〉
= lim inf

n→∞
〈
rT1

(
xn, yn

)
, x∗ − u

〉

= lim inf
n→∞

〈
ω1 − 1

εn
Pxn, xn − u

〉

= lim inf
n→∞

〈ω1, xn − u〉 − lim sup
n→∞

1
εn

〈Pxn − Px, xn − u〉

≤ 〈ω1, x
∗ − u〉 ∀u ∈ K,

〈
sT2

(
x∗, y∗), y∗ − u

〉
= lim inf

n→∞
〈
sT2

(
xn, yn

)
, y∗ − u

〉

= lim inf
n→∞

〈
ω2 − 1

δn
Pyn, yn − u

〉

= lim inf
n→∞

〈
ω2, yn − u

〉 − lim sup
n→∞

1
δn

〈
Pyn − Px, yn − u

〉

≤ 〈
ω2, y

∗ − u
〉 ∀u ∈ K.

(3.18)

Hence

〈
rT1

(
x∗, y∗) −ω1, u − x∗〉 ≥ 0, ∀u ∈ K,

〈
sT2

(
x∗, y∗) −ω2, u − y∗〉 ≥ 0, ∀u ∈ K.

(3.19)

This completes the proof of Theorem3.3.
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If T1(x, y) = Tx, r = 1, ω1 = ω, ω2 = θ, and s = 0, then we have the following theorem.

Theorem 3.4. Let H be a real Hilbert space and K ⊂ H be a nonempty closed convex subset with
0 ∈ K. Let T : H → H be α-strongly monotone, ξ-Lipschitz continuous, and coercive operator. If

√
1 − 2rα + r2ξ2 < 1, (3.20)

then for each ω ∈ H, there exists at least one solution x∗ of problem (1.3).
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